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1 Introduction
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Une police d’assurance est un contrat entre deux parties :

→ l’assuré, détenteur du contrat;

→ l’assureur, pourvoyeur du contrat.

En échange de la couverture d’un risque par l’assureur, l’assuré
verse une prime d’assurance.

En cas de sinistre, le bénéficiaire du contrat reçoit le montant
contractuel prévu en cas de survenance du sinistre.

Ainsi le risque économique initialement supporté par l’assuré est
transféré vers l’assureur.
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La mutualisation induite par la souscription de nombreux contrats
au sein d’une compagnie d’assurance permet l’utilisation grossière
de la loi des grands nombres.

En effet,

→ un portefeuille d’assurance couvre un risque en particulier:
les pertes sont considérées être de même loi de probabilité;

→ les contrats sont a priori indépendants les uns des autres.

Ces propriétés doivent permettre à l’assureur de prédire avec une
précision relative les pertes encourues pour une période donnée.
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Soit un portefeuille d’assurance contenant n polices. Notons la loi
du ième sinistre Si (perte), et la loi des pertes agrégées S.

La LFGN stipule la CV presque sûre de la moyenne empirique de
pertes i.i.d., notée S̄n = 1

n
∑n

i=1 Si , vers l’espérance de la loi:

S̄n
p.s.
−→
n→∞

E[Si] = µ.

Ou encore: P
(

lim
n→∞

S̄n = µ
)

= 1.

Ce résultat est à l’origine du principe général de tarification: la
prime vaut au moins µ, aussi appelée prime pure du contrat.
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En pratique l’assureur applique des chargements à cette prime,
car mathématiquement sa ruine est certaine à horizon infini dès
lors que la tarification respecte le strict principe d’équivalence.

La prime d’assurance se décompose donc en plusieurs parties:

→ la prime pure;

→ les chargements techniques (ou marge de risque MR):

Π(S) = E[S] + MR(S);

→ les coûts:
acquisition,
administration et gestion du contrat,
rémunération d’intermédiaires (courtiers, ...).
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La stratégie de la compagnie peut également jouer sur la hauteur
de ces chargements.

Objectif de l’assureur:

bien choisir son principe de prime pour la tarification.

Cela lui permettra de déterminer

→ la loi de probabilité de son résultat futur,

→ sa probabilité de ruine.
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2 Quelques distributions classiques en assurance
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Introduction

Nous donnons dans cette partie les principales lois utilisées en
mathématique de l’assurance.

Distribution de fréquence Lois de sévérité
Loi de Poisson Loi Gamma
Loi binomiale Loi de Weibull

Loi binomiale négative Loi de Pareto
Loi géométrique Loi lognormale

Le but est d’en présenter les principales caractéristiques.
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2 Quelques distributions classiques en assurance
Distribution de fréquence de sinistre
Distribution de sévérité (coût) de sinistre
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Distribution de Poisson

La fonction de masse de la loi de Poisson P(λ) s’écrit pour une
v.a. N prenant ses valeurs dans l’ensemble des entiers positifs:

P(N = n) = e−λ
λn

n!
λ > 0.

Les deux premiers moments de cette loi sont donnés par

E[N] = λ Var(N) = λ MN(t) = eλ(et − 1)

Rq: équidispersion. λ est le taux de sinistralité par unité de temps
de couverture du risque.
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Preuve.
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Proposition
La famille des v.a.r. Poisson composées est fermée sous
convolution.

Soient S1, ..., Sn des Poisson composées indépendantes de
paramètres λj et de f.d.r. des sinistres Fj (pour i = 1, ..., n); alors
S = S1 + ... + Sn est une Poisson composée de paramètres

λ =
n∑

j=1

λj et F(x) =
n∑

j=1

λj

λ
Fj(x).

Preuve. Les f.g.m. des Sj valent MSj (t) = eλj(Mj(t)−1).

Donc MS(t) = eλ(
∑n

j=1
λj
λ (Mj(t)−1)) = eλ(

∑n
j=1

λj
λ Mj(t)−1),

distribution Poisson composée des paramètres évoqués en sus.
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Loi Binomiale: expériences de Bernouilli répétées

Elle est à valeurs dans {0, ..., n}. La fonction de masse de la loi
Binomiale B(n, p) s’écrit pour une v.a. N :

P(N = k) = Ck
n pk (1 − p)n−k p ∈ [0, 1].

Les deux premiers moments de cette loi sont donnés par

E[N] = n p Var(N) = n p (1 − p)

Les réalisations d’une binomiale sont sous-dispersées
(E[N] > Var(N)).
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Cas de surdispersion: la loi binomiale négative

Elle peut être construite comme un mélange de lois de Poisson:

(N |Λ = λ) ∼ P(λ) et Λ ∼ Ga(α, δ).

La densité jointe de N (discret) et Λ (cont.) vaut (λ, α, δ > 0, k ∈ N)
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Remarques:

→ La queue de distribution est plus épaisse que celle d’une loi
de Poisson.

→ Sa variance est plus grande qu’une loi de Poisson: loi utilisée
en cas de surdispersion des observations.
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E[N] = E[E[N |Λ]] = E[Λ] =
α

δ

Var(N) = Var(E[N |Λ]) + E[Var(N |Λ)] =
α

δ2
+
α

δ
=
αq
p2

MN(t) =
∞∑

n=0

P(N = n)etn =
∞∑

n=0

Γ(α + n)

Γ(α) n!
pα(qet )n

=

(
p

1 − qet

)α ∞∑
n=0

Γ(α + n)

Γ(α) n!
(1 − qet )α(qet )n =

(
p

1 − qet

)α
.
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La loi géométrique

La distribution géométrique se caractérise par

P(N = k) = qk (1 − q) 0 < q < 1.

La f.g.m. est égale à

MN(t) =
∞∑

n=0

P(N = n)etn = (1 − q)
∞∑

n=0

(qet )n =
1 − q

1 − qet .

On peut facilement déduire de cette expression les deux premiers
moments.
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Le modèle de comptage Zero-Inflated (ZIP)

On utilise ce modèle mélange lorsque l’on étudie des contrats qui
couvrent un risque dont la survenance est plutôt rare...
C’est typiquement le cas par exemple lorsque l’assureur opère sur

le marché des catastrophes naturelles,

le marché du luxe (assurance contre le vol), ...

Les 0 observés viennent de la loi de comptage + masse en 0:

regroupés dans un dirac regroupant les deux “sources” de 0,

l’autre composante regoupe les obs. , 0 provenant de la loi
de comptage.

fzeroinfl(k) = fzero(0)1{k=0} + (1 − fzero(0)) fcount(k)
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Les modèles type “hurdle” (ex: Zero Truncated Poisson)

On l’utilise lorsque l’on étudie des données de sinistres dont une
grande proportion est nulle.

La , est que les 0 ne viennent plus du tout de la loi de comptage,

mais entièrement d’une composante spécifique,

à laquelle on ajoute une loi de comptage tronquée.

fhurdle(k) =


fzero(0) si k = 0,

(1 − fzero(0))
fcount(k)

1 − fcount(0)
si k > 0.

Ex. Poisson : P(N = k) =


π0 si k = 0,

(1 − π0)
e−λλk

(1 − e−λ)k !
si k > 0.
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Plus généralement, les mélanges finis

L’idée est de supposer le paramètre de la loi considérée comme
aléatoire: augmente ainsi la variabilité des observations de la loi.

De manière tout à fait générale, la nouvelle densité pour une v.a. X
de densité f(x; θ) s’écrit ainsi

f(x; H) =

∫
f(x; θ)dH(θ),

où H est la distribution a priori du paramètre.

Certains mélanges (Poisson-Gamma, Beta-Binomial...) sont plus
utilisés car ils ont de bonne propriétés (bayésienne...).
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2 Quelques distributions classiques en assurance
Distribution de fréquence de sinistre
Distribution de sévérité (coût) de sinistre
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La distribution Gamma

La loi Gamma Ga(α, δ) d’un sinistre Y admet pour densité

fY (y) =
δα yα−1 e−δy

Γ(α)
y > 0.

Les caractéristiques de cette loi sont les suivantes:

MY (t) =

∫ ∞

0
etyδα

yα−1

Γ(α)
e−δy dy

=
(
δ

δ − t

)α ∫ ∞

0
(δ − t)α

yα−1

Γ(α)
e−(δ−t)y dy =

(
δ

δ − t

)α

On en déduit: E[Y ] =
α

δ
Var(Y) =

α

δ2
.
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→ si α ∈ N alors Γ(α) = (α − 1)! ;

→ si Y1 ∼ Ga(α1, δ) et Y2 ∼ Ga(α2, δ) sont indépendantes, alors

Y1 + Y2 ∼ Ga(α1 + α2, δ).

→ si α = 1 alors la distribution est exponentielle.

La vitesse de décroissance de la queue de distribution est un
élément central de la distribution de Y (ex: tarification d’EoL).

On distingue alors

→ la vitesse exponentielle: P(Y > y) = e−λy

→ la vitesse hyperbolique: P(Y > y) =
(

λ
λ+y

)α
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La distribution de Weibull

Cette loi a l’avantage d’être très flexible. La densité de la loi de
Weibull, notée Wei(c, γ), a la forme

fY (y) = c γ yγ−1 exp(−cyγ) y > 0, c > 0, γ > 0.

On peut aussi donner la f.d.r. qui vaut FY (y) = 1 − exp(−cyγ).

D’autre part, la queue de distribution est de la forme exp(−cyγ):

→ γ = 1: décroissance de type exponentielle;

→ γ < 1: décroissance + lente qu’exponentielle;

→ γ > 1: décroissance + rapide qu’exponentielle (gaussienne).
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Remarque: ∀k ∈ N, E[Yk ] souvent difficiles à calculer.

Dans la pratique,

→ pour des modèles de sinistres, on prend souvent γ < 1;

→ les queues de distribution de Y sont
plus épaisses que celles de la loi exponentielle,
plus fines qu’avec la loi de Pareto;

→ cette loi sert surtout en analyse de survie;

→ les moments sont polynomiaux au lieu d’être exponentiels.
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La distribution de Pareto

Nous décrivons ci-dessous la densité caractéristique de la loi de
Pareto, notée Pa(α, λ), pour une v.a.p. Y :

fY (y) =
αλα

(λ + y)α+1
α > 0.

Il en découle que sa f.d.r. vaut FY (y) = 1 −
(

λ

λ + y

)α
.

On a notamment E[Y ] =
λ

α − 1
Var(Y) =

αλ2

(α − 1)2(α − 2)

Rq: le kième moment de la distribution de Pareto existe⇔ α > k .
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La distribution Lognormale

Supposons que X ∼ N(µ, σ2), alors Y = eX ∼ LN(µ, σ2).

La densité de Y est donnée par

fY (y) =
1

y
√

2πσ2
exp

−1
2

(
ln y − µ
σ

)2 .

Ses premiers moments s’obtiennent à partir de la transformée de
Laplace de la gaussienne:

E[Y t ] = E[eXt ] = etµ+σ2 t2
2 .
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La famille de distributions Tweedie

→ Souvent utilisée en actuariat comme réponse d’un GLM.
En l’écrivant sous forme exponentielle, la densité est donnée par

f(x; µ, φ) = a(x, φ) exp
(
1
φ

[
xθ(µ) − κ(θ(µ))

])
,

θ(µ) =

µ1−p

1−p si p , 1

log µ si p = 1
κ(θ(µ)) =

µ2−p

2−p si p , 2

log µ si p = 2

Dans cette formalisation, E[X ] = µ et Var(X) = ψµp = ψE[X ]p ,
avec ψ un parametre de dispersion > 0.

L’ordre p ∈ R+ (appelé paramètre d’indice), choisi (en fonction de
l’application) avant d’estimer µ et φ, définit le type de distribution:
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→ p < 0 : réalisations dans R; p = 0 : loi gaussienne,

→ 0 < p < 1 : pas de distribution (pas de modèle Tweedie),

→ p = 1 avec φ = 1 : loi de Poisson,

→ 1 < p < 2 : loi composée Poisson-Gamma (réalisations ≥ 0),

→ p = 2 : loi Gamma,

→ 2 < p < 3 ou p > 3 : positive stable distributions (x > 0),

→ p = 3 : loi inverse gaussienne.

En pratique, 1 < p < 2 très utile lorsque l’on observe bc de 0 ds les
coûts de sinistres, venant de la masse en 0 de la loi de comptage.
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3 Modèle individuel et modèle collectif en assurance
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3 Modèle individuel et modèle collectif en assurance
Les différentes approches
Le modèle de risque individuel (MRI)
Le modèle de risque collectif (MRC)
Choix des rétentions et priorités en réassurance
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Introduction

Objectif:

modéliser le montant agrégé des sinistres d’un portefeuille de
polices d’assurance sur une période de temps fixée.

→ C’est un sujet central des mathématiques de l’assurance car
la distribution de ce montant est rarement connue.

→ Les méthodes numériques et les progrès de l’informatique
permettent alors souvent d’approximer cette distribution.

→ On s’intéresse particulièrement en queue de distribution.

Il existe , approches pour modéliser le coût d’un sinistre Y .
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Approche indemnitaire

Idée: coûts dépendent de l’occurrence éventuelle d’un sinistre (au
plus un sinistre dans la période) et du montant qui en résulte.

Y =

b si I = 1

0 si I = 0

où I ∼ Bernouilli B(p) (occurrence du sinistre), et b déterministe.

→ E[Y ] =

→ Var(Y) =

Exemple: coût en sinistre d’un contrat d’assurance vie sur un an.
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Approche forfaitaire

Idée: Y est définie par 2 composantes. Une masse en 0, et une
composante continue pour le coût si un sinistre survient.

Y =

B si I = 1,

0 si I = 0

où I ∼ Bernouilli B(p) (occurrence du sinistre), et B ⊥⊥ I.

→ E[Y ] = , Var(Y) =

→ FY (y) =

→ MY (t) =

Exemple: le coût en sinistres pour le contrat santé i sur un an.
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Approche fréquence-sévérité: le + souvent en IARD

Idée: Y est fonction de 2 v.a., M et Bj , respectivement le nombre
de sinistres et les montants associés.

Y =


∑M

j=1 Bj si M > 0,

0 si M = 0

où M est une v.a. discrète, M et Bj sont ⊥⊥ et les Bj sont i.i.d.

→ E[Y ] = , Var(Y) =

→ MY (t) =

→ FY (y) =

Exemple: coût pour le contrat d’assurance IARD i sur un an.
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Lien des approches avec modèles individuel / collectif

1 Le modèle individuel: le portefeuille est considéré comme un
groupe de risques individuels et hétérogènes.

Initialement apparu en assurance vie où les probabilités de
décès et les capitaux sous risque sont , pour chaque individu;

2 Le modèle collectif: le portefeuille est considéré comme un
groupe de risques homogènes.

L’élément majeur est le nombre aléatoire de sinistres N.
Ce modèle apparait en 1903 dans la thèse de Lundberg, le
précurseur de la théorie du risque en assurance.
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Les principales différences entre ces deux modèles sont

→ modèle individuel: un seul sinistre pour chaque police;

→ modèle collectif: montants des sinistres individuels sont i.i.d.

Nous verrons ici comment

→ calculer les principales caractéristiques de la distribution
agrégée dans chacune des deux approches: moments,
fonction génératrice des moments (f.g.m.), distribution...

→ approcher le modèle individuel par le collectif;

→ comprendre l’impact de la réassurance selon le modèle.
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3 Modèle individuel et modèle collectif en assurance
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Le modèle de risque individuel (MRI)
Le modèle de risque collectif (MRC)
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Le modèle de risque individuel

Soit un portefeuille d’assurance de n polices.

On note dans la suite Yj le montant du sinistre de la jéme police.

En général, cette v.a. Yj a une forte probabilité de prendre la
valeur 0 en assurance.

Le montant agrégé des sinistres du portefeuille est noté

S = Y1 + Y2 + ... + Yn =
n∑

j=1

Yj .
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Hypothèses du MRI

L’application du modèle individuel requiert les hyp. suivantes:

→ Y1, Y2, ..., Yn sont des v.a. indépendantes;

→ le nombre de polices dans le portefeuille ne change pas au
cours de la période de couverture;

→ les Yj peuvent avoir des distributions différentes;

→ pour la jème police, le nombre Nj de sinistre ∈ {0; 1}:

P(Nj = 1) = qj et P(Nj = 0) = 1 − qj .

Exemple
Le décès avec une probabilité annuelle qx pour un assuré d’âge x.
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Les premiers moments du montant agrégé S

Supposons que le montant du sinistre de la jème police est
déterministe, noté µj (capital décès), alors

Yj = µjNj .

On obtient ainsi

E[S] =
n∑

j=1

E[Yj] =
n∑

j=1

qjµj .

Le fait que les risques soient indépendants permet d’écrire que

Var(S) =
n∑

j=1

Var(Yj) =
n∑

j=1

qj(1 − qj)µ
2
j .
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Généralisation: le montant Bj du sinistre de la jème police est
stochastique et indépendant de Nj :

Yj = BjNj .

Posons E[Bj] = µj et Var(Bj) = σj :

i) Méthode 1: grâce à l’indépendance entre Nj et Bj ,
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ii) Méthode 2: grâce au conditionnement et à l’indépendance,
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et

48 / 354



FGM ou transformée de Laplace de S

La fonction génératrice des moments (ou transformée de Laplace)
d’une v.a. S est définie par

MS(t) = E[etS ].

Permet de retrouver le moment d’ordre k !

Ici, on a donc

MS(t) = E[etS ] = E[et
∑n

j=1 Yj ] = E[et
∑n

j=1 NjBj ] = MY1(t)...MYn (t),
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Or MYj (t) = E
[
etYj

]
= E

[
et(NjBj)

]
= ENj

[
E[et NjBj |Nj]

]
= qjE[et NjBj |Nj = 1] + (1 − qj)E[et NjBj |Nj = 0]

= qjE[et Bj ] + (1 − qj)

= 1 + qj

(
MBj (t) − 1

)
et

MNj (t) = E
[
etNj

]
= P(Nj = 1) × et .1 + P(Nj = 0) × e0

= qjet + (1 − qj) = 1 + qj(et − 1).

Donc on remarque que MYj (t) = MNj (ln MBj (t)). On a donc les
moments de S; quant à sa distribution, c’est plus compliqué...
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Approximation de la loi de S par une loi normale

Le montant agrégé S est une somme dont le nombre de termes

→ est déterministe (n),

→ est suffisamment grand pour envisager l’usage de résultats
asymptotiques.

Ceci nous amène à introduire le théorème de Lindeberg.

→ Généralisation du théorème central-limite.

→ Valable sous certaines conditions.

→ Ce théorème va nous permettre d’approximer la loi de S.
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Théorème de Lindeberg (généralisation du TCL):

Theorem
Soient (Yk )k=1,...,n des v.a. indépendantes, de moyennes µk et de
variances σ2

k . Posons

Sn = Y1 + ... + Yn, mn = µ1 + ... + µn, s2
n = σ2

1 + ... + σ2
n

Si ∀η > 0,

lim
n→∞

1
s2

n

n∑
k=1

E[Y2
k 1{|Yk |>ηsn}] = 0

Alors
Sn −mn

sn

L
→ N(0, 1).
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Remarques:

→ si les Yk sont de même loi, alors mn = nµ et s2
n = nσ2, et par

convergence dominée

1
s2

n

n∑
k=1

E
[
Y2

k 1{|Yk |>ηsn}

]
=

1
σ2
E

[
Y2

1 1{|Y1 |>η
√

nσ}

]
−→
n→∞

0.

→ si les Yk sont uniformément bornées (ex: binomiales) et si
lim infi≥1 σ

2
i > 0, alors la condition du théorème est vérifiée.

→ si les Yk sont des lois Gamma G(γk , c), et si lim
n→∞

1
n
∑n

k=1 γk

existe, alors la condition est également vérifiée.
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Exemple: (cas de lois binomiales, car somme de Bernouilli).

Considérons un portefeuille de polices d’assurance décès avec

→ 500 “jeunes” assurés de probabilité de décès dans l’année de
0,01 avec un capital décès de 100 000 euros;

→ 80 “vieux” assurés de probabilité de décès dans l’année de
0,025 avec un capital décès de 160 000 euros.

Dans le modèle individuel, on aurait S = Y1 + ... + Yn avec

P(Yj = 100000) = 0, 01 pour 1 ≤ j ≤ 500

P(Yj = 160000) = 0, 025 pour 501 ≤ j ≤ 580.

D’où E[S] =
et Var(S) =
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- Calibrons une loi avec les mêmes moments que celle de S, i.e.

S ∼ N(8, 2 × 105, (3, 15 × 105)2),

et vérifions que P(S < 0) est petite avec cette approximation.

- Par exemple en utilisant le théorème de Lindeberg,

P(S > 106) '

'

où Φ est la f.d.r. de la loi normale centrée réduite.

D’autres techniques d’approximation peuvent être utilisées à partir
des moments de S, que nous verrons plus loin.
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L’approche modèle collectif

Le modèle collectif considère le montant total des sinistres d’un
portefeuille composé de plusieurs polices homogènes.

Une police peut donner lieu à plusieurs sinistres.

Si les Yj sont les montants des sinistres individuels; et N est le
nombre total de sinistres pour tout le portefeuille;
Alors le montant agrégé S du portefeuille vaut

S = Y1 + ... + YN =
N∑

j=1

Yj .
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Hypothèses et remarques sur le MRC

L’application du modèle collectif requiert les hyp. suivantes:

→ les montants des sinistres Y1, Y2, ..., YN sont des v.a. i.i.d.;

→ le nombre de sinistres N est indépendant des Yj .

Remarques:

+ l’indépendance entre les sinistres est contestable pour
certaines branches d’assurance dans lesquelles les sinistres
sont provoqués par un même fait générateur (ex: tempêtes);

+ l’hypothèse “identiquement distribués” pour les sinistres peut
être remise en cause sur de longues périodes (effet par
exemple des facteurs d’actualisation, de l’inflation...)
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+ on peut douter de l’indépendance entre nombre et montant
des sinistres.

Par exemple en assurance auto: la fréquence des sinistres en
zone rurale est faible, alors que la sévérité (coût) est plus
élevée (et inversement en zone urbaine). Il faut segmenter les
populations pour recomposer des classes homogènes.

+ les sinistres ont des distributions continues ou discrètes: dans
la réalité, elles sont continues; mais dans la pratique on les
considère parfois discrètes pour les approximer.

+ N est toujours une v.a. de comptage, donc discrète.

+ on considèrera souvent que N n’est pas borné. Une hyp.
classique est de considérer que N ∼ P(λ).
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Les moments de la distribution agrégée S

La technique de calcul des moments de S est basée sur le
conditionnement par rapport au nombre de sinistres.

Rappelons que les Yi sont

→ i.i.d.;

→ de moyenne m;

→ de variance σ2

En utilisant la formule de l’espérance conditionnelle,

E[S] = EN[E[S |N]].
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Calcul de la f.g.m. de S

Comme précédemment, on utilise l’espérance conditionnelle :

MS(t) = E
[
etS

]
= EN

[
ES |N[etS |N]

]
.

Pour N = n, on obtient
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Distribution du montant agrégé S

Posons Tn = Y1 + ... + Yn. Par convention T0 = 0.

On note F∗nY la nième convolée de la loi FY telle que Tn ∼ F∗nY .

Dans le modèle collectif, la f.d.r. de la distribution composée vaut

FS(s) = P(S ≤ s) =
∞∑

n=0

P(N = n)P(Tn ≤ s) =
∞∑

n=0

P(N = n) F∗nY (s).

Rappelons que si les Yj admettent une densité fY , les densités des
convolées s’obtiennent par récurrence:

f∗nY (s) =

∫ s

0
fY (s − y) f∗(n−1)

Y (y) dy =

∫ s

0
f∗(n−1)
Y (s − y) fY (y) dy.
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En effet,

Parfois, on peut calculer cette fonction de répartition FS . Sinon,
1 on peut calculer la f.g.m. que l’on inverse par des algorithmes

numériques (FFT);
2 on utilise des méthodes exactes pour déterminer FS ;
3 enfin, on a recours à des techniques d’approximation

(Normal, Gamma translatée, ...).
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Les méthodes exactes

En général, la complexité pour déterminer la distribution de S
dépend principalement des complexités des lois de N et Yj .

Cas particuliers:

1 FY est dégénérée: le montant du sinistre n’a qu’une valeur:

P(Y = c) = 1, c > 0.

Alors, S prend uniquement des valeurs de type: 0, c, 2c, ...

Il est facile de calculer les probabilités exactes ici puisque
P(S = kc) = P(N = k): la distribution de S a une forme
identique à celle de N, mais concentrée sur d’autres points.
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2 Si on a des distributions “sympas”: ex. N ∼ G(q),Y ∼ Exp(λ),
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S a donc une distribution qui est un mélange entre un dirac en 0 et
une loi Exp(λ(1 − q)).

Remarque:

on aurait aussi pu calculer la f.g.m. et en déduire la loi en la
reconnaissant:

MS(t) = MN(ln MY (t)) =
1 − q

1 − qMY (t)

=
1 − q

1 − q λ
λ−t

= (1 − q) + q
λ(1 − q)

λ(1 − q) − t
.

On reconnait ainsi ladite f.g.m. !
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Cas général: on utilise l’algorithme de Panjer.

Relation récursive permettant l’évaluation de la fonction de masse
associée à une loi composée:

S =


∑N

j=1 Yj si N > 0

0 si N = 0

Notations:
pN(k) = P(N = k), pY (k) = P(Yj = k), pS(k) = P(S = k).

Hypothèses de l’algorithme:

→ N et les Yj sont des v.a. à valeurs entières,

→ les Yj sont indépendantes de N, les Yj sont i.i.d.
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La loi de N est discrète et doit appartenir à la famille de Panjer:

∃a < 1, b ∈ R, ∀k ∈ N∗, pN(k) =

(
a +

b
k

)
pN(k − 1).

→ Les lois classiques qui appartiennent à cette famille sont P(λ)
(a = 0 et b = λ); B(n, p) et NB(r , p).

→ La loi de S obtenue est discrète.

P(S = j) =


pN(0) si pY (0) = 0 j = 0

MN(ln pY (0)) si pY (0) > 0 j = 0,
1

1 − apY (0)

∑j
k=1

(
a + bk

j

)
pY (k) pS(j − k) ∀j ∈ N∗
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Preuve.
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Méthodes de discrétisation de la loi du montant
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Visualisation de la distribution agrégée
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Avantages et inconvénients de l’algorithme de Panjer

+ Technique de calcul très générale.

+ Simplicité de mise en oeuvre de par l’algorithme.

+ Fournit une approximation très précise de la distribution de la
sinistralité.

- Nécessite une discrétisation préalable.

- Nécessite que la loi de fréquence appartienne à la famille de
Panjer.

- Temps de calcul si le pas de discrétisation est très fin.
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Les méthodes approchées

a) Approximation avec la loi Normale.

On calcule la moyenne et la variance du montant agrégé S.
Si le nb aléatoire de sinistres N est suffisamment grand, le TCL
fournit une approx. de la distribution de S par la loi N(µ, σ2), où

µ = E[S] et σ2 = Var(S).

Mais il y a des limites à ce résultat:

→ Dans la réalité, S a une distribution concentrée sur [0,∞[:
P(S < 0) = 0. C’est en contradiction avec la gaussienne!

Approx. mauvaise ⇔ P(S < 0) grande.
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→ la densité gaussienne est symétrique et CV vite vers 0.

Or la plupart des distributions en assurance sont très
asymétriques et ont des queues de distributions épaisses.

Par exemple, le coefficient d’asymétrie (skewness) d’une
Poisson composée vaut

Skew(S) =
E[Y3

j ]

(E[Y2
j ])3/2

1
λ1/2

,

Remarque: si λ devient grand, la distribution de S devient de
plus en plus symétrique! (on retombe sur le TCL)
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b) Approximation avec la loi Gamma translatée.

Quand l’approximation normale est insuffisante, on a recours à
d’autres distributions. La loi Gamma

→ est à support positif,

→ a une distribution asymétrique.

Mais elle peut être insuffisante pour décrire le comportement de
queue... D’où la loi Gamma translatée d’une constante k :

si S
′

∼ Ga(α, δ) alors S = S
′

+ k ∼ TGa(α, δ, k).

Objectif: calculer les 3 premiers moments empiriques de S, puis
égaliser moyenne, variance et skewness de la loi Gamma
translatée à ceux de S.
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La densité de la loi TGa(α, δ, k) est donnée par

fS(s) =
δα(s − k)α−1e−δ(s−k)

Γ(α)
, s ≥ k .

Ses premiers moments sont

E[S] =
α

δ
+ k Var(S) =

α

δ2
Skew(S) =

2
√
α

On calcule leurs équivalents empiriques, puis on résoud le
système en inversant les relations:

α =

(
2

Skew(S)

)2

δ =
2

Skew(S)
√

Var(S)
k = E[S] −

2
√

Var(S)

Skew(S)
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c) Approximation par construction d’1 base de polynômes orthog.

L’objectif est d’approcher la densité / f.d.r. à des ordres supérieurs.

Contexte général
Soit I ⊂ R et ω(s) > 0 une fonction de pondération sur I. On
considère une famille de polynômes orthog. Πi(s) de degré i:∫

I
Πi(s)Πj(s)ω(s) ds = 0.

Posons Ck =
∫

I Π2
k (s)ω(s) ds.

Si la densité f est régulière, alors on montre qu’elle peut s’écrire
comme une somme pondérée infinie de polynômes:

fS(s) = A0Π0(s)ω(s) + A1Π1(s)ω(s) + ...
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où les coefficients Ak sont déterminés par∫
I
Πk (s)fS(s) ds =

∫
I
Πk (s)

 ∞∑
i=0

AiΠi(s)ω(s)

 ds

<Πi ,Πj>=0
= Ak

∫
I
Π2

k (s)ω(s) ds = Ak Ck ,

et donc

Ak =

∫
I Πk (s)fS(s) ds

Ck
=
E[Πk (S)]

Ck
.

Pour une approx. à l’ordre k , il faut donc connaître les moments
d’ordre k , obtenus à partir de ceux de N et Yj lorsque S =

∑N
j=1 Yj .

Voici donc maintenant quelques techniques utilisant ces
propriétés.
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→ L’approx. à l’aide de la fonction Gamma (due à Bowers).

Idée: approcher fS par la densité d’une loi Gamma G(α, δ); en
égalisant moyenne, variance et moment d’ordre 3.

E[S] =
α

δ
Var(S) =

α

δ2
⇔ α =

E[S]2

Var(S)
δ =

E[S]

Var(S)

Soit gZ la densité de Z où Z = βS avec β =
E[S]

Var(S)
: ainsi

Z ∼ G(α
′

, δ
′

), or E[Z ] = Var(Z) ⇒ δ
′

=
E[Z ]

Var(Z)
= 1, α

′

= E[Z ]

d’où on en déduit la loi de Z ∼ G(α
′

, 1) (1 seul paramètre).
On approche gZ (z) = A0Π0(z)ω(z) + A1Π1(z)ω(z) + ... avec
les poids ω(z) et les polynômes de Laguerre.
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ω(s) =
sα
′
−1

Γ(α)
e−s et Πk (s) = (−1)k s1−α

′

es dk

dsk
(sk+α

′
−1e−s).

Les coefficients Ck sont donnés par Ck = k !
Γ(α

′
+k)

Γ(α
′
)

et

A0 = 1 A1 = A2 = 0 A3 =
1
6

(
E[(Z − α

′

)3] − 2α
′
)
.

Finalement, les approx. de gZ et GZ (f.d.r.) à l’ordre 3 valent

gZ (z) = ω(z) + A3 Π3(z)ω(z) puis en intégrant

GZ (z) = W(z) + A3

∫ z

0
Π3(u)ω(u) du

= W(z) − A3 zα
′

e−z
(

1
Γ(α′ + 1)

−
2z

Γ(α′ + 2)
+

z2

Γ(α′ + 3)

)
.
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d) Approximation par séries approchant une distrib. de proba.

→ L’approximation de Gram-Charlier (de type Normal-Power).

On approxime la densité fS par une gaussienne de même
moyenne et variance, en utilisant les moments d’ordre >.

Notons µ = E[S], σ2 = Var(S), et Z = S−µ
σ .

Z ∼ N(0, 1), et notons gZ la densité de Z , et GZ sa f.d.r.

On approxime g sur I =] −∞,∞[ à l’aide de la pondération
ω(s) et des polynômes d’Hermite:

ω(s) = φ(s) =
1
√

2π
e−

s2
2 et Πk (s) =

φ(k)(s)

φ(s)
,

où φ est la densité d’une loi normale centrée réduite.

86 / 354



Les coefficients Ck valent Ck = k !, et

A0 = 1 A1 = A2 = 0 A3 = −
E[Z3]

3!
A4 =

E[Z4] − 3
4!

Application: S ∼ PComp(λ,FY ).

Posons pk = E[Yk
j ] ⇒ µ = E[S] = λp1, E[(S − µ)2] = λp2,

E[(S − µ)3] = λp3 et E[(S − µ)4] = λp4 + 3λ2p2
2

A3 = − 1√
λ

p3

3! p3/2
2

(cf slide 79)

A4 = 1
λ

p4

4! p2
2

⇒ A3 et A4 −→
λ→∞

0.

Par contre A5 ∼
Cste
λ3/2 et A6 ∼

Cste
λ .
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→ L’approximation d’Edgeworth (de type Normal-Power).

Soit Z = S−µ
σ , alors Z ∼ N(0, 1). Notons MZ (t) = E[etZ ].

Le développement de Taylor de ln MZ (t) en t ∈ v(0) donne

ln MZ (t) = a0+a1t+a2t2+..., avec ak =
1
k !

dk

dtk
ln MZ (t)

∣∣∣∣∣∣
t=0

.

⇒ a0 = 0, a1 =
M
′

Z (t)
MZ (t)

∣∣∣∣∣
0

=
E[Z]

1 = 0, a2 = 1
2 , a3 =

E[Z3]
3! , a4 =

E[Z4]−3
4! .

⇒ MZ (t) = exp
(
t2

2

)
exp(a3t3 + a4t4 + ...)

DL
= exp

(
t2

2

) 1 + a3t3 + a4t4 + a5t5 +

a2
3

2
+ a6

 t6 + ...

 (1)
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Et remarquons aussi que (avec φ(z) densité d’une N(0, 1))

exp
(
t2

2

)
=

∫ ∞

−∞

etzφ(z) dz︸             ︷︷             ︸
MZ (t)

, tk exp
(
t2

2

)
= (−1)k

∫ ∞

−∞

etzφ(k)(z) dz. (2)

Par unicité de la transformée de Laplace, on peut retrouver la
densité gZ par identification dans l’intégrale en reprenant les
équations (1) et (2).

Ainsi, gZ doit satisfaire

gZ (z) = φ(z)−a3φ
(3)(z)+a4φ

(4)(z)−a5φ
(5)(z)+

a2
3

2
+ a6

 φ(6)(z)−...
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→ L’approximation d’Esscher (découlant d’Edgeworth).

On considère une v.a.p. S de f.d.r. FS et f.g.m. MS(t).
On définit pour tout h une nouvelle v.a. Sh telle que

dFh(x) =
ehxdFS(x)

MS(h)
⇒ Mh(t) =

MS(t + h)

MS(h)

Exemple: S ∼ Pcomp(λ,FY ), donc S =
∑N

i=1 Yi :

Mh(t) =
MS(t + h)

MS(h)
⇒ Mh(t) = exp

(
λMY (h)

[
MY (t + h)

MY (h)
− 1

])
,

ce qui revient à remplacer λ par λMY (h) et Y par Yh (slide 15).

Par ailleurs, E[Sh]
def
= M

′

h(0) avec M
′

h(t) =
1.M

′

S (t+h)

MS (h) . Ainsi,
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∂E[Sh]

∂h
=

M
′′

(h)M(h) −M
′

(h)2

M(h)2
= M

′′

h (0)−(M
′

h(0))2 = Var(Sh) > 0.

En s’intéressant à FS(x) = P(S ≤ x) pour un x donné,
choisissons h tel que

E[Sh] =
M
′

S(h)

MS(h)
= x.

[Tjs possible si x > E[S] et h > 0, ou x < E[S] et h < 0]

Appliquons le développement d’Edgeworth à Zh =
Sh−E[Sh ]
√

Var(Sh)
:

fh(y)dy = φ(z)dz−
E[(Sh − x)3]

6Var(Sh)3/2
φ(3)(z)dz ' g(z) dz,

z =
y − x√
Var(Sh)

 .
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Rappelons que

f(y)
def
= M(h)e−hy fh(y)

F(y) = M(h)

∫ y

−∞

e−hx fh(x) dx (i)

F̄(y) = M(h)

∫ ∞

y
e−hx fh(x) dx (ii)

Pour h > 0, nous obtenons

F̄(x) = M(h) e−hx
(
E0(u) −

E[(Sh − x)3]

6(Var(Sh)3/2
E3(u) + ...

)
avec u = h

√
Var(Sh) et Ek (u) =

∫ ∞
0 e−uzφ(k)(z) dz.

92 / 354



Exemple (suite) :

λMY (h) = x

Var(Sh) = λM
′′

Y (h)

E[(Sh − x)3] = λM(3)
Y (h)

F̄(x) = eλ(MY (h)−1)−hx

E0(u) −
M(3)

Y (h)

6
√
λ(M′′

Y (h))3/2
E3(u)


où u = h

√
λM′′

Y (h).

Les inconvénients de la méthode sont notamment:
+ nécessité de connaître Mh ;
+ être capable d’inverser E[Sh] en fonction de h.
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Problème
Ce sont des dvp formels: on ignore la question de CV, ce qui nous
amène a considérer des séries tronquées (perte en précision).

- l’approximation d’Edgeworth est très bonne autour de la
moyenne, mais mauvaise dans les queues de distribution;

+ Lui préférer dans ce cas-là l’approximation d’Esscher;

- Gram-Charlier DV en général: la qualité de l’approx. n’est pas
forcément améliorée par l’ajout de termes...

+ Edgeworth et Gram-Charlier approchent une distribution de
proba. par ses cumulants (∼ moments);

+ Edgeworth et Gram-Charlier sont identiques pour les termes
3 et 4, mais pas pour les autres.
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Approximation du MRI par le MRC

Comment approximer le modèle individuel par le modèle collectif ?

L’idée est d’écrire le modèle individuel d’une autre manière afin de
retrouver l’expression classique du modèle collectif. On rappelle
que

S ind = Y1 + ... + Yn,

avec Yj = NjBj , où Nj ∼ B(pj).

Rq: Yj s’écrit aussi Yj =
∑Nj

i=1 Bj , avec la convention
∑0

i=1 = 0.
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i) Première approximation : on remplace Yj par

Yj ≡ Yac
j =

Ñj∑
i=1

Bj,i avec Ñj ∼ P(pj) et Bj,i ∼ Bj i.i.d.

En notant “ac” l’approximation par le modèle collectif, on retrouve

Sac = Yac
1 + ... + Yac

n .

Sac s’écrit donc sous la forme d’un modèle collectif, où

Sac ∼ PComp(λ =
n∑

j=1

pj , F =
n∑

j=1

pj

λ
FBj ).
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E[Sac ] =

Var(Sac) =

Var(S ind) =

Donc Var(Sac) ≥ Var(S ind).

Rq: E[Nj] = E[Ñj], et Sac est plus conservatif (prudent) car

e−pj ≥ 1 − pj ⇒

{
FNj (x) ≤ FÑj

(x) pour x ∈ [0, 1[

FNj (x) ≥ FÑj
(x) pour x ∈]1,∞[

⇒

{
Ñj ≥SD2 Nj

Sac ≥SD2 S ind
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ii) Seconde approximation : Sac = Yac
1 + ... + Yac

n avec

Yj ≡ Yac
j =

νi∑
i=1

Yj,i avec Yj,i ∼ Yj i.i.d. et νi ∼ P(1).

Ainsi

Sac ∼ PComp

λ = n, F =
1
n

n∑
j=1

Fj

 .

E[Sac ] =

Var(Sac) =

Donc Var(Sac) ≥ Var(S ind) et νi ≥SD2 1⇒ Sac ≥SD2 S ind .
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Réassurance et impact sur la sinistralité dans le MRC

Objectif: analyser l’impact de la réassurance sur la distribution du
montant agrégé des sinistres dans le modèle collectif.

Ceci est étudié pour deux grandes familles de contrat:

→ les contrats quote-part: proportion fixe de chaque sinistre.
Si un sinistre de montant Xj se produit, l’assureur paie

Yj = αXj .

De son côté, le réassureur paie donc Zj = (1 − α)Xj .
Au final l’assureur paie αS, le réassureur (1 − α)S.
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Le nb de sinistres reste identique, seule la loi du montant est
modifiée par une homothétie: pas d’impact notoire sur les
calculs dans le cadre du modèle collectif [MRC(N,Yj = αXj)].

→ les contrats en excédent de sinistre (Excess-of-Loss): priorité
P (ou rétention) et portée du contrat.

Supposons par exemple la portée illimitée. Pour un sinistre Xj ,

l’assureur paie Yj =

{
Xj si Xj ≤ P
P si Xj > P

et le réassureur paie Zj =

{
0 si Xj ≤ P
Xj − P si Xj > P.
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Définissons NP =
∑N

j=1 1[Xj≤P] et N̄P =
∑N

j=1 1[Xj>P].

L’assureur considère le nv modèle collectif MRC(N,Yj).
Le réassureur considère le modèle collectif MRC(N,Zj).

MRC(N,Zj) a la même distribution que MRC(N̄
′

P , Z̃j) où

N̄
′

P a la même distribution que N̄P ,
N̄
′

P est indépendant des Z̃j ,
les Z̃j ont même distrib. que Zj conditionnellement à Zj > 0.

L’objectif est donc de déterminer ces différentes
distributions... en particulier celles de NP et N̄P .
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Distributions de NP et N̄P

Exemple

Si N ∼ P(λ), alors
{

N̄P ∼ P(λ(1 − FX (P))) → X > P
NP ∼ P(λFX (P)) → X ≤ P

Preuve.
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Exemple

Si N ∼ NB(r , p), alors


N̄P ∼ NB

(
r , p

p+(1−p)(1−FX (P))

)
NP ∼ NB

(
r , p

p+(1−p)FX (P)

)

Preuve.
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Moyenne de la sinistralité du risque individuel

E[Yj] =

=

=

Exemple 1: si Xj ∼ Exp(λ) alors E[Yj] = 1
λ(1 − exp(−λP)).

Exemple 2: si Xj ∼ Pareto(α, λ) alors

E[Yj] =
λ

α − 1
−

(
λ

λ + P

)α λ + P
α − 1

.
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3 Modèle individuel et modèle collectif en assurance
Les différentes approches
Le modèle de risque individuel (MRI)
Le modèle de risque collectif (MRC)
Choix des rétentions et priorités en réassurance
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Introduction

Dans toute cette partie, nous nous plaçons dans un modèle de
risque individuel où la distribution de chacun des risques est
modélisée par une approche fréquence-coût:

S = S1 + ... + Sn,

avec Sj =
∑Nj

i=1 Yi,j .

Hypothèses et notations:

→ les Yi,j sont des v.a. i.i.d. de f.d.r. Fj ;

→ µj = E[Sj] et σ2
j = Var(Sj) ;

→ Πj : prime d’assurance du je risque / Πr ,j : prime réassurance.
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Question:

sachant que l’assureur a la possibilité de se réassurer, quel est le
meilleur mode et niveau de conservation des risques?

Déclinaisons de la problématique: dans le cas de traités EoL ou
excédents de pleins, les niveaux de rétentions et priorités
dépendent-ils de la nature des risques individuels du portefeuille?

Contexte: critère d’optimisation = maximisation de l’espérance du
résultat net de réassurance sous contrainte de variance fixée.

Paramètres du problème: caractéristiques des risques à réassurer
et principe de calcul de prime du réassureur.
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La réassurance proportionnelle par quote-part (QP)
(quota-share ou QS)
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Effet sur la distribution des pertes de l’assureur
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La réassurance prop. en excédent de plein (XP) (Surplus)

L’assureur fixe un niveau de rétention et une limite, le partage des
primes équivaut à la part du risque conservée (αi , αj pour i , j).
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Effet sur la distribution des pertes de l’assureur
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Optimisation de l’assureur et réassurance proportionnelle

Supposons que le taux de rétention du risque j vaut αj et que le
réassureur reverse une commission de réassurance, de taux γj .

La prime de réassurance vaut donc Πr ,j = (1 − αj)(1 − γj)Πj .

On veut trouver les taux de rétention (αj)j=1,...,n t.q. la variance du
résultat de l’assureur (net de réassurance), donné par

R =
n∑

j=1

(Πj − Πr ,j) −
n∑

j=1

(1 − (1 − αj))Sj

=
n∑

j=1

αjΠj −

n∑
j=1

αjSj +
n∑

j=1

γj(1 − αj)Πj ,
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soit la plus petite possible, sous la contrainte que l’espérance soit
fixée à R0 et appartienne à

R0 ∈

 n∑
j=1

γjΠj ;
n∑

j=1

(Πj − µj)

 .
Remarques:

→
∑n

j=1 γjΠj est l’espérance du résultat net si la réassurance
prend en charge 100% du risque (γj est un taux de frais versé
par le réassureur à l’assureur pour la gestion des contrats);

→
∑n

j=1(Πj − µj) est l’espérance du résultat net sans
réassurance.
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Theorem
Soit kj = (1 − γj)Πj − µj . Alors pour tout j,

αj = αj(ρ) = min

ρ kj

σ2
j

, 1

 ,
où ρ est tel que R0 −

∑n
j=1 γjΠj =

∑n
j=1 αj(ρ)kj .

Remarque: kj > 0 puisque (1 − γj)Πj doit couvrir plus que le risque
pur µj . Les taux de commission satisfont donc nécessairement

kj > 0 =⇒ γj < 1 −
µj

Πj︸︷︷︸
LR

(LR: Loss-ratio)
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Preuve. Première étape: retrouver la forme de αj .
En reprenant l’expression du résultat net:

R =

E[R] =

Var(R) =

Et on cherche à résoudre l’un des programmes suivants:
1 arg maxαj

∑n
j=1 αjkj s.c.

∑n
j=1 α

2
j σ

2
j = V0 et αj ∈ [0, 1],

2 min
∑n

j=1 α
2
j σ

2
j s.c.

∑n
j=1 αjkj = R0−

∑n
j=1 γjΠj et αj ∈ [0, 1].
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Le Lagrangien du 2ème problème s’écrit

L(α1, ..., αn) =
n∑

j=1

α2
j σ

2
j − 2ρ

 n∑
j=1

αjkj −

R0 −

n∑
j=1

γjΠj


 ,

avec 2ρ le multiplicateur de Lagrange. Ainsi,

∂L
∂αj

= 2αjσ
2
j − 2ρkj = 0 ⇔ αj = ρ

kj

σ2
j

≥ 0.

Or αj ∈ [0, 1] et on cherche un min; donc on choisira logiquement

αj(ρ) = min

1, ρ kj

σ2
j

 .
Interprét.: + la prime est chère, + la commission est faible, ou +
la variance du risque est faible, plus la part conservée est grande.
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Deuxième étape: existence et détermination de ρ = ρ∗ ?

On va naturellement utiliser la contrainte sur l’espérance du
résultat. Vu l’expression de αj(ρ), on a

∑n
j=1 αj(ρ)kj ≥ 0.

Clairement,
∑n

j=1 αj(ρ)kj est croissante et continue en ρ comme
somme de fonctions croissantes et continues. De plus,

n∑
j=1

αj(0)kj
αj(0)=0

= 0 et
n∑

j=1

αj(∞)kj
αj(∞)=1

=
n∑

j=1

kj ≥ R0 −

n∑
j=1

γjΠj .

(la dernière expression équivaut à R0 ≤
∑n

j=1(Πj − µj))

On sait donc que ∃ρ∗ grâce au théo. des valeurs intermédiaires /

E[R] = R0 ⇔

n∑
j=1

αj(ρ
∗)kj = R0 −

n∑
j=1

γjΠj .
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Cas particulier : assurances à valeurs déclarées déterministes cj .

On suppose souvent que la charge sinistre Sj s’écrit cjUj , avec

→ Uj est une v.a. qui prend ses valeurs dans [0, 1];

→ ∀j, E[Uj] = µ et Var(Uj) = σ2.

Supposons égaux tous les taux de commission, i.e. γj = γ.

Alors
µj = µcj σ2

j = σ2c2
j ,
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Πj = πcj et kj = (1 − γ) π cj − µ cj = kcj

donc en utilisant le théorème:

αj = min

1, ρ k cj

σ2 c2
j

 = min
(
1 ;

c
cj

)
,

avec c = ρk
σ2 .

Exemple de réassurance proportionnelle sur assurance à valeurs
déclarées: traité en excédent de plein où C: plein de conservation.

→ Lorsque Cj ≤ C, il y a absence de cession.

→ Lorsque Cj ≥ C, la conservation est égale au plein.
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Optimisation de l’assureur et réass. non-proportionnelle

Supposons que

→ le réassureur utilise le principe de l’espérance mathématique
pour tarifer sa prime: le coefficient de chargement du risque j
est noté βj ;

→ le nombre de sinistres est poissonnien: Nj ∼ P(λj).

Nous allons étudier dans cette partie deux types de contrats:
1 les contrats en excédents de sinistre;
2 les contrats en excédents de perte.
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Les excédents de sinistre (XS) (Excess-of-Loss ou XL)

Traités utilisés pour la couverture contre les gros risques.
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Effet sur la distribution des pertes de l’assureur
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Les contrats en excédent de perte (Stop-Loss ou SL)

Ce type de traité est activé lorsque l’assureur est en perte.
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Effet sur la distribution des pertes de l’assureur
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1) Optimisation pour les traités en excédents de sinistre

Chaque risque j est réassuré à l’aide d’un traité EoL (∞XS Pj), où
Pj est la priorité du risque j.

L’assureur conserve par risque j (où chaque risque est modélisé
par fréquence-coût) le coût suivant:

Sj(Pj) =

Nj∑
i=1

min(Yi,j ,Pj)
notation

=

Nj∑
i=1

Yi,j(Pj).

On cherche à déterminer les niveaux des priorités (P1, ...,Pn) tels
que la variance du résultat net donné par

R =
n∑

j=1

(Πj − Πr ,j) −
n∑

j=1

Nj∑
i=1

min(Yi,j ,Pj)
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soit la plus petite possible sous contrainte d’espérance fixée à R0

et appartenant à l’intervalle n∑
j=1

(Πj − (1 + βj)µj) ;
n∑

j=1

(Πj − µj)

 .

Theorem

∀j, Pj = Kβj

avec K tel que

R0 −

n∑
j=1

(Πj − (1 + βj)µj) =
n∑

j=1

βj E[Nj]E[min(Yi,j , Kβj)].
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Preuve.
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2) Optimisation pour traités en excédent de perte par risque

Chaque risque j est réassuré avec un Stop-Loss de priorité Pj et
de portée illimitée. On note FSj la distribution de Sj =

∑Nj

i=1 Yi,j .

L’assureur conserve alors (par classe de risque) la sinistralité

Sj(Pj) = min

 Nj∑
i=1

Yi,j , Pj

 .
On veut déterminer les niveaux de priorité (Pj)j=1,...,n tels que la
variance du résultat net de réassurance donné par

R =
n∑

j=1

(Πj − Πr ,j − Sj(Pj))
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soit la plus petite possible sous contrainte d’espérance fixée à R0

appartenant à l’intervalle n∑
j=1

(Πj − (1 + βj)µj) ;
n∑

j=1

(Πj − µj)

 .

Theorem

∀j, Pj = Kβj +

∫ Pj

0
F̄Sj (x) dx,

avec K tel que R0 −
∑n

j=1(Πj − (1 + βj)µj) =
∑n

j=1 βj(Pj − Kβj).
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Preuve.
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4 Calcul de prime et introduction aux mesures de risque
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Définition

Soit la variable aléatoire positive (v.a.p.) S du montant cumulé des
sinistres d’une police pour une période de garantie donnée.

Soit F l’espace des fonctions de répartition (f.d.r.) des v.a.p.

Un principe de calcul de prime est une fonction

H : F → R+ ∪ {∞}

F → H(F)
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La prime déduite du principe H dépendra des caractéristiques de
la f.d.r. de S, notée FS .

Par exemple:

→ le premier moment: E[S] =
∫ ∞

0 s dFS(s);

→ la variance: Var(S) =
∫ ∞

0 (s − E[S])2 dFS(s).

Vocabulaire: une prime infinie définit un risque inassurable.
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4 Calcul de prime et introduction aux mesures de risque
Les principes classiques de tarification
Propriétés souhaitables des principes de tarification
Résumé des propriétés de chaque principe de prime
Mesures de risque célèbres
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Principe de l’espérance mathématique

Notons Π la prime, S le montant cumulé des sinistres de la police.

Le principe de la prime pure donne Π(S) = E[S].

Le principe de l’espérance mathématique donne

Π(S) = (1 + β)E[S], β > 0.

→ Chargement très simple, mais n’apporte aucune information sur
les fluctuations de S autour de sa moyenne...

Difficulté de ce principe: choix de β.

Remarque: pour des risques dégénérés (P(S = s) = 1), on
devrait avoir Π(S) = s ce qui n’est pas vrai ici.
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Pour évaluer son risque de perte, l’assureur peut utiliser la théorie
des grandes déviations et le lemme de Chernoff.

Lemme
(Chernoff). Soient S1,S2, ...,Sn des v.a.p. indépendantes et de
même loi que S telles que E[etS ] < ∞ pour un t > 0. Posons
Xi = Si − (1 + β)E[Si]. Alors

P

 n∑
i=1

Xi ≥ 0

 ≤ ρn et lim
n→∞

1
n

logP

 n∑
i=1

Xi ≥ 0

 = log ρ,

où ρ = inf
t

MX (t) < 1 et MX (t) = exp(−t(1 + β)E[Si]) MS(t).
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Preuve.
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Ainsi, si l’assureur souhaite majorer par ε la probabilité d’un
résultat négatif sur la période, donc

P

 n∑
i=1

Xi ≥ 0

 ≤ ε,
il choisira β tel que

ρn(β) = ε.

Exemple

Si S ∼ Exp(λ), alors ρ(β) = e−β(1 + β).
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Principe de la variance

Le principe de la variance donne

Π(S) = E[S] + βVar(S), β > 0.

Inconvénient: symétrie par rapport à l’espérance.

→ On comptabilise les valeurs négatives de la v.a. (S − E[S]),
pourtant favorables à l’assureur.

Conséquence: on augmente trop les chargements techniques.
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i) Application du principe à la réassurance proportionnelle.

Cherche une couverture pour une proportion λ ∈ [0, 1] du risque S:

Π(λS) = E[λS] + βVar(λS) = λE[S] + λ2βVar(S) < λΠ(S).

Donc l’assuré aurait intérêt à diviser son risque initial en n
parties égales car il paierait moins cher: en effet,

n Π

(
S
n

)
< Π(S).

Rq: lim
n→∞

n Π
(

S
n

)
= lim

n→∞

(
E[S] + β

n Var(S)
)

= E[S] (prime pure).
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ii) Principe de la variance et réassurance non proportionnelle.

Suivant les cas de figure, la prime pour l’assuré sera plus ou moins
intéressante suivant que l’assureur se réassure lui aussi ou non.

iii) Principe de la variance et agrégation de risques indépendants.

Si on considère deux risques indépendants S1 et S2, on a

Π(S1 + S2) = Π(S1) + Π(S2) ,

ce qui implique que l’accumulation de risques indépendants ne
conduit pas au principe de diversification.

Donc pas de diminution de la prime. Ceci parait peu vraisemblable.
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Principe de l’écart-type

Le principe de l’écart-type donne

Π(S) = E[S] + βσ(S), β > 0.

A l’inverse, le découpage du risque ici ne conduit pas à une
diminution de la prime:

n Π

(
S
n

)
= Π(S).
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Principe exponentiel

Le principe exponentiel donne

Π(S) =
1
α

ln(E[eαS ]).

Le paramètre α est appelé coefficient d’aversion au risque.

D’après l’inégalité de Jensen, la prime technique est supérieure à
la prime pure:

Π(S) ≥ E[S].

En effet, si α est proche de 0, en utilisant les propriétés de la
transformée de Laplace:
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Π(S) =
1
α

ln
(
1 + αE[S] +

α2

2
E[S2] + o(α2)

)
=

1
α

(
αE[S] +

α2

2
E[S2]

)
−

1
2α

(
αE[S] +

α2

2
E[S]

)2

+ o(α)

= E[S] +
α

2
Var(S) + o(α)

On retrouve le principe de la variance...

Si

→ α→ 0: principe de la prime pure;

→ α→ ∞: principe de la perte maximale,

Π(S)→ sup{s : P(S < s) < 1} = rs .
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Principe de l’utilité nulle

Le principe de l’utilité nulle (ou équivalent certain) donne pour une
fonction d’utilité u strictement croissante et concave, Π(S) telle
que

E[u(Π(S) − S)] = u(0).

Globalement, en incluant des réserves R affectées au risque, on
peut avoir

E[u(R + Π(S) − S)] = u(R).

Ainsi, Π(S) : prix auquel l’assureur est indifférent entre offrir une
couverture d’assurance ou ne rien faire.

149 / 354



En utilisant l’inégalité de Jensen pour des fonctions concaves,

u(R)
def
= E[u(R + Π(S) − S)]

Jensen
≤ u(R + Π(S) − E[S]).

u croissante: u(R) ≤ u(R + Π(S)− E[S])⇒ R ≤ R + Π(S)− E[S],
donc

Π(S) − E[S] ≥ 0 ⇒ Π(S) ≥ E[S].

Pour

→ u(x) = x: aversion au risque nulle (principe de la prime pure);

→ u(x) = −e−αx : fonction d’utilité CARA (principe exponentiel).

Remarque: le choix de u est délicat !
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Principe de la valeur moyenne

Le principe de la valeur moyenne s’appuie sur une fonction f
continue, convexe et strictement croissante sur R+:

Π(S) = f−1 (E[f(S)]) .

Idem au principe exponentiel, l’inég. de Jensen⇒ Π(S) ≥ E[S].

Pb: le choix de la fonction f est aussi délicat. Par exemple,

→ f(x) = xβ: principe de la moyenne d’ordre β (β ≥ 1);

→ β→ ∞ : principe de la valeur maximale;

→ f(x) = eαx : principe exponentiel.
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Illustrations

i) Principe de la valeur moyenne lorsque le risque S est faible.

S peu variable, donc posons S = E[S] + λω, où ω est centrée.
Si λ petit, un dénveloppement de Taylor donne

Π(S) = f−1 (E[f(E[S] + λω)])

= E[S] +
λ2

2
E[ω2]

f
′′

(E[S])

f ′(E[S])
+ o(λ2)

= E[S] +
α(S)

2
Var(S)

On retombe sur le principe de la variance, mais le facteur devant la
variance depend de S...
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Remarquons aussi que f peut se réécrire f(y) = −u(−y) avec u
fonction d’utilité croissante et concave.

En effet f
′

(y) = u
′

(−y) et f
′′

(y) = −u
′′

(−y), ce qui donne

f
′′

(E[S])

f ′(E[S])
= −

u
′′

(−E[S])

u′(−E[S])

qui est le coefficient d’aversion au risque en −E[S].

Remarque:

Si l’utilité est exponentielle, α(S) ne dépend pas de S car

u
′

= u
′′

.
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ii) Agrégation de risques individuels.

Soit un portefeuille de n risques ⊥⊥ de même loi Si . La sinistralité
agrégée s’écrit S =

∑n
i=1 Si .

Les primes sont données par

Π(Si) = −u−1(E[u(−Si)]).

On veut comparer

Π(S) = −u−1

E u − n∑
i=1

Si

 et
n∑

i=1

Π(Si).

Supposons S peu risqué, alors MR(Si) = λ2

2 E[ω2
i ]

{
−

u
′′

(−E[Si ])

u′ (−E[Si ])

}
.
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Ainsi les chargements techniques respectifs sont donc

MR(S) =
λ2

2

n∑
i=1

E[ω2
i ]

−u
′′

(−
∑n

i=1 E[Si])

u′(−
∑n

i=1 E[Si])

 ,
et

n∑
i=1

MR(Si) =
λ2

2

n∑
i=1

E[ω2
i ]

{
−

u
′′

(−E[Si])

u′(−E[Si])

}
.

Puisque les risques sont identiquement distribués: E[ωi] = E[ω], et
donc pour avoir MR

(∑n
i=1 Si

)
≤

∑n
i=1 MR(Si), il faut

−
u
′′

(−
∑n

i=1 E[Si])

u′(−
∑n

i=1 E[Si])
≤ −

1
n

n∑
i=1

u
′′

(−E[Si])

u′(−E[Si])
.
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Ce qui é́quivaut à avoir

−
u
′′

(−nE[S1])

u′(−nE[S1])
≤ −

u
′′

(−E[S1])

u′(−E[S1])
.

Il suffit donc que le coefficient d’aversion au risque soit décroissant
(DARA: Diminishing Absolute Risk Aversion).

Exemple: les fonctions logarithmique ou puissance ont cette
propriété. Avec l’utilité exponentielle, il y a égalité.
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Principe d’Esscher

Le principe d’Esscher préconise de choisir une prime égale à

Π(S) =
E[SeαS ]

E[eαS ]
.

On peut montrer que Π(S) ≥ E[S] puisque Cov(S, eαS) ≥ 0.

Cette prime est l’espérance mathématique calculée avec la
nouvelle f.d.r. G définie par

dG(x) =
eαxdFS(x)∫ ∞

0 eαxdFS(x)
,

qui est la transformée d’Esscher de FS .
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Principe de Wang (proportional hazard transform)

Le principe de Wang s’appuie sur la définition

Π(S) =

∫ ∞

0
(F̄S(x))r dx,

où F̄S = 1 − FS (survie), et r ∈ [0, 1]. On a Π(S) ≥ E[S].

Ce principe est très utilisé en réassurance.

En effet, la transformée de Wang permet de calculer très
simplement les primes des traités en excédent de sinistre.
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Par exemple, pour un traité (noté dans la pratique: hXSa)

de priorité a,

de portée h,

on a:

hXSa =


0 si 0 ≤ S ≤ a
S − a si a ≤ S ≤ a + h
h si a + h ≤ S

La prime vaut

Π(hXSa) =

∫ h

0
(F̄S(x + a))r dx =

∫ a+h

a
(F̄S(x))r dx.
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Principe du fractile

Dans le principe du fractile, on adopte la prime Π qui vérifie

Π(S) = inf (p |FS(p) ≥ 1 − ε) = inf (p |P(S > p) ≤ ε).

C’est donc la plus petite prime telle que la probabilité que le
sinistre dépasse la prime est au plus de ε.

Par exemple,

→ si ε = 1/2, alors la prime est la médiane de la distribution;

→ si ε = 0, alors la prime suit le principe de la perte maximale.
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Utilisation pratique de ces concepts

Dans la pratique, pourquoi utiliser tel ou tel principe?

Mesure de Wang - traités de réassurance Excess of loss

...
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4 Calcul de prime et introduction aux mesures de risque
Les principes classiques de tarification
Propriétés souhaitables des principes de tarification
Résumé des propriétés de chaque principe de prime
Mesures de risque célèbres
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Un assureur utilisant une mesure de risque donnée attend d’elle
un ensemble de propriétés “naturelles” censées refléter la réalité...

1 La prime vaut au moins la prime pure: Π(S) ≥ E[S].

On peut ajouter que si P(S = s) = 1, alors Π(S) = s.
Ceci implique qu’il n’y ait pas de chargement injustifié.
Parfois, le chargement peut même être négatif suivant les
conditions de marché (concurrence, ...).

2 Invariance par translation: Π(S + c) = c + Π(S), ∀c ≥ 0.

c est une constante, et en particulier Π(0) = 0.
Tout risque déterministe est tarifé à sa propre valeur.
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3 Additivité: Π(S1 + S2) = Π(S1) + Π(S2),

si S1 et S2 sont indépendants.

Cependant, cette propriété ne vérifie pas le principe de
diversification des risques. On lui préfère la propriété

Π(S1 + S2) ≤ Π(S1) + Π(S2).

Rappelons au passage que le principe de la variance est
additif, alors que celui de l’écart-type est sous-additif.

Cette propriété induit un gain de diversification, qui profite
+ soit à l’assuré (prime plus faible),
+ soit à l’assureur (probabilité de ruine moins élevée).
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4 Homogénéité: Π(λS) = λΠ(S), ∀λ ≥ 0.

⇒ invariance par changement de numéraire, elle est
essentielle pour la réassurance proportionnelle.

Propriété remise en cause par quelques auteurs lorsque λ est
grand (Π(λS) > λΠ(S)).

5 Itérativité: Π(S1) = Π(Π(S1 |S2)).

On peut calculer la prime du risque S1 en deux étapes:

→ on applique d’abord la prime Π à la distribution de S1

conditionnelle à S2;
→ on obtient une v.a.r., fonction de S2, à laquelle on applique de

nouveau le principe de prime.
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Exemple
Le nombre annuel d’accidents d’un chauffeur est modélisé par une
loi de Poisson P(λ). Le profil de risque λ est inconnu et différent
pour chaque chauffeur, donc la réalisation d’une v.a.r. Λ. La loi du
nombre d’accidents conditionnelle à Λ = λ est de Poisson, et si
Λ ∼ Gamma alors la loi est une binomiale négative.

6 Convexité: Π(λS1 + (1 − λ)S2) ≤ λΠ(S1) + (1 − λ)Π(S2),

∀λ ∈ [0, 1] et S1,S2.

Cette propriété est utile pour la recherche de décisions
optimales dans le choix de contrat d’assurance ou de
réassurance.
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4 Calcul de prime et introduction aux mesures de risque
Les principes classiques de tarification
Propriétés souhaitables des principes de tarification
Résumé des propriétés de chaque principe de prime
Mesures de risque célèbres
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Propriétés
Principes Prime pure Trans. Addit. Itérat. Homog.
Prime pure + + + + +

Espérance + − + − +

Variance + + + − −

Ecart-type + + − − +

Exponentiel + + + + −

Utilité + + e e −

Valeur moyenne + e e + −

Esscher + + + − −

Fractile + + + + −

+ : la propriété est vérifiée; − : la propriété n’est pas vérifiée;
e : vérifiée en considérant les fonctions u et f qui nous permettent
de retomber sur les principes exponentiel et prime pure.
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Vérification des propriétés dans les cas spécifiques

Proposition
Le principe de la valeur moyenne (dans lequel f est convexe) vérifie
l’invariance par translation si et seulement si

f(x) = eαx ou f(x) = x.

Preuve

i) Condition nécessaire (CN⇐):

- f(x) = x ⇒ Π(S + c) = E[S + c] = E[S] + c = Π(S) + c.

- f(x) = eαx ⇒ 1
α

ln
(
E[eα(S+c)]

)
= 1

α
ln

(
ec E[eαS ]

)
= 1

α
ln

(
E[eαS ]

)
+ c.
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ii) Condition suffisante (CS⇒):

Posons Sq,1 = (1 − q) δ0 + q δ1 et Π(q) = f−1 E[f(Sq,1)].

On a donc f(Π(Sq,1)) = f(Π(q)) = (1 − q) f(0) + q f(1).

En dérivant par rapport à q à gauche et à droite de l’égalité puis en
se plaçant en 0, on obtient

f
′

(Π(0)) Π
′

(0) = f
′

(0) Π
′

(0) = f(1) − f(0).

Dériver une nouvelle fois en 0 amène à

f
′′

(0) Π
′

(0)2 + f
′

(0) Π
′′

(0) = 0 (1).
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On applique l’hypothèse d’invariance par translation à

f(Π(Sq,1 + c)) = f(Π(Sq,1) + c) = (1 − q) f(0 + c) + q f(1 + c).

Dérivons 2 fois cette dernière expression,

f
′′

(Π(q) + c) Π
′

(q)2 + f
′

(Π(q) + c) Π
′′

(q) = 0

Donc en 0, on a f
′′

(c) Π
′

(0)2 + f
′

(c) Π
′′

(0) = 0 (2).

Or Π′(0) > 0
(1),(2)
=⇒ ∀c,

f
′′

(c)

f ′(c)
=

f
′′

(0)

f ′(0)
.

Donc sachant que f convexe,

→ soit f
′′

(0) = 0 alors f est linéaire;

→ soit f
′′

(0) > 0 alors f est exponentielle.
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Proposition
Le principe de la valeur moyenne vérifie la propriété d’additivité si et
seulement si

f(x) = eαx ou f(x) = x.

Preuve. Considérons deux risques S1 ⊥⊥ S2.

CN) - pour f(x) = x : c’est trivial (par linéarité de l’espérance).

- pour f(x) = eαx : Π(S1 + S2) = 1
α

ln
(
E[eα(S1+S2)]

)
=

1
α

ln
(
E[eαS1 ]E[eαS2 ]

)
= 1

α
ln

(
E[eαS1 ]

)
+ 1

α
ln

(
E[eαS2 ]

)
= Π(S1) + Π(S2)

CS) Soit c une constante, S ⊥⊥ c. Par additivité,

Π(S + c) = Π(S) + Π(c) = Π(S) + f−1(f(c)) = Π(S) + c.

Donc on a invariance par translation, et on utilise cette propriété
avec la proposition d’avant pour conclure.
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Proposition
Le principe de l’utilité nulle (u ↗ et concave) vérifie la propriété
d’additivité si et seulement si

u(x) = −e−αx ou u(x) = x

à une relation linéaire près.

Preuve.

CN) Si u(x) = x ⇒ évident!

Si u(x) = −e−αx ⇒ E[u(Π(S) − S)] = u(0)⇔ E[−e−α(Π(S)−S)] =
−e−αΠ(S) E[eαS ] = −1︸︷︷︸

u(0)

⇔ Π(S) = − 1
α lnE[eαS ], qui, on le sait,

est additif (c’est le principe exponentiel).
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CS) Après normalisation de la fonction d’utilité, on peut toujours
avoir

u(0) = 0, u
′

(0) = 1, u
′′

(0) = −a ≤ 0.

Posons Sq,z = (1 − q) δ0 + q δz et Π(q) = Π(Sq,z).

On a par l’utilité nulle que q u(Π(q) − z) + (1 − q) u(Π(q)) = 0.

En dérivant par rapport à q à gauche et à droite de l’égalité puis en
se plaçant en 0, on obtient

−u(0)︸︷︷︸
=0

+u(−z) + Π
′

(0) u
′

(0)︸︷︷︸
=1

= u(−z) + Π
′

(0) = 0.
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Dériver une nouvelle fois en 0 amène à

2Π
′

(0) u
′

(−z) − 2Π
′

(0) + Π
′′

(0) − aΠ
′

(0)2 = 0.

Soit Tq la somme de deux variables ⊥⊥ de même loi que Sq,z :

Tq = (1 − q)2 δ0 + 2q(1 − q) δz + q2δ2z .

Par additivité, on sait que

Π(Tq) = 2Π(q)

et

q2 u(2Π(q)−2z) + 2q(1−q) u(2Π(q)− z) + (1−q)2 u(2Π(q)) = 0.
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Donc en dérivant 2 fois et en se plaçant en 0, on a

2 u(−2z)−4 u(−z)+8 Π(0) u
′

(−z)−2 Π
′

(0)+2 Π
′′

(0)−4a Π
′

(0)2 = 0.

En éliminant Π
′′

(0) puis Π
′

(0), on a finalement

u(−2z) − 2u(−z)u
′

(−z) − a u(−z)2 = 0.

Finalement, en résolvant l’équation diff., on obtient

→ si a = 0, alors u(x) = x;

→ si a > 0, alors u(x) = 1
α(1 − e−αx).

176 / 354



Proposition
Le principe de l’utilité nulle est itératif si et seulement si

u(x) = −e−αx ou u(x) = x

à une relation linéaire près.

Preuve. Laissée au lecteur...
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4 Calcul de prime et introduction aux mesures de risque
Les principes classiques de tarification
Propriétés souhaitables des principes de tarification
Résumé des propriétés de chaque principe de prime
Mesures de risque célèbres
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Introduction et définition

Soit la variable aléatoire positive (v.a.p.) S du montant cumulé des
sinistres d’une police pour une période de garantie donnée.

Soit F l’espace des fonctions de répartition (f.d.r.) des v.a.p.

Une mesure de risque est une fonction

R : F → R+ ∪ {∞}

F → R(F)
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Les mesures de risque s’utilisent à de nombreux égards, parmi
lesquels:

→ des calculs d’immobilisation de capital dans un objectif de
solvabilité;

→ des calculs de capitaux à investir initialement à probabilité de
ruine donnée;

→ le calcul de réserves IBNR (tardifs)...

Analogie: le notion de mesure de risque ressemble fortement à la
notion de principe de prime. C’est le cash à mettre de côté face à
l’acceptation d’un nouveau risque dans un objectif de prudence...
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Propriétés souhaitables des mesures de risque

Comme pour les principes de prime, un ensemble de propriétés
sont exigées car “naturelles”.

→ Invariance en loi: S1
L
= S2 ⇒ R(S1) = R(S2).

→ Monotonie: S1 ≥ S2 ⇒ R(S1) ≥ R(S2).

→ Invariance par translation: ∀λ ∈ R, R(S1 + λ) = R(S1) + λ.

→ Homogénéité positive: ∀λ ∈ R+, R(λS1) = λR(S1).

→ Sous-additivité: R(S1 + S2) ≤ R(S1) + R(S2).

→ Convexité:

∀β ∈ [0, 1], R(βS1 + (1 − β)S2) ≤ βR(S1) + (1 − β)R(S2).
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Mesure de risque cohérente: approche axiomatique

Selon Artzner et al. (1997), une “bonne mesure de risque” doit
satisfaire certains des axiomes précédents, en particulier:

→ Monotonie: S1 ≥ S2 ⇒ R(S1) ≥ R(S2).

→ Invariance par translation: ∀λ ∈ R, R(S1 + λ) = R(S1) + λ.

→ Homogénéité positive: ∀λ ∈ R+, R(λS1) = λR(S1).

→ Sous-additivité: R(S1 + S2) ≤ R(S1) + R(S2).

Remarques: d’autres définitions existent. Mesure de risque
monétaire, convexe...
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Notion de comonotonie

Introduite dans le contexte assurantiel, cette idée représente une
corrélation “totale” entre 2 v.a.r.
Les pertes S1 et S2 sont dites comonotones ssi ce sont des
fonctions croissantes d’une même variable aléatoire réelle Z , ou

∀ω,ω∗ ∈ Ω,
{
S1(ω) − S1(ω∗)

} {
S2(ω) − S2(ω∗)

}
≥ 0

ou encore,

(S1,S2)
L
=

(
F−1

S1
(U), F−1

S2
(U)

)
, U ∼ U[0,1].

→ Intuitivement S1 et S2 évoluent donc dans le même sens!
→ R(S1 + S2) = R(S1) + R(S2) quand S1 et S2 comonotones.
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La Value-at-Risk (VaR)

La plus connue: c’est le standard utilisé en finance / assurance
dans le calcul des réserves de prudence préconisées par l’ACPR.

Pour un risque S, la VaR est définie pour un seuil p ∈ (0, 1)
comme le quantile suivant:

VaRp(S) = F−1
S (p) = inf{s : P(S ≤ s) ≥ p}.

Inconvénient: la VaR n’est pas sous-additive⇒ ne prend pas en
compte l’effet de diversification des risques.
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Dans la pratique, on considère la

→ VaR au niveau 99,9% en finance (Bâle II);

→ VaR au niveau 99,5% en assurance (Solvabilité II).

Mais...

La VaR n’est pas une mesure de risque cohérente au sens
d’Artzner...

La VaR ne permet pas de capter la forme de la queue de
distribution du risque au-delà du quantile recherché...

⇒ La réglementation recommande aussi l’usage de la TVaR.

185 / 354



La Tail-Value-at-Risk (TVaR)

Le principal attrait de la TVaR est qu’elle permet d’intégrer
l’information sur la queue de distribution (dangerosité du risque).

Pour un risque S, la TVaR au niveau p ∈ (0, 1) est définie comme
moyenne arithmétique des VaR au-delà de p:

TVaRp(S) =
1

1 − p

∫ 1

p
VaRt (S) dt .

→ Peut se reécrire TVaRp(S) = VaRp(S) + 1
1−p ESp(S).

→ La TVaR est une mesure de risque cohérente.
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L’Expected Shortfall (ES)

Pour un risque S, on définit l’ES au niveau p ∈ (0, 1) comme la
quantité

ESp(S) = E
[(

S − VaRp(S)
)+

]
.

Interprétation: c’est la prime stop-loss dans le cas où les excès
au-delà de d = VaRp(S) sont réassurés.

Cette mesure de risque est sous-additive, et est même une
mesure de risque cohérente.
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La Conditional Tail Expectation (CTE)

Dans le cas continu (sans saut de FS ), c’est aussi la TVaR.

Pour un risque S, la CTE au niveau p ∈ (0, 1) est définie comme

CTEp(S) = E [S |S > VaRp(S)] .

C’est donc la perte moyenne dans les 100(1 − p)% pires cas.
On peut la reécrire sous la forme

CTEp(S) = VaRp(S) +
1

1 − FS(VaRp(S))
ESp(S).
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128 5 Premium principles and Risk measures

A

B

C F(s)

.2

.5

.7

1

0 VaR[.5]=VaR[.7] s

Fig. 5.1 Illustrating VaR and related risk measures for a cdf FS

much because there is a danger in doing so, see Exercise 5.6.3, but because it is not
a coherent risk measure in the sense of Artzner et al. (1997). To be called coherent,
a risk measure must have respect for stochastic order, be positive homogeneous and
translative, see Exercise 5.6.2, but it must also be subadditive. This last property
means that the sum of the risk measures for a split-up portfolio is automatically an
upper bound for the risk in the total portfolio. From Exercise 1.2.9 it is known that a
risk-averse individual aiming to keep his utility at the same level or better is some-
times prepared to pay a premium for 2S that is strictly larger than twice the one for S.
This is for example the case for exponential premiums, see Exercise 1.3.12, and the
same superadditivity holds for Esscher premiums, see Exercise 5.6.11. Therefore,
determining zero utility premiums may measure risks in a non-subadditive way, but
to label this procedure incoherent is improper. Requiring subadditivity makes sense
in complete markets where it is always possible to diversify a risk, but the insurance
market simply is incomplete. ∇

Example 5.6.4 (VaR is not subadditive)
The following is a counterexample for the subadditivity of VaR: if S and T ∼
Pareto(1,1) independent, then for all p ∈ (0,1) we have

VaR[S + T ; p] > VaR[S; p]+ VaR[T ; p]. (5.37)

To see that this is true, first verify that, since FS(x) = 1 − 1/x, x > 1, we have
VaR[S; p] = 1

1−p . Next, using convolution (see Exercise 5.6.10), check that

Pr[S + T ≤ t] = 1 − 2
t

− 2
log(t − 1)

t2 , t > 2. (5.38)

Now

Pr
[
S + T ≤ 2VaR[S; p]

]
= p − (1 − p)2

2
log

(1 + p
1 − p

)
< p, (5.39)

Exemples:
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Profil en fonction de la proba. p (croissance, dérivabilité)
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Les mesures de risque de distortion

L’idée est de déformer la fonction de répartition du risque
sous-jacent afin de donner plus de poids à un certain type de
sinistres.

Une fonction de distortion concave accordera par exemple
davantage de poids aux grands sinistres et les surpondérera.

On appelle mesure de risque de distortion le nombre

R(FS ,G) =

∫ 1

0
F−1

S (1 − u) dG(u),

où G est une f.d.r. sur [0, 1] appelée fonction de distortion.
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Quelques exemple de mesures de distortion

- La VaR correspond à une mesure de risque de distortion où G
est un dirac.

- On peut voir l’Expected-Shortfall comme une mesure de
distortion avec G la f.d.r. de la loi uniforme (pondération uniforme):

ESp(S) =

∫
F−1

S (1 − u)
1
p
1[p,1](u) du

- La mesure de Wang: c’est une somme pondérée de VaR !

Remarque: on peut montrer qu’une mesure de risque de distortion
avec G concave est cohérente.
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5 Classification et comparaison de risques
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Introduction

Nous présentons ici des relations de préordre.

Elles permettent de comparer deux risques (variables aléatoires)
du point de vue de leur dangerosité.

Ces risques

→ portent sur la même période,

→ admettent une distribution de probabilité.

Question: dans quel cas préfère-t-on le premier risque au second?
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5 Classification et comparaison de risques
Comparaison à l’ordre 1
Comparaison à l’ordre 2
Application: réassurance optimale
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Dominance stochastique d’ordre 1

Soient S1 et S2 deux v.a.r. de f.d.r. FS1 et FS2 , qui représentent les
montants cumulés de sinistres de deux risques.

Definition
Le risque S1 domine stochastiquement le risque S2 à l’ordre 1, noté
S1 ≥SD1 S2 si et seulement si

E[w(S1)] ≥ E[w(S2)],

pour toute fonction w croissante.

Rq: on trouve parfois la déf. avec u croissante (w(x) = −u(−x)):

−E[u(−S2)] ≤ −E[u(−S1)] (⇔ E[w(S2)] ≤ E[w(S1)]).
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La relation S1 ≥SD1 S2 est une relation de préordre car elle est

→ réflexive: S1 ≥SD1 S1,

→ transitive: S1 ≥SD1 S2 et S2 ≥SD1 S3 ⇒ S1 ≥SD1 S3.

Mais...

→ elle n’est pas antisymétrique car si S1 ≥SD1 S2 et S2 ≥SD1 S1,
alors S1 = S2 en loi mais non presque sûrement.

→ elle n’est pas totale car deux risques peuvent ne pas être
comparables...

Remarque: la relation ≥SD1 peut aussi être caractérisée par les
f.d.r., c’est l’objet de la proposition suivante.
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Proposition
Le risque S1 domine stochastiquement le risque S2 à l’ordre 1 si et
seulement si

FS2(x) ≥ FS1(x), ∀x ≥ 0.

Preuve.
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Remarques:

→ si S2 ≤SD1 S1, alors v(S2) ≤SD1 v(S1) quand v croissante.

→ la relation d’ordre “p.s.” est : S2 ≤p.s. S1 si P(S2 ≤ S1) = 1.

Proposition
i) Si S2 ≤p.s. S1 alors S2 ≤SD1 S1.
ii) Réciproquement, si S2 ≤SD1 S1 alors ∃S

′

∼ S1 t.q. S2 ≤p.s. S
′

.

Preuve. i) Evident!

ii)
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Proposition
Si S1 et S2 admettent des densités et s’il ∃ une constante c ≥ 0 t.q.

fS2(x) ≥ fS1(x) pour x ∈ [0, c[

fS2(x) ≤ fS1(x) pour x ∈ [c,∞[,

Alors S1 ≥SD1 S2.

Preuve.

Remarque: résultat généralisable pour les distributions discrètes.
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Proposition

Si S1 est une v.a. indépendante des risques S et S
′

t.q. S ≥SD1 S
′

,
alors

S + S1 ≥SD1 S
′

+ S1.

Preuve.
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Proposition

Si S1, ...,Sn et S
′

1, ...,S
′

n sont des suites de v.a. indépendantes telles
que Si ≥SD1 S

′

i pour tout i,
alors

n∑
i=1

Si ≥SD1

n∑
i=1

S
′

i .

Preuve par récurrence.
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Proposition

Si S1, ...,Sn et S
′

1, ...,S
′

n sont des suites de v.a.p. ⊥⊥ t.q. Si ≥SD1 S
′

i
pour tout i, et si N et N

′

sont deux variables de comptage ⊥⊥ de (Sn)
et (S

′

n) et telles que N ≥SD1 N
′

;
alors

∑N
i=1 Si ≥SD1

∑N
′

i=1 S
′

i .

Preuve (en deux temps).
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Proposition

Si S et S
′

sont deux risques tels que S ≥SD1 S
′

, alors

Π(S) ≥ Π(S
′

).

pour les principes de la prime pure, de l’espérance mathématique,
de l’utilité nulle, de la valeur moyenne et de Wang.

Preuve. - Prime pure (et espérance math.): utilisant la prop. avec
les f.d.r.,

Π(S
′

) = E[S
′

] =

∫ ∞

0
F̄S′ (s)ds

hyp
≤

∫ ∞

0
F̄S(s)ds = E[S] = Π(S).
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- Principe de Wang: prop. avec f.d.r. + fonction puissance↗,

Π(S
′

) =

∫ ∞

0

(
F̄S′ (s)

)r
ds

hyp
≤

∫ ∞

0

(
F̄S(s)

)r
ds = Π(S).

- Principe de l’utilité nulle (pour rappel u croissante et concave) :

S ≥SD1 S
′ def .
⇒ ∀Π ∈ R+, E[u(Π(S)−S + R)] ≤ E[u(Π(S

′

)−S
′

+ R)] (1)

Or
{
E[u(Π(S) − S + R)] = u(R)
E[u(Π(S

′

) − S
′

+ R)] = u(R)

donc E[u(Π(S) − S + R)] = E[u(Π(S
′

) − S
′

+ R)] (2).

Ainsi (1) et (2) impliquent que

E[u(Π(S
′

) − S
′

+ R)] ≤ E[u(Π(S) − S
′

+ R)] (3).

207 / 354



Si Π(S
′

) > Π(S) alors E[u(Π(S
′

) − S
′

+ R)] > E[u(Π(S) − S
′

+ R)]

car u est↗. Mais ceci est en contradiction avec (3)!

Donc par l’absurde Π(S
′

) ≤ Π(S) ! �

Remarque: pour certains principes de prime, on ne peut pas
conclure. D’un point de vue gestion de risque, cela peut donc
poser problème.

C’est le cas par exemple

→ du principe de la variance,

→ du principe de l’écart-type.
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Exemple (principe de la variance): soit S
′

∼ B(1, p) et S = 1 p.s.

On peut montrer que S ≥SD1 S
′

(en prenant par exemple w = Id
et en calculant les espérances), mais

Π(S) = 1 < Π(S
′

) = p + βp(1 − p) si βp > 1.
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5 Classification et comparaison de risques
Comparaison à l’ordre 1
Comparaison à l’ordre 2
Application: réassurance optimale
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Dominance stochastique d’ordre 2

Des notions , sont traduites par cette relation, notamment la prise
en compte des comportements d’aversion au risque.

Ceci se traduit par la concavité de la fonction u.

Definition
Le risque S1 domine stochastiquement le risque S2 à l’ordre 2, noté
S1 ≥SD2 S2, si et seulement si

E[w(S1)] ≥ E[w(S2)],

pour toute fonction w croissante et convexe.

La relation est parfois notée ≥r .a., pour “risk aversion”.
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→ cette inégalité est équivalente à E[v(−S2)] ≥ E[v(−S1)] où
v(x) = −w(−x) est croissante et concave;

→ l’ordre ≥SD1 compare les espérances pour une classe plus
large de fonctions, et inclut donc la dom. stoch. d’ordre 2;

→ 2 risques incomparables à l’ordre 1 peuvent l’être à l’ordre 2.

Definition
La transformation stop-loss de la f.d.r. FS est définie par

πS(y) = E[(S − y)+] ∀y ≥ 0.
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Proposition

Le risque S domine stochastiquement le risque S
′

à l’ordre 2 si et
seulement si

πS(y) ≥ πS′ (y) ∀y ≥ 0.

On écrit aussi S ≥SD2 S
′

⇔ S ≥sl S
′

.

Preuve.
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Proposition

S ≥SD2 S
′

si et seulement si ∃ une variable aléatoire D telle que

S
′

+ D d
= S et E[D |S

′

] ≥ 0 p.s.

Preuve.

Remarque: parfois, on dit que S
′

est moins variable que S.
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Proposition

Si E[S
′

] ≤ E[S] et s’il existe une constante c ≥ 0 telle que

FS′ (s) ≤ FS(s) pour s ∈ [0, c[

FS′ (s) ≥ FS(s) pour s ∈ [c,∞[

Alors S ≥SD2 S
′

.

Preuve.
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Exemple: S
′

∼ U[0,2] et S ∼ Exp(1) (ici E[S
′

] = E[S]).

Exercice indépendant (relation moments / prime stop-loss):

Montrer que ∀k ≥ 2, E[Sk ] = k(k − 1)
∫ ∞

0 sk−2πS(s) ds,

et que si S ≥SD2 S
′

alors E[Sk ] ≥ E[S
′k ] ∀k ≥ 2.
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Proposition

Si S est une variable ⊥⊥ des risques S1 et S
′

1 tels que S1 ≥SD2 S
′

1,
alors

S1 + S ≥SD2 S
′

1 + S.

Preuve
Identique à l’ordre 1.
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Proposition

Si S1, ...,Sn et S
′

1, ...,S
′

n sont des suites de v.a.p. ⊥⊥ t.q. Si ≥SD2 S
′

i
pour tout i,

alors
∑n

i=1 Si ≥SD2
∑n

i=1 S
′

i .

Soient des proba. (pi) t.q.
∑n

i=1 pi = 1, alors

n∑
i=1

piFSi ≥SD2

n∑
i=1

piFS′i
.

Preuve. La 1ère inégalité s’obtient comme la domin. stochastique
d’ordre 1 et la 2e (mélange) en utilisant déf. et prop.: l’hyp. donne

ΠSi (y) ≥ ΠS′i
(y)⇒

n∑
i=1

pi E[(Si − y)+]︸         ︷︷         ︸
πSi (y)

≥

n∑
i=1

pi E[(S
′

i − y)+]︸          ︷︷          ︸
π

S
′

i
(y)

.
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Proposition
Si on a

→ S1, ...,Sn et S
′

1, ...,S
′

n sont des suites de v.a.p. indépendantes
telles que Si ≥SD2 S

′

i pour tout i,

→ N et N
′

sont deux variables de comptage indépendantes de
(Sn) et (S

′

n) telles que N ≥SD2 N
′

;

Alors
∑N

i=1 Si ≥SD2
∑N

′

i=1 S
′

i .

Preuve.
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Exemple

Prenons N
′

= µ p.s. et N ∼ P(µ). Alors N ≥SD2 N
′

.

Proposition

Si S et S
′

sont deux risques tels que S ≥SD2 S
′

,
alors Π(S) > Π(S

′

) pour le principe de la valeur moyenne.

Preuve.

C’est immédiat car par définition du principe de la valeur moyenne:

Π(S
′

) < Π(S) ⇔ f−1E[f(S
′

)] ≤ f−1E[f(S)] (f↗ et convexe).

Equivalent à E[f(S
′

)] ≤ E[f(S)] (cf définition de la relation ≥SD2).
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Proposition
Le principe de calcul de prime vérifie les propriétés suivantes:

i) si S ≥SD2 S
′

et FS′ , FS , alors Π(S) > Π(S
′

);

ii) si P(S = s) = 1, alors Π(S) = s;

iii) S
′

, S1 et S2 sont des risques et p ∈ [0, 1].
Si Π(S1) = Π(S2) alors

Π(pFS1 + (1 − p)FS′ ) = Π(pFS2 + (1 − p)FS′ )

ssi il existe une fonction f continue, croissante et convexe telle
que Π(S) = f−1 E[f(S)].

iv) de plus, si on a S et S
′

deux risques indépendants, alors
Π(S + S

′

) = Π(S) + Π(S
′

) et alors

f(x) = eαx ou f(x) = x.
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Preuve. (Ebauche)

1) i) Si S ≥SD2 S
′

, alors E[f(S
′

)] ≤ E[f(S)].
ii) Evident.
iii) On a

f(Π(pFS1 + (1 − p)FS′ )) = pE[f(S1)] + (1 − p)E[f(S
′

)]

= pE[f(S2)] + (1 − p)E[f(S
′

)]

= f(Π(pFS2 + (1 − p)FS′ )).

2) Soit a > 0, posons Sp,a = (1 − p) δ0 + p δa .

On définit φ(p) = Π(Sp,a). On a alors φ(0) = 0 et φ(1) = a par ii).

Pour p1 < p2, i) donne Sp2,a ≥SD2 Sp1,a et FSp1 ,a
, FSp2 ,a

, donc
φ(p1) < φ(p2) et φ est une fonction strictement croissante. On peut
aussi montrer par l’absurde que φ est continue.
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Puisque φ est une fonction croissante continue, posons

f(u) = φ−1(u) pour u ∈ [0, a].

Si u = φ(t) ou t = f(u),

Π(St ) = u = φ(t) = Π((1 − f(u))δa + f(u)δ0).

Par iii), si Π(X) = Π(X
′

) et Π(Y) = Π(Y
′

), alors

Π(tFX + (1 − t)FY ) = Π(tFX ′ + (1 − t)FY ′ ).

De même on montre que

si Π(Fj) = Π(Gj) alors Π(
∑

i

pi Fi) = Π(
∑

i

pi Gi).
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Considérons maintenant la v.a. X ∈ [0, a] t.q. FX (x) =
∑

j pjδcj (x),
où 0 ≤ cj ≤ a et

Π(δcj ) = cj = Π((1 − f(cj))δa + f(cj)δ0).

On obtient

Π(X) = Π

∑
j

pjδcj

 = Π

∑
j

pj((1 − f(cj))δa + f(cj)δ0)


= Π

(1 −
∑

j

pj f(cj))δa +
∑

j

pj f(cj)δ0

 = φ

∑
j

pj f(cj)


= f−1(E[f(X)]).

Si FX est continue alors elle peut être encadrée par F+
j et F−j t.q.

Π(F−j ) ≤ Π(FX ) ≤ Π(F+
j ); puis passe à la limite et CV monotone.

226 / 354



5 Classification et comparaison de risques
Comparaison à l’ordre 1
Comparaison à l’ordre 2
Application: réassurance optimale

227 / 354



Le contrat de réassurance optimal

La question centrale ici est

Quel type de réassurance est le plus intéressant
pour un assureur sachant que le montant de la
prime de réassurance est fixé ?
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Critères de choix

Soit S le montant du sinistre que l’assureur doit couvrir.

Supposons que les traités de réassurance satisfont certaines
caractéristiques: la part cédée au réassureur doit être

→ continue et non-négative,

→ non décroissante,

→ augmente moins vite que le montant des sinistres.

Plus précisément, c’est un élément de

I = {I(.) | I(0) = 0 ; 0 ≤ I
′

(s) ≤ 1}.
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Des contrats type appartenant à I sont

→ la quote-part: I(s) = αs, pour un α ∈ [0, 1];

→ le stop-loss (S: montant agrégé) ou l’excédent de sinistre par
risque (S: montant individuel): I(s) = (s − d)+, pour un d > 0.

Supposons que l’assureur décide du montant P à allouer pour sa
réassurance. Il choisit ainsi un contrat dans l’ensemble

IP = {I(.) ∈ I | Πr(I(S)) = P},

où Πr est le principe de calcul de prime du réassureur et P est
inférieur à la prime d’assurance.
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L’assureur considère le montant du sinistre après réassurance:

Z = S − I(S).

Il optimise certaines caractéristiques de cette variable, son critère
noté c dépend donc de la distribution de Z .
Nous supposerons que l’assureur minimise c(FZ ) sur IP .

Rq: un certain nb de critères d’optimisation conduisent à des
préférences cohérentes avec l’ordre ≥SD2, donc de la variabilité.

Dans la pratique: avec ces critères, un sinistre après réassurance
est préféré s’il est inférieur au sens de l’ordre ≥SD2 (ou stop-loss).
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Definition
Si la propriété suivante est vérifiée: ∀I1, I2 ∈ I avec Zi = S − Ii(S),

Z1 ≤SD2 Z2 ⇒ c(FZ1) ≤ c(FZ2),

Alors on dit que le critère d’optimisation c préserve l’ordre de
variabilité sur l’ensemble I.

Caractérisation: d’après la définition de la dominance stochastique
d’ordre 2, on peut conclure qu’un critère qui préserve l’ordre de
variabilité peut s’écrire sous la forme

c(FZ ) = E[v(Z)],

où v est croissante et convexe.
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Exemples de critères d’optimisation (pour l’assureur)
préservant l’ordre de variabilité.

→ Maximisation de l’utilité espérée du résultat net (prime
d’assurance et réassurance fixées):

c(FZ ) = −E[u(Π(S) − P − Z)],

où
u est la fonction d’utilité de l’assureur (croissante et concave),
Π(S) est la prime d’assurance pour le montant du sinistre
initial S,
P est la prime de réassurance identique pour toutes les
formes de contrat,
et Z est le montant du sinistre après réassurance.
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→ Minimisation de la variance de la part conservée du sinistre
sous contrainte d’égalité des moyennes.

Rappelons la transformation stop-loss sur le risque Z :

πZ (y) = E[(Z − y)+] =

∫ ∞

y
(z − y) dFZ (z) =

∫ ∞

y
F̄Z (z) dz,

qui permet de comparer très facilement les moments puisque

E[Zk ] = k(k − 1)

∫ ∞

0
zk−2 πZ (z) dz, k ≥ 2.

On sait que Z1 ≤SD2 Z2 ⇒ πZ1(z) ≤ πZ2(z), donc

Z1 ≤SD2 Z2 ⇒ E[Zk
1 ] ≤ E[Zk

2 ] (k ≥ 2)
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Sous contrainte E[Z1] = E[Z2], on a donc Z1 ≤SD2 Z2 implique

Var(Z1) = E[Z2
1 ] − (E[Z1])2 ≤ E[Z2

2 ] − (E[Z2])2 = Var(Z2).

Si l’on suppose par exemple que le principe de calcul de
prime du réassureur est celui de l’espérance mathématique
(Πr(I(S)) = (1 + β) E[I(S)]), alors E[Z1] = E[Z2],

(Zi = S − Ii(S)) et l’on peut poser

c(FZ ) = Var(Z) = E[(Z − E[Z ])2].

w(Z) = (Z −E[Z ])2 ↗ convexe dc répond à la caractérisation.
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→ Minimisation de la prime d’assurance: l’assureur préfère
retenir un risque après réassurance pour lequel il fera payer
lui-même la plus petite prime à son assuré.

La prime Π(X) demandée à l’assuré est la somme des primes
de l’assureur Π(Z) et du réassureur P:

Π(X) = P + Π(Z).

Puisque P est fixée, minimiser Π(X) revient à minimiser Π(Z).

En posant un critère c(FZ ) = Π(Z), il faut choisir un principe
de calcul de prime cohérent avec la relation ≥SD2: par ex.,
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a) la prime pure: Π(Z) = E[Z ];
b) l’espérance mathématique: Π(Z) = (1 + β)E[Z ];

c) la variance: Π(Z) = E[Z ] + βVar(Z) (sous la contrainte que
le réassureur utilise l’espérance math.);
d) l’écart-type (idem que c);

e) princ. exponentiel: Π(Z) = α−1 lnE[eαZ ] (exp. ↗ convexe);
f) la valeur moyenne: Π(Z) = f−1E[f(Z)], avec f convexe,↗;

g) l’utilité nulle: E[u(Π(Z) − Z)] = u(0).

En effet: Z1 ≤SD2 Z2, ∀Π ⇒ E[u(Π − Z2)] ≤ E[u(Π − Z1)].
Donc

E[u(Π(Z1) − Z1)] = E[u(Π(Z2) − Z2)] ⇒ Π(Z1) ≤ Π(Z2).
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→ Minimisation de la probabilité de ruine: l’assureur choisit son
risque de manière à diminuer sa probabilité de ruine:

c(FZ ) = ψZ (u),

où u sont les fonds propres initiaux.

On se place aussi sous la contrainte d’égalité des moyennes

E[Z1] = E[Z2],

i.e. le principe de calcul du réassureur est celui de
l’espérance mathématique.

En effet,
Z1 ≤SD2 Z2

E[Z1] = E[Z2]

}
slide 302
⇒ ψZ1(u) ≤ ψZ2(u)
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→ Maximisation du coefficient de Lundberg (cf plus loin).

De même,
Z1 ≤SD2 Z2

E[Z1] = E[Z2]

}
⇒ RZ1 ≥ RZ2

et on peut choisir

c(FZ ) = −RZ .
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Theorem
Soit S un risque, I1 et I2 deux contrats de réassurance dans I avec

E[I1(S)] ≥ E[I2(S)].

Si ∃c ≥ 0 tel que

I1(s) ≤ I2(s) pour 0 ≤ s ≤ c,

I1(s) ≥ I2(s) pour s > c,

Alors
Z1 ≤SD2 Z2,

où Z1 et Z2 sont les deux montants de sinistres après réassurance.
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Preuve.
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Le contrat de réassurance optimal pour l’assureur

Le choix du type de contrat de réassurance est fonction de deux
paramètres:

→ le principe de calcul de prime du réassureur,

→ le critère d’optimisation de l’assureur.

Cas 1: Πr est le principe de l’espérance mathématique et le critère
de minimisation est cohérent avec l’ordre de variabilité.

L’ensemble des contrats se réduit à (β: chargement de sécurité)

IP = {I(.) ∈ I | (1 + β)E[I(S)] = P}.
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Theorem
Pour tout critère d’optimisation préservant l’ordre de variabilité, le
traité de réassurance optimal sur l’ensemble IP est de la forme

Id(s) = (s − d)+,

où d est tel que (1 + β)E[Id(S)] = P.

Preuve.
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Cadre du modèle collectif en assurance

Considérons maintenant un modèle collectif, avec des montants
de sinistres individuels Xi i.i.d.

Supposons que le contrat de réassurance doit être de la forme

T(n, x1, x2, ..., xn) =
n∑

j=1

I(xj), avec I ∈ IP/E[N],

où n est la réalisation de la v.a. N.

Dans ce cas,

(1 + β)E[T(S)] = P = (1 + β)E[N]E[I(X)].
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Theorem
(Réassurance optimale par sinistre). Pour tout critère d’optimisation
préservant l’ordre de variabilité, le contrat de réassurance optimal
sur l’ensemble IP est donné par

T(n, x1, x2, ..., xn) =
n∑

j=1

(xj − d)+ =
n∑

j=1

Id(xj)

avec d tel que E[(X1 − d)+] = P
(1+β)E[N]

.

Preuve (analogie avec le résultat précédent).
∀ risque individuel, le contrat Id est optimal, le risque retenu est
moins variable que tout autre risque retenu. Puisque la dominance
stoch. d’ordre 2 est stable par composition, il en est de même pour
le risque agrégé. Le contrat optimal est donc un EoL par risque.
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Cas 2: Πr est le principe de la variance et le critère d’optimisation
est le critère de la moyenne-variance du résultat net.

L’ensemble des contrats se réduit à

IP = {I(.) ∈ I |E[I(S)] + βVar(I(S)) = P},

où β est un coefficient de chargement de sécurité.

Theorem
Supposons que le critère d’optimisation est la moyenne-variance du
résultat net (après réassurance), le contrat de réassurance optimal
sur l’ensemble IP a la forme Iα(s) = αs, où α est tel que

E[Πr(Iα(S))] = P.
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Preuve.
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6 Théorie de la ruine
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Introduction

L’objectif de cette partie est d’étudier le processus de richesse
d’une companie d’assurance au cours du temps:

→ augmente au cours du temps avec la collecte des primes;

→ diminue lors de remboursement de sinistres.

Lorsqu’il devient négatif, on parle de ruine.

Rq: c’est une ruine “mathématique”. L’assureur peut faire appel à
ses actionnaire, emprunter, consommer ses fonds propres...

Une ruine économique serait une situation comptable dans
laquelle la companie ne peut plus faire face à ses engagements.
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6 Théorie de la ruine
Le modèle de Lundberg
La probabilité de ruine
Probabilité de ruine et distributions à queue fine
Distributions à queue épaisse
Etude du phénomène de ruine
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Le modèle de Lundberg

Modèle proposé par Lundberg dans sa thèse de doctorat en 1903.

Son modèle est caractérisé par cinq composantes:

1 les sinistres : les montants de sinistres (Xk ) sont positifs et
i.i.d., de distribution commune FX (avec la densité associée
fX ), et de moyenne µ = E[X1].

2 la survenance des sinistres : les sinistres arrivent à des
moments aléatoires

0 < T1 < T2 < ... p.s.

252 / 354



3 le processus de survenance : le nombre de sinistres dans
l’intervalle [0, t ] est noté

N(t) = sup {n ≥ 0 : Tn ≤ t} , t ≥ 0.

Equivalence des événements {Tn ≤ t} = {N(t) ≥ n}.

4 Les durées inter-sinistres : i.i.d. de loi exponentielle Exp(λ).

On note ces durées

Y1 = T1, Y2 = T2 − T1, ..., Yk = Tk − Tk−1

5 Les suites (Xk ) et (Yk ) sont indépendantes entre elles.
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Une conséquence des 2ème, 3ème et 4ème points est que

(N(t))t≥0 est un processus de Poisson homogène d’intensité λ > 0.

En effet,

P(N(t) = n) =

=

=

=

=

Ainsi, ∀t , N(t) ∼ P(λt).
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Propriété:

Le processus de Poisson est un processus markovien tel que N(0) =
0, et (N(t))t≥0 est un processus à accroissements indépendants et
stationnaires.

Preuve.
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Proposition
Si N(t) est un processus de comptage qui vérifie les propriétés :

1 N(t) est un processus à accroissements indépendants,

2 N(t) est un processus à accroissements stationnaires,

3-1 P(il y a plus d’un sinistre à un moment donné) = 0, ou

3-2 P(infinité de sinistres sur un intervalle de longueur , 0) = 0,

Alors N(t) suit une loi de Poisson pour tout t.

Preuve. En exercice.

Rq: le processus des pertes agrégées (S(t))t≥0 du portefeuille

S(t) =

 ∑N(t)
i=1 Xi si N(t) > 0,

0 si N(t) = 0.
est Poisson composé.

Ce processus est à accroissements indépendants et stationnaires.
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La probabilité de ruine

Le processus de richesse de l’assureur à la date t vaut:

U(t) = u + ct − S(t)

Ce processus est aussi appelé processus de réserve, processus
de risque ou “surplus” de l’assureur.

Hypothèses:

→ les revenus de l’assureur sont linéaires: crédible s’il y a
beaucoup d’assurés, qui paient leur prime de manière
équi-répartie au cours du temps;

260 / 354



→ les sinistres gardent la même distribution au cours du temps:
on néglige l’inflation monétaire, ou la déviation de certains
paramètres de la loi sous-jacente;

→ on ne tient pas compte des intérêts dégagés par le placement
des primes collectées sur les marchés financiers.

Rq: en réalité les intérêts des primes placées permettent à
l’assureur de survivre, autant que la mutualisation induite par la
LGN (particulièrement dans les branches à développement long)!

Voici une trajectoire typique d’un processus de risque dans le
modèle de Cramer-Lundberg :
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Au 5ème sinistre, les sinistres cumulés (X1 + ... + X5) sont > aux
fonds propres plus primes perçues u + c(Y1 + ...+ Y5): il y a ruine.
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Definition
La probabilité de ruine sur un horizon de temps fini est

ψ(u,T) = P(U(t) < 0 pour un t ≤ T),

avec u ≥ 0 et 0 < T < ∞.
En horizon infini, on écrit

ψ(u) = ψ(u,∞), u ≥ 0.

La durée avant la ruine en horizon fini vaut

τu(T) = inf{t : 0 ≤ t ≤ T , U(t) < 0},

avec 0 < T ≤ ∞.
Nous écrirons τu = τu(∞) pour un horizon infini.
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Proposition

U(t)
t
−→
t→∞

c − λµ p.s.,

avec µ = E[Xi] et λ paramètre du processus de Poisson.

Preuve.
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Remarquons aussi que E
[

U(t)
t

]
→ c − λµ : c’est une sorte de LGN

pour le processus (U(t))t≥0.

La condition de profit net du modèle de Lundberg s’écrit

c > λµ ⇔ ρ =
c
λµ
− 1 > 0 .

Alors U(t)
p.s.
−→ ∞ : certaines trajectoires peuvent conduire à la

ruine, mais cela n’a pas lieu avec probabilité 1 à horizon infini.
C’est donc aussi une condition de non-ruine (ψ(u) < 1).

Vocabulaire: ρ est appelé coefficient de chargement de sécurité.
C’est une prime de risque destiné à éviter une ruine certaine.
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Ainsi, le montant des primes perçues sur la période [0, t ] vaut

ct = (1 + ρ)λµ t = (1 + ρ) E[S(t)].

On pense immédiatement au principe de prime de l’espérance,
sauf que ici ρ peut dépendre des caractéristiques du processus...
(attention donc!)

Il existe plusieurs façons de calculer la probabilité de ruine, ou d’en
donner des majorants:

→ la formule de convolée de Beeckman,

→ les équations intégro-différentielles,

→ la théorie des martingales,

→ ...
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Introduisons L la perte maximale du montant agrégé :

L = max
t≥0
{S(t) − ct} .

ψ(u) = P(U(t) < 0 pour un t ≥ 0)

= 1 − P(U(t) ≥ 0 pour tout t ≥ 0)

= 1 − P(u ≥ S(t) − ct pour tout t ≥ 0)

= 1 − P(u ≥ L) = P(L > u) = 1 − FL (u).

Comme ψ(0) < 1 sous la condition de profit net, on en déduit que

ψ(0) = 1 − FL (0+) < 1.

⇒ L : mélange d’un dirac en 0 (avec proba. (1 − ψ(0)) et d’une loi
continue (avec proba. ψ(0)).
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Voici un résultat central de la théorie de la ruine:

Theorem
Le montant agrégé de la perte maximale a une distribution
géométrique composée donnée par

L =
M∑

i=1

Li ,

avec P(M = m) = (1 − ψ(0))(ψ(0))m, L1
d
= S(t0) − ct0 et t0 =

inf{t : S(t) − ct > 0}.

De plus,

ψ(0) =
1

1 + ρ
et 1 − FL1(x) =

1
µ

∫ ∞

x
(1 − FX (u)) du.
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Preuve. Sur la figure suivante on voit que la perte agrégée est
l’addition des montants L1 à L4, les différences entre le précédent
et le nouveau niveau le plus bas. Ce sont les “records en bas”.
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M est alors le nombre de records. Nous pouvons calculer

P(M = 0) = P(réserves nulles et pas de ruine) = 1 − ψ(0).

Ensuite, on utilise la procédure suivante pour M ≥ 1.

1 Après un record, on prend un niveau des réserves égal à la
∑

des records précédents. On le ramène à 0 pour retrouver une
proba de ruine classique avec des réserves = 0.

2 Puisque le processus de Poisson a des incréments ⊥⊥ et
stationnaires, la proba que le processus de risque atteigne un
nouveau record en bas est égale à la probabilité de ruine
avec un capital de départ initial nul.

D’où après m records,

M ∼ G(ψ(0)) ⇔ P(M = m) = (ψ(0))m(1 − ψ(0)).
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3 Déterminons maintenant la loi des Li . Posons

G(u, y) = P(τu < ∞, U(τu) ∈] −∞,−y[, U(0) = u),

et montrons que

∂G(u, y)

∂u
=
λ

c

[
G(u, y) −

∫ u

0
G(u − x, y) dFX (x) − F̄X (u + y)

]
.

Pour cela, décalons le pb de 0 en dt :

→ avec proba (1 − λdt) : pas de sinistre, réserves = u + c dt .

→ avec proba λdt : un sinistre de montant X = x:
si x ≤ u: pas de ruine, réserves = u + cdt − x;
si u ≤ x ≤ u + y: ruine, mais cela ne répond pas aux conditions;
si x > u + y: ruine, dont l’intensité est donnée par x.
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On en déduit que pour dt petit :

G(u, y) = (1−λdt)G(u+cdt , y)+λdt
[∫ u

0
G(u + cdt − x, y) dFX (x) +

∫ ∞

u+y
dFX (x)

]
+o(dt).

On obtient le résultat avec la définition de la dérivée partielle,

∂G(u, y)

∂u
= lim

dt→0

G(u + cdt , y) − G(u, y)

c dt
.

Montrons maintenant que

G(z, y)−G(0, y) =
λ

c

[∫ z

0
G(u, y)(1 − FX (z − u)) du −

∫ z+y

y
(1 − FX (u)) du

]
.

Nous avons tout d’abord que
[
∂G(u,y)
∂u

]z

0
= G(z, y) − G(0, y).
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Puis∫ z

0

∫ u

0
G(u − x, y) dFX (x) du =

∫ z

0

∫ z−v

0
G(v , y) dFX (w) dv ,

avec le changement de variable{
v = u − x,
w = x.

⇒

{
0 < v < z,
0 < w < z − v .

D’où∫ z

0

∫ u

0
G(u − x, y) dFX (x) du =

∫ z

0
G(v , y)FX (z − v) dv .
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D’autre part,∫ z

0

∫ ∞

u+y
dFX (x) du =

∫ z

0
(1−FX (u+y)) du =

∫ z+y

y
(1−FX (v)) dv .

En prenant les deux parties, on obtient le résultat et on en déduit

G(0, y) =
λ

c

∫ ∞

y
(1 − FX (u)) du.

On montre par CV dominée que G(z, y) −→
z→∞

0. De plus, (admis)

∫ z

0
G(u, y)(1 − FX (z − u)) du =

∫ z/2

0
G(u, y)(1 − FX (z − u)) du

+

∫ z

z/2
G(u, y)(1 − FX (z − u)) du

≤
z
2

(
1 − FX

(z
2

))
+

z
2

G
(z
2
, y

)
−→
z→∞

0.
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D’où la probabilité de ruine avec des réserves initiales nulles

ψ(0) = G(0, 0) =
λ

c

∫ ∞

0
(1 − FX (u)) du =

λ

c

(
[x(1 − FX (x))]∞0 +

∫ ∞

0
xFX (x) dx

)
=

λµ

c
.

De même la distribution de L1 se caractérise par

1 − FL1(y) = P(L1 > y) =
G(0, y)

ψ(0)
=

G(0, y)

G(0, 0)

=
1
µ

∫ ∞

y
(1 − FX (u)) du

et fL1(x) =
1
µ

(1 − FX (x)),

puisque G(0, y) = P(il y a ruine et L1 > y) = ψ(0)P(L1 > y). �
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On obtient sous la condition de profit net la formule de convolution
de Beeckman (approchable par l’algorithme de Panjer)

ψ(u) =
ρ

1 + ρ

∞∑
m=1

(
1

1 + ρ

)m

F̄∗mL1
(u) ,

car

→ ψ(u) = 1 − FL (u),

→ L =
∑M

i=1 Li ,

→ ψ(0) = 1
1+ρ .
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Probabilité de ruine et distributions à queue fine

Supposons ici qu’il existe un voisinage de 0 sur lequel la transform.
de Laplace de la loi du montant des sinistres est définie:

∃r > 0, MX1(r) < ∞.

C’est une caractérisation des distributions à queue fine.

Exemples:

→ la loi exponentielle,

→ la loi Gamma.
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Dans certains cas, on peut donner explicitement la proba de ruine.

Exemple.
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Transformée de Laplace de la probabilité de ruine

Quand on ne peut pas calculer explicitement la proba. de ruine, on
peut obtenir sa forme par inversion de la transformée de Laplace.

Theorem
Soit L le montant agrégé de la perte maximale, alors

ML (r) =
(1 − ψ(0))µr

µr − ψ(0)(MX (r) − 1)
.

La transformée de Laplace de la probabilité de ruine est donnée par∫ ∞

0
eruψ(u) du =

1
r

[ML (r) − 1].
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Preuve.

Déterminons la f.g.m. de L (ss l’hyp. que X en ait une)

ML (r) = MM(ln ML1(r)) =
1 − ψ(0)

1 − ψ(0)ML1(r)
,

où ML1(r) =
1
µ

∫ ∞

0
ery(1 − FX (y)) dy

=
1
µ

([
ery − 1

r
(1 − FX (y))

]∞
0

+

∫ ∞

0

(
ery − 1

r

)
dFX (y)

)
=

1
rµ

(MX (r) − 1).
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ML (r) =
1 − ψ(0)

1 − ψ(0)
µr (MX (r) − 1)

=
1 − ψ(0)

1 − λ
cr (MX (r) − 1)

=
(1 − ψ(0))µr

µr − ψ(0)(MX (r) − 1)
.

Enfin,

ML (r) =

∫ ∞

0
eru dFL (u) = 1 − ψ(0) +

∫ ∞

0
eru d(1 − ψ(u))

= 1 − ψ(0) −

∫ ∞

0
eruψ

′

(u) du

= 1 − ψ(0) − [eruψ(u)]∞0 + r
∫ ∞

0
eruψ(u) du

= 1 + r
∫ ∞

0
eruψ(u) du �
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Exemples
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Coefficient d’ajustement et majoration de la proba de
ruine

Nous avons vu qu’il était souvent difficile de fournir une forme
explicite de la probabilité de ruine.

Une idée consiste à en donner un majorant. Introduisons le coef.
d’ajustement, noté R, solution de l’équation d’ajustement

1 +
c
λ

r = E(erX1) = MX1(r).

Cette équation en r admet une solution non nulle car la droite
d’équation 1 + (c/λ) r a une pente plus grande que la dérivée en 0
de MX1(r) d’après la condition de profit net, et MX1 est convexe.
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Exemple
Supposons que X1 ∼ Exp(α), alors R vérifie

1 +
c
λ

R =
α

α − R
.

Ainsi,
λ

c
= α − R

Donc

R = α −
λ

c
= α −

1
µ(1 + ρ)

= α

(
1 −

1
1 + ρ

)
=

ρα

1 + ρ
.
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Theorem
Dans un modèle de Lundberg avec des fonds propres initiaux u, la
probabilité de ruine est majorée par

ψ(u) ≤ e−Ru.

Plus précisément, on a

ψ(u) =
e−Ru

E[e−R U(τu) | τu < ∞]
.

Preuve.
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Proposition
La probabilité de ruine est asymptotiquement de la forme

ψ(u) ∼ C e−Ru,

avec

C =

[
R
ρµ

∫ ∞

0
xeRx F̄X (x) dx

]−1

.

De plus la limite asymptotique de la densité de l’intensité de la ruine
est

R
ρµ

∫ ∞

0
eRx F̄X (y + x) dx

Preuve.
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Ordre stochastique et probabilité de ruine

Proposition
Considérons deux processus de risque Poisson-composée avec

→ un paramètre de Poisson identique,

→ des distributions des sinistres X et Y tels que E[X ] = E[Y ],

→ des proba. de ruine ψX (u) et ψY (u),

→ des taux de prime instantanés identiques.

Alors

X ≤SD2 Y ⇒ ψX (u) ≤ ψY (u),

X ≤SD2 Y ⇒ RX ≥ RY .
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Preuve.
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Impact de la réassurance prop. sur la proba. de ruine

Le modèle de Lundberg ne met en jeu qu’un seul type de risque.
La quote-part ou l’excédent de plein apporte ici la même
couverture, à savoir un taux de rétention de l’assureur valant α.

Soit γ le taux de commission. Voici la nv équation d’ajustement :

1 +
(α + γ(1 − α)) c

λ
Rr = E[eRrαX1 ] = MX1(αRr).

→ Si γ = 0, le nouveau coefficient d’ajustement vaut Rr = R
α ;

→ Si γ > 0, le nouveau coefficient d’ajustement satisfait Rr >
R
α .

ψ(u)↘ exponentiellement avec l’inverse du taux de rétention.
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Impact de la réassurance non-proportionnelle sur R

Soit un contrat en excédent de sinistre avec priorité P et portée
illimitée. Pour chaque sinistre, l’assureur conserve min(Xi ,P).
Soit q(P) le taux de prime du contrat EoL.

Le coefficient d’ajustement est la solution strictement positive de

1 +
(1 − q(P)) c

λ
Rr =

∫ P

0
eRr xdFX (x) + eRr P(1 − FX (P)).

En général, il n’existe pas de solution explicite.

Rq: si le réassureur utilise le même principe de prime que
l’assureur, on montre que Rr > R.
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Distributions à queue épaisse et assurance

Soit un portefeuille d’assurance de n risques (n déterministe)

→ chaque risque i est de loi Si ∼ Pareto(α, 1), avec α > 1;

→ chaque risque a une espérance finie donnée par (α − 1)−1.

On cherche la valeur de la prime pure par la moyenne empirique

µ̂n =
1
n

n∑
i=1

Si

Cet estimateur est naturellement sans biais et CV (LGN) vers

E[Si] = (α − 1)−1.
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Supposons savoir que Smax
n = max1≤i≤n Si est < M (constante).

Question: quelle est alors l’espérance de la moyenne empirique?

E[µ̂n |Smax
n ≤ M] =

=

=

L’erreur relative est donnée par

E[µ̂n |Smax
n ≤ M] − (α − 1)−1

(α − 1)−1
= −α

(1 + M)−(α−1) − (1 + M)−α

1 − (1 + M)−α
.

308 / 354



Choisissons M tel que

P(Smax
n ≤ M) = p = (P(S1 ≤ M))n = (1 − (1 + M)−α)n, p ∈]0, 1[,

et exprimons l’erreur relative à l’aide de p:

E[µ̂n |Smax
n ≤ M] − (α − 1)−1

(α − 1)−1
= −α

(1 − p1/n)−(α−1)/α − (1 − p1/n)

p1/n
.

A titre d’illustration, le tableau suivant donne les erreurs relatives
pour p = 0, 99 et n = 1000:

α 1,05 1,1 1,15 1,2 1,25 1,3 1,4 1,5
Erreur -60,7% -38,6% -25,6% -17,6% -12,5% -9,1% -5,2% -3,2%
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Quelques remarques:

→ en assurance incendie, on a souvent 1 < α < 1, 5;

→ n = 1000⇒ la LGN peut s’appliquer;

→ p = 0, 99: tient compte des grandes valeurs de l’échantillon

Mais

si α = 1, 25 (queue épaisse): la prime pure calculée
sous-estime de plus de 12% en moyenne la valeur théorique
dans 99% des cas;
c’est une erreur importante;
attention donc aux procédures usuelles d’estimation des
primes: elles doivent être corrigées...

310 / 354



Réassurance et distributions “dangereuses”

Une autre manière de considérer la dangerosité d’une distribution
consiste à regarder l’espérance résiduelle.

Exemple: un assureur réassure un risque S par un EoL de priorité
M et de portée illimitée. Sa prime pure de réassurance vaut

Πr(M) = E[(S−M)+] = E[(S−M)1{S>M}] = P(S > M)E[S−M |S > M]

→ la proba. de toucher le traité (fréq. d’occurence): P(S > M)

→ le montant moyen résiduel du sinistre une fois le traité
déclenché: e(M) = E[S −M |S > M].
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A fréquence d’occurence fixée, on peut donc avoir des charges
sinistres très différentes selon le comportement de e(M) lorsque
M devient très grand.

Ceci dépend de la distribution de S...

→ S ∼ Exp(λ):

P(S > s) = exp(−λ s) e(M) =
1
λ

→ S ∼ Gamma(α, β):

P(S > s) =

∫ ∞

s
βα xα−1 e−β x

Γ(α)
dx e(M) '

1
β
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→ S ∼ Weibull(τ, 1):

P(S > s) = exp(−xτ) e(M) = M1−τ

→ S ∼ Pareto(α, 1):

P(S > s) =

(
1

1 + x

)α
e(M) =

M + 1
α − 1

Ainsi, la fonction d’espérance résiduelle tend vers l’infini pour des
distributions à queue épaisse...

Autrement dit, leur queue de distribution décroît moins vite que
celle de l’exponentielle! L’assureur doit être très attentif lorsqu’il
couvre ce type de risque (cat. nat., incendie, risques industriels)...
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Formellement on a:

Definition
Une distribution F a une queue épaisse si elle n’admet aucun
moment exponentiel, i.e. ∀ε > 0:

lim
x→∞

eε x F̄(x) = ∞.

En particulier, si X a une distribution à queue épaisse, alors

MX (t) = E[etX ] = ∞ ∀t > 0.
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Caractérisation probabiliste des queues à variations
régulières

Definition
(a) Une fonction L positive, mesurable sur (0,∞), est à variations
lentes en ∞ (noté L ∈ R0) si

lim
x→∞

L(tx)

L(x)
= 1, t > 0.

(b) Une fonction H positive, mesurable sur (0,∞), est à
variations régulières en ∞ d’indice α ∈ R (et noté H ∈ Rα) si

lim
x→∞

H(tx)

H(x)
= tα, t > 0.
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Rq:

→ si H ∈ Rα, alors H peut tjs s’écrire comme

H(x) = xα L(x).

→ les distributions avec queues à variations régulières sont une
généralisation de la loi de Pareto.

Ex. de fonctions à variations lentes: (ln(1 + x))α, ln(ln(1 + x)).

Contre exemple: la fonction 2 + sin(x) !

Présentons maintenant un résultat important sur la convolution
des distributions avec des queues à variations régulières:
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Proposition

(a) Si F1 et F2 sont 2 distributions positives t.q. F̄i(x) = x−αLi(x)
pour α > 0 et Li ∈ R0(i = 1, 2), alors la convolution G = F1 ∗ F2 a
une queue de distribution à variations régulières t.q.

Ḡ(x) ∼ x−α(L1(x) + L2(x)), x → ∞.

(b) Si F̄(x) = x−αL(x) pour α > 0 et L ∈ R0, alors ∀n ≥ 1:

F̄∗n(x) ∼ n F̄(x), x → ∞.

(c) Soit Mn = max(X1, ...,Xn) et Sn = X1 + ... + Xn. Si
F̄(x) = x−αL(x) pour α > 0 et L ∈ R0, alors

P(Sn > x) ∼ P(Mn > x), x → ∞.

318 / 354



Preuve. (a) Cherchons un équivalent de Ḡ(x) = P(X1 + X2 > x).

i) {X1 > x} ∪ {X2 > x} ⊂ {X1 + X2 > x}, donc

P(X1 > x) + P(X2 > x) − P(X1 > x)P(X2 > x) ≤ P(X1 + X2 > x)

(F̄1(x) + F̄2(x)) (1 + o(1)) ≤ P(X1 + X2 > x)

puisque P(X1 > x)P(X2 > x) = o(P(Xi > x)), i = 1, 2. On déduit
que

1 ≤ lim inf
x→∞

Ḡ(x)

F̄1(x) + F̄2(x)
.

ii)
{X1+X2 > x} ⊂ {X1 > (1−δ)x}∪{X2 > (1−δ)x}∪{X1 > δ x,X2 > δ x}
avec 0 < δ < 1 (faire un graphique), donc
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P(X1+X2 > x) ≤ P(X1 > (1−δ)x)+P(X2 > (1−δ)x)+P(X1 > δ x)P(X2 > δ x)

et

lim sup
x→∞

Ḡ(x)

F̄1(x) + F̄2(x)
≤ (1 − δ)−α lim sup

x→∞

L1((1 − δ)x) + L2((1 − δ)x)

L1(x) + L2(x)

= (1 − δ)−α → 1 lorsque δ→ 0.

On a utilisé la propriété selon laquelle une somme de fonctions à
variations lentes est une fonction à variations lentes.

(b) D’après (a),

F̄∗n(x) ∼ (L1(x) + ... + Ln(x)) x−α = n L(x) x−α = n F̄(x).
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(c) Remarquons enfin que

P(Mn ≤ x) = P(X1 ≤ x, ...,Xn ≤ x) = Fn(x)

P(Mn > x) = 1 − Fn(x) = 1 − (1 − F̄(x))n

= 1 −
n∑

k=0

Ck
n (−1)k (F̄(x))k

= 1 − 1 + n F̄(x) −
n∑

k=2

Ck
n (−1)k (F̄(x))k

= n F̄(x) (1 + o(1)). �
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Probabilité de ruine et distributions à variations lentes
ou régulières

Le théorème de Karamata stipule qu’une fonction à variations
lentes peut être considérée comme une cste pour l’intégration (et
parfois pour la dérivation).

Theorem
Soient L ∈ R0 et α > 1. Alors

Z(x) =

∫ ∞

x
t−α L(t) dt ∼ (α − 1)−1 x−α+1 L(x).

Preuve partielle.
Nous montrons uniquement que xα−1Z(x) est une fonction à
variations lentes.
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Soient x > 0, ε > 0, ∃η tel que ∀y ≥ η,

(1 − ε) L(y) ≤ L(xy) ≤ (1 + ε) L(y)

De plus,

(yx)α−1Z(yx) = yα−1
∫ ∞

xy

( t
x

)−α
L(t)

dt
x

= yα−1
∫ ∞

y
t−α L(tx) dt .

Pour tout y ≥ η:

(1 − ε)yα−1Z(y) = (1 − ε)yα−1
∫ ∞

y
t−α L(t) dt

≤ yα−1
∫ ∞

y
t−α L(tx) dt = (yx)α−1 Z(yx)

≤ (1 + ε)yα−1
∫ ∞

y
t−α L(t) dt = (1 + ε)yα−1Z(y).

Autrement dit, yα−1Z(y) est à variations régulières. �
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Rappel: dans le modèle de Cramer-Lundberg, la probabilité de
ruine a la forme suivante

ψ(u) =
ρ

1 + ρ

∞∑
m=1

(
1

1 + ρ

)m

F̄∗mL1
(u),

avec F̄L1(x) = 1
µ

∫ +∞

x (1 − FX (u)) du.

Sous la condition F̄X ∈ R−α pour un α > 1, nous conjecturons que

ψ(u)

F̄L1 (u)
=

ρ

1 + ρ

∞∑
m=1

(
1

1 + ρ

)m F̄∗mL1
(u)

F̄L1 (u)
→

ρ

1 + ρ

∞∑
m=1

(
1

1 + ρ

)m

m = ρ−1.
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Attention toutefois à l’intervention des limites!

→ Une condition d’uniformité est nécessaire pour utiliser le
théorème de CV dominée...

D’après le théorème de Karamata, nous avons alors

F̄L1(x) ∼
(α − 1)−1

µ
x−α+1 L(x) et ψ(u) ∼

(α − 1)−1

ρ µ
u−α+1 L(u).

Remarque: ce résultat est très , du précédent où la vitesse de
décroissance était exponentielle (ψ(u) ∼ Ce−Ru).
Les proba. de ruine sont donc bc plus importantes lorsque u
devient grand.
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Les distributions sous-exponentielles

Definition
Une distribution F de support (0,∞) est sous-exponentielle, si
pour tout n ≥ 2:

lim
x→∞

F̄∗n(x)

F̄(x)
= n.

L’ensemble des fonctions de distribution sous-exponentielle sera
noté S.

N.B.: toutes les distributions à variations régulières sont
sous-exponentielles.
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→ si F ∈ S, alors

P(Sn > x) ∼ P(Mn > x) ∼ P(∃i tel que Xi > x).

Interprétation: les grandes valeurs de la somme de variables
sous-exponentielles proviennent du max. de ces variables. La
plus grande valeur donne quasiment sa valeur à la somme:
un unique sinistre peut couler la compagnie d’assurance.

→ comme lim inf
x→∞

F̄∗n(x)

F̄(x)
≥ n, il est suffisant de montrer que

lim sup
x→∞

F̄∗n(x)

F̄(x)
≤ n.

En réalité, on peut établir que si la condition est vérifiée pour
n = 2, elle l’est pour tout n.
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Contre-exemple:

une distribution qui n’est pas sous-exponentielle peut par exemple
être la loi exponentielle.

En effet notons Sn = X1 + ... + Xn, et supposons que les
Xi ∼ Exp(β).

Ainsi, Sn ∼ Gamma(n, β). D’après la règle de l’Hospital,

P(Sn > x)

P(Xi > x)
∼
βnxn−1e−β x

Γ(n)βe−β x ∼
βn−1

(n − 1)!
xn−1 → ∞.

Donc tous les éléments de la somme participent aux grandes
valeurs!
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Propriétés des distributions sous-exponentielles

Proposition
(a) Si F ∈ S, alors uniformément pour tout y appartenant à un
compact C de (0,∞):

lim
x→∞

F̄(x − y)

F̄(x)
= 1 (∗)

(b) Si (∗) est vérifiée, alors ∀ε > 0, lim
x→∞

eεx F̄(x) = ∞.

(c) Si F ∈ S, alors, soit ε > 0 fixé, ∃ une constante K telle que
∀n ≥ 2 et x ≥ 0,

F̄∗n(x)

F̄(x)
≤ K(1 + ε)n.
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Preuve.

(a) Rappelons que P(X1 + X2 ≤ x) =
∫ x

0 P(X1 ≤ x − t) f(t) dt .

Soient x ≥ y ≥ 0,

F̄∗2(x)

F̄(x)
= 1 +

F(x) − F∗2(x)

F̄(x)
= 1 +

∫ x

0

1 − F(x − t)

F̄(x)
f(t) dt

= 1 +

∫ x

0

F̄(x − t)

F̄(x)
f(t) dt

= 1 +

∫ y

0

F̄(x − t)

F̄(x)
f(t) dt +

∫ x

y

F̄(x − t)

F̄(x)
f(t) dt

≥ 1 + F(y) +
F̄(x − y)

F̄(x)
(F(x) − F(y)).

Donc 1 ≤ F̄(x−y)

F̄(x)
≤

(
F̄∗2(x)

F̄(x)
− 1 − F(y)

)
(F(x) − F(y))−1.
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On conclut en remarquant que

lim
x→∞

(
F̄∗2(x)

F̄(x)
− 1 − F(y)

)
(F(x) − F(y))−1 =

(1 − F(y))

(1 − F(y))
= 1.

(b) D’après (a), F̄o ln ∈ R0, ce qui implique que

lim
x→∞

xε F̄(ln x) = ∞.

(c) Soit αn = supx≥0
F̄∗n(x)

F̄(x)
, et T < ∞.

F̄∗(n+1)(x)

F̄(x)
= 1 +

∫ x

0

F̄∗n(x − y)

F̄(x)
dF(y).
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et donc

αn+1 ≤ 1 + sup
0≤x≤T

∫ x

0

F̄∗n(x − y)

F̄(x)
dF(y) + sup

x≥T

∫ x

0

F̄∗n(x − y)

F̄(x)
dF(y)

Posons A(T) = sup
0≤x≤T

∫ x
0

F̄∗n(x−y)

F̄(x)
dF(y) ≤ 1

F̄(T)
.

Par CV dominée, on a pour T suffisament grand:

sup
x≥T

∫ x

0

F̄∗n(x − y)

F̄(x − y)

F̄(x − y)

F̄(x)
dF(y) ≤ αn sup

x≥T

∫ x

0

F̄(x − y)

F̄(x)
dF(y) ≤ αn(1+ε).
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Enfin, puisque α1 = 1,

αn+1 ≤ 1 + A(T) + αn(1 + ε)

≤ (1 + A(T)) + (1 + ε)
(
(1 + A(T)) + αn−1(1 + ε)

)
≤ (1 + A(T))

n∑
i=0

(1 + ε)i + (1 + ε)n

≤ (1 + ε)n (1 + A(T))

 n∑
i=0

(1 + ε)−i

 + (1 + ε)n

≤ (1 + ε)n (1 + A(T))

(
1 +

1
1 − (1 + ε)−1

)
≤ K (1 + ε)n.
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Calcul de probabilité de ruine des distributions
sous-exponentielles

Soit le montant agrégé des sinistres jusqu’à l’instant t donné par

S(t) =

N(t)∑
n=1

Xn.

On s’intéresse à la proba (avec pt (n) = P(N(t) = n))

P(S(t) < x) = Gt (x) =
∞∑

n=0

pt (n)F∗n(x) x ≥ 0.

Rq: dans Cramer-Lundberg, N(t) ∼ P(λt)⇒ pt (n) = (λt)n e−λt

n!

334 / 354



Nous formulons maintenant un résultat sur le montant agrégé des
sinistres dans le cas sous-exponentiel:

Theorem
Supposons que F ∈ S, fixons t > 0, et faisons l’hypothèse que
(pt (n)) satisfait

∞∑
n=0

(1 + ε)npt (n) < ∞.

Alors Gt ∈ S et

Ḡt (x) ∼ E[N(t)] F̄(x), x → ∞.

Rq:
∑∞

n=0(1 + ε)npt (n) < ∞ équivaut à
∑∞

n=0 pt (n)ens analytique
au voisinage de 0, ou encore N(t) admet une f.g.m. autour de 0.
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Preuve.

Soit ε > 0 tel que
∑∞

n=1(1 + ε)npt (n) < ∞.

F ∈ S, donc il existe K tel que F̄∗n(x)

F̄(x)
< K (1 + ε)n.

On peut ainsi écrire que

Ḡt (x)

F̄(x)
=

∞∑
n=1

pt (n)
F̄∗n(x)

F̄(x)
≤ K

∞∑
n=1

pt (n)(1 + ε)n < ∞.

Grâce au théorème de CV dominée, on peut intervertir les limites,
et on obtient

lim
x→∞

Ḡt (x)

F̄(x)
=

∞∑
n=1

n pt (n) = E[N(t)]. �
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Exemples:

→ le modèle du processus de Poisson (E[N(t)] = Var(N(t)));

→ le modèle du processus Binomial négatif: c’est un processus
d’arrivée des sinistres qui vérifie ∀t :

pt (n) =
Γ(γ + n)

Γ(γ) n!

(
β

β + t

)γ (
t

β + t

)n

n ∈ N, β, γ > 0.

⇒ E[N(t)] =
γt
β

Var(N(t)) =
γt
β

(1 +
t
β

)

En posant q = β
β+t , p = t

β+t , et utilisant la formule de Stirling

Γ(x + 1) ∼
√

2πx(x/e)x ,

on obtient finalement pt (n) ∼ nγ−1pn qγ

Γ(γ)
.
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Interprétation du théorème: la distribution de la somme agrégée a
la même queue que celle des sinistres. Dans le cas où les
distributions ne sont pas sous-exponentielles, la forme de la queue
de distribution dépend à la fois de celle de N(t) et de celle des Xi .

Modélisation de ce dernier processus: le voir comme un
processus de Poisson mélangé.

Supposons que Θ ∼ Gamma(γ, β).
Considérons le processus de Poisson conditionnel à Θ, de
paramètre λ.

Alors le modèle marginal est un processus Binomial négatif.

[Cela revient à effectuer un changement de temps aléatoire.]
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On retrouve ensuite la proba. de ruine grâce à la convolée de
Beeckman:

ψ(u) =
ρ

1 + ρ

∞∑
n=1

(
1

1 + ρ

)n

F̄∗nL1
(u).

D’après le th. précédent, si L1 ∈ S alors pour des FP initiaux u
grands, on a:

ψ(u) ∼
ρ

1 + ρ

∞∑
n=1

n
(

1
1 + ρ

)n

F̄L1(u) = ρ−1F̄L1(u) =
1
ρµ

∫ ∞

u
F̄(x) dx.

Résultat radicalement , des distributions non sous-exponentielles
puisque l’on avait alors que ψ(u) ∼ Ce−Ru. Les probabilités
asymptotiques de ruine ont des vitesses de décroissance vers 0
bc plus lentes!
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On a même un théorème de Cramer-Lundberg pour des sinistres à
queue épaisse:

Theorem
Considérons le modèle de Cramer-Lundberg avec la condition
de profit net vérifiée.
Alors les assertions suivantes sont équivalentes:
(i) FL1 ∈ S,
(ii) L ∈ S,
(iii) lim

u→∞

ψ(u)

F̄L1 (u)
= ρ−1.

Naturellement, ce théorème induit des questions intuitives...
1 Si FX ∈ S, alors a-t-on FL1 ∈ S ?
2 Réciproquement, si FL1 ∈ S, alors a-t-on FX ∈ S ?
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Réponses: si F̄X varie régulièrement, alors oui d’après le th. de
Karamata. Voici d’autres cond. suffisantes pour la 1ère question.

Proposition

Soit le taux de hasard de X, noté h(x) et tel que h(x) =
fX (x)

F̄X (x)
.

Soit la fonction de hasard associée H(x) = − ln F̄X (x).

Si l’une des conditions suivantes est vérifiée:

(i) lim sup
x→∞

xh(x) < ∞,

(ii) lim
x→∞

h(x) = 0, lim
x→∞

xh(x) = ∞, et lim sup
x→∞

xh(x)
H(x)

< 1,

(iii) E[X ] = µ < ∞ et lim sup
x→∞

F̄X (x/2)

F̄X (x)
< ∞,

Alors
FL1 ∈ S.
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6 Théorie de la ruine
Le modèle de Lundberg
La probabilité de ruine
Probabilité de ruine et distributions à queue fine
Distributions à queue épaisse
Etude du phénomène de ruine
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Quand et comment arrive la ruine?

Les questions d’intérêt de cette dernière partie sont les suivantes:

→ quelle est la taille du sinistre qui conduit à la ruine?

→ quelle est la distribution asymptotique du temps de ruine?

→ quelle est l’allure de la trajectoire du processus des réserves
juste avant la ruine?

On étudie ces questions suivant que les sinistres aient ou non des
distributions à queue épaisse...
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Rappel: la probabilité de ruine est donnée par ψ(u) = P(L > u),

avec L = sup
t≥0

(S(t) − ct) = sup
t≥0

R(t).

On écrit R(t) de façon discrétisée:

sup
t≥0

R(t) = sup
n≥0

Rn où Rn =
n∑

k=1

Zk ,

avec Zk = Xk − cYk et E[R(t)] = (1 + ρ)λE[X ] − ct .

Si X admet une f.g.m., le coef. d’ajustement R vérifie

1 +
c
λ

R = MX (R) = E[eRX ].
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De plus,

MZ (R) = E[eRZ ] =

∫ ∞

−∞

eRy dFZ (y) = E[eR(X−cY)]

= E[eRX ]E[e−cRY ] = MX (R)
λ

λ + cR
=

MX (R)

1 + c
λR

= 1.

On peut alors définir la transformée d’Esscher de Z , notée Z̃ , dont
la f.d.r. vaut

G(x) =

∫ x
−∞

eRy dFZ (y)

MZ (R)
=

∫ x

−∞

eRy dFZ (y),

avec pour espérance

E[Z̃ ] =

∫ ∞

−∞

x dG(x) =

∫ ∞

−∞

xeRx dFZ (x) = M
′

Z (R) > 0.
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1er cas: X admet une f.g.m. au voisinage de 0.

Soit la distribution (f.d.r.) empirique des Zk :

Hn(x) =
1
n

n∑
k=1

1{Zk≤x}.

On sait d’après le théorème de Glivenko-Cantelli que

sup
x∈R

∣∣∣Hn(x) − FZ (x)
∣∣∣ →

n−→∞
0 p.s.

τu est l’instant de ruine et on note P(u) la proba. conditionnelle à
l’événement τu < ∞.

On sait que si u → ∞ alors τu → ∞ p.s.
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Enfin on a la propriété suivante:

sup
x∈R

∣∣∣HN(τu)(x) − G(x)
∣∣∣ −→

u→∞
0 P(u) − proba.

Interprétation:

→ au moment de la ruine, les v.a. Zk “changent” de loi et se
transforment en Z̃k ;

→ on passe
d’une marche aléatoire avec tendance négative...
à une marche aléatoire avec tendance positive lorsque l’on
regarde ce qui s’est passé jusqu’à la ruine.

→ plus précisément, on a le résultat suivant:
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Theorem
Lorsque u → ∞,

(a) sup
t∈]0,1[

∣∣∣∣R(t τu)
τu
− λt E[Z̃ ]

∣∣∣∣→ 0 P(u) − proba.

(b)
τu −

u
E[Z̃]

K
√

u
→ N , P(u) − distribution

où N a une distribution N(0, 1), et K est une constante.

(c)
(
R(τu) − u, R(τu) − R(τ−u )

)
→ Q, P(u) − distribution

où Q a une distribution non-dégénérée.
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Remarques:

→ R(τu) − u mesure l’importance du défaut;

→ R(τu) − R(τ−u ) est la taille du sinistre qui provoque le défaut
(de loi , de FX );

→ lim
t→∞

R(t)
t = −c + λu = λE[Z ] < 0 : Rn est une marche

aléatoire avec tendance négative.

→ Aux alentours de l’instant de défaut τu, Rn se comporte
comme si la distribution des incréments de la marche
aléatoire changeait de FZ à G;

→ il y a un changement de la tendance (devient > 0) dû à une
accumulation de sinistres qui causent la ruine.
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2ème cas: distributions sous-exponentielles. Dans ce cas,

sup
x∈R

∣∣∣HN(τu)(x) − FZ (x)
∣∣∣ −→

u→∞
0 P(u) − proba.

Theorem
Lorsque u → ∞,

(a) sup
t∈]0,1[

∣∣∣∣R(t τu)
τu
− λt E[Z ]

∣∣∣∣→ 0 P(u) − proba.

(b) −λE[Z ] τu
e(u)
→ Zξ, P(u) − distribution

(c)

(
R(τu)−u, R(τu)−R(τ−u )−u

)
e(u)

→ T , P(u) − distribution

oùZxi , T non-dégénérées, et e(u) = E[X − u |X > u] =
∫ ∞

u
F̄(x)

F̄(u)
dx.
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Interprétations et remarques :

→ le comportement d’une trajectoire de Rn juste avant la ruine
apparait normale: elle ressemble à n’importe quelle autre
trajectoire;

→ la ruine est causée par un unique sinistre;

→ il est tellement grand qu’on doit diviser par l’espérance
résiduelle pour obtenir une loi asymptotique de l’excès du
processus de risque par rapport à u;

→ τu converge à la vitesse e(u), qui est inférieure ou égale à u.
Le défaut a donc tendance à arriver plus vite que dans le
premier cas !
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ANNEXES
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Théorème de convergence monotone

Soit (E,A, µ) un espace mesuré.

Pour toute suite croissante (fn) de fonctions mesurables sur E et à
valeurs dans [0,+∞[, la limite simple de la suite est mesurable et

lim
(∫

fn dµ
)

=

∫
(lim fn) dµ.

Corollaire: si les intégrales
∫

fn dµ sont toutes majorées par un
même réel, alors la fonction lim fn est intégrable (donc finie p.p.), et

on peut exprimer le résultat en disant que fn
L1

−→ f .
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Théorème de convergence dominée

Soit (E,A, µ) un espace mesuré.

Si (fn) une suite de fonctions mesurables sur E et à valeurs réelles
ou complexes, telle que

→ (fn)n∈N → f sur E;

→ ∃ une fn. g, intégrable t.q. ∀n ∈ N, ∀x ∈ E,
∣∣∣fn(x)

∣∣∣ ≤ g(x);

Alors

f intégrable, et lim
n→∞

∫
E
|fn − f | dµ = 0.

Ceci entraîne: lim
n→∞

∫
E fn dµ =

∫
E lim

n→∞
fn dµ =

∫
E f dµ.
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