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@ Introduction
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Une police d’assurance est un contrat entre deux parties :
— [l'assuré, détenteur du contrat;
— lassureur, pourvoyeur du contrat.

En échange de la couverture d’un risque par I'assureur, 'assuré
verse une prime d’assurance.

En cas de sinistre, le bénéficiaire du contrat recoit le montant
contractuel prévu en cas de survenance du sinistre.

Ainsi le risque économique initialement supporté par I'assuré est
transféré vers I'assureur.
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La mutualisation induite par la souscription de nombreux contrats
au sein d’'une compagnie d’assurance permet I'utilisation grossiére
de la loi des grands nombres.

En effet,

— un portefeuille d’assurance couvre un risque en particulier:
les pertes sont considérées étre de méme loi de probabilité;

— les contrats sont a priori indépendants les uns des autres.

Ces propriétés doivent permettre a I'assureur de prédire avec une
précision relative les pertes encourues pour une période donnée.



Soit un portefeuille d’assurance contenant n polices. Notons la loi
du i°™M® sinistre S; (perte), et la loi des pertes agrégées S.

La LFGN stipule la CV presque slre de la moyenne empirique de

pertes i.i.d., notée S, = %Z?ﬁ Si, vers I'espérance de la loi:

8n = B[S] = p.

Ou encore: P(nlim Sh= ,u) =1.

Ce résultat est a I'origine du principe général de tarification: la
prime vaut au moins u, aussi appelée prime pure du contrat.
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En pratique I'assureur applique des chargements a cette prime,
car mathématiquement sa ruine est certaine a horizon infini dés
lors que la tarification respecte le strict principe d’équivalence.

La prime d’assurance se décompose donc en plusieurs parties:
— la prime pure;
— les chargements techniques (ou marge de risque MR):

M(S) = E[S] + MR(S);

— les codts:
@ acquisition,
e administration et gestion du contrat,
e rémunération d’intermédiaires (courtiers, ...).

8/354



La stratégie de la compagnie peut également jouer sur la hauteur
de ces chargements.

Objectif de I’'assureur:

bien choisir son principe de prime pour la tarification.

Cela lui permettra de déterminer

— la loi de probabilité de son résultat futur,
— sa probabilité de ruine.
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e Quelques distributions classiques en assurance
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Introduction

Nous donnons dans cette partie les principales lois utilisées en

mathématique de I'assurance.

Distribution de fréquence

Lois de sévérité

Loi de Poisson

Loi Gamma

Loi binomiale

Loi de Weibull

Loi binomiale négative

Loi de Pareto

Loi géométrique

Loi lognormale

Le but est d’en présenter les principales caractéristiques.
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e Quelques distributions classiques en assurance
@ Distribution de fréquence de sinistre
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Distribution de Poisson

La fonction de masse de la loi de Poisson $(1) s’écrit pour une
v.a. N prenant ses valeurs dans I'ensemble des entiers positifs:

PIN=n)=e"— A>0.

Les deux premiers moments de cette loi sont donnés par

E[N] = A Var(N) = 2 Mn(t) = e'(e' - 1)

Rq: équidispersion. A est le taux de sinistralité par unité de temps
de couverture du risque.
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Preuve.
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Proposition

La famille des v.a.r. Poisson composées est fermée sous

convolution.

Soient Sy, ...,

Sy des Poisson composées indépendantes de

paramétres A; et de f.d.r. des sinistres F; (pouri = 1,...,n); alors
S = Sy + ...+ S, est une Poisson composée de parameétres

A=y et Fx)=) %Fj(x).
= '

j=1

Preuve. Les f.g.m. des S; valent Mg (t) = e (M-,

Donc

Ms(t) = el(Zi= Fmn-1) _ o (s L my(1)-1)

’

distribution Poisson composée des paramétres évoqués en sus.
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Loi Binomiale: expériences de Bernouilli répétées

Elle est a valeurs dans {0, ..., n}. La fonction de masse de la loi

Binomiale B(n, p) s’écrit pour une v.a. N:

B(N = k) = Ckp* (1 -p)"™*

p €[0,1].

Les deux premiers moments de cette loi sont donnés par

E[N] = np Var(N) = np (1 -p)

Les réalisations d’'une binomiale sont sous-dispersées

(E[N] > Var(N)).
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Cas de surdispersion: la loi binomiale négative

Elle peut étre construite comme un mélange de lois de Poisson:
(NIN=2) ~P(1) et A ~ Ga(a, o).

La densité jointe de N (discret) et A (cont.) vaut (4, @,6 > 0,k € N)
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Remarques:

— La queue de distribution est plus épaisse que celle d’'une loi
de Poisson.

— Sa variance est plus grande qu’une loi de Poisson: loi utilisée
en cas de surdispersion des observations.
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E[N]

E[E[N|A]] = E[A] = %

Var(N) = Var(E[N|A]) +E[Var(N|\)] =

Mn(t) = ZP(N _ n)etn _ Z Ma+ n)pa(qet)”
—0 :
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La loi géométrique

La distribution géométrique se caractérise par

P(N = k) = g“(1 - q) 0<g< 1.

La f.g.m. est égale a

(o) (o)

Mu(t) = 3 BN = n)e" = (1-6) ) (ge')" =

=1 T
n=0 n=0 1 ae

On peut facilement déduire de cette expression les deux premiers
moments.
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Le modeéle de comptage Zero-Inflated (ZIP)

On utilise ce modéle mélange lorsque I'on étudie des contrats qui
couvrent un risque dont la survenance est plutét rare...
C’est typiquement le cas par exemple lorsque I'assureur opére sur

@ le marché des catastrophes naturelles,
@ le marché du luxe (assurance contre le vol), ...

Les 0 observés viennent de la loi de comptage + masse en 0:

@ regroupés dans un dirac regroupant les deux “sources” de 0,

@ l'autre composante regoupe les obs. # 0 provenant de la loi
de comptage.

freroinfl(K) = fzero(0) Lik=0) + (1 = fzero(0)) feount (k)
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Les modeéles type “hurdle” (ex: Zero Truncated Poisson)

On l'utilise lorsque I'on étudie des données de sinistres dont une
grande proportion est nulle.

La # est que les 0 ne viennent plus du tout de la loi de comptage,
@ mais entierement d’'une composante spécifique,
@ alaquelle on ajoute une loi de comptage tronquée.

fzero(0) sik =0,

i K) = f (k) :
hurdle (k) (1 - fzero(0)) % sik > 0.
coun

7o sik =0,

Ex. Poisson: P(N=k) = Ak
( ) (1—7r0)eT sik > 0.
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Plus généralement, les mélanges finis

Lidée est de supposer le paramétre de la loi considérée comme
aléatoire: augmente ainsi la variabilité des observations de la loi.

De maniére tout a fait générale, la nouvelle densité pour une v.a. X
de densité f(x; ) s'écrit ainsi

(x: H) = f F(x: 0)dH(6),
ou H est la distribution a priori du paramétre.

Certains mélanges (Poisson-Gamma, Beta-Binomial...) sont plus
utilisés car ils ont de bonne propriétés (bayésienne...).

24/354



e Quelques distributions classiques en assurance

@ Distribution de sévérité (co(t) de sinistre
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La distribution Gamma

La loi Gamma Ga(«, 6) d’'un sinistre Y admet pour densité

5% ya 1 5y

fy(y) = r(a)

y > 0.

Les caractéristiques de cette loi sont les suivantes:

00 a—1
My(t) = f V5L e dy
0

M)
B 5 \¢ 00 ay(l 1 (6—t)y _( 5 )a/
- (6—t)fo( Ve Y =5
On en déduit: E[Y] = % Var(Y) = 2
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— sieeNalors(a) = (a—1)!;
— si Y1 ~ Ga(ay,9) et Yo ~ Ga(az, §) sont indépendantes, alors

Y1+ Y2 ~ Ga(aq + a2,6).

— sia =1 alors la distribution est exponentielle.

La vitesse de décroissance de la queue de distribution est un
élément central de la distribution de Y (ex: tarification d’EoL).

On distingue alors
— la vitesse exponentielle:  P(Y > y) = e~V

— la vitesse hyperbolique: P(Y > y) = (ﬁ)a
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La distribution de Weibull

Cette loi a 'avantage d’étre trés flexible. La densité de la loi de
Weibull, notée Wei(c,y), a la forme

fy(y) =cyy” " exp(-cy?) y>0,¢>0, y>0.

On peut aussi donner la f.d.r. qui vaut Fy(y) = 1 — exp(—cy?”).

D’autre part, la queue de distribution est de la forme exp(—cy?):
— vy = 1: décroissance de type exponentielle;
— vy < 1: décroissance + lente qu’exponentielle;
— 7y > 1: décroissance + rapide qu’exponentielle (gaussienne).
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Remarque: Vk €N, E[YX] souvent difficiles a calculer.

Dans la pratique,

— pour des modeles de sinistres, on prend souvent y < 1;

— les queues de distribution de Y sont
e plus épaisses que celles de la loi exponentielle,
e plus fines qu’avec la loi de Pareto;

— cette loi sert surtout en analyse de survie;

— les moments sont polynomiaux au lieu d’étre exponentiels.
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La distribution de Pareto

Nous décrivons ci-dessous la densité caractéristique de la loi de

Pareto, notée Pa(«, 1), pour une v.a.p. Y:

a/l(l

Y= @y

Il en découle que sa f.d.r. vaut  Fy(y) =

A

On a notamment  E[Y] = P Var(Y) =

Rq: le k’®™ moment de la distribution de Pareto existe © a > k.

a>0.
()
al?
(a-1)2(a-2)
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La distribution Lognormale

Supposons que X ~ N(u,?), alors Y = eX ~ LN (u, ?).

La densité de Y est donnée par

oty —py
fv(Y)—yWexp[ ( ) .

Ses premiers moments s’obtiennent a partir de la transformée de
Laplace de la gaussienne:

B[Y'] = E[e"] = "%
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La famille de distributions Tweedie

— Souvent utilisée en actuariat comme réponse d’'un GLM.
En I'écrivant sous forme exponentielle, la densité est donnée par

1
10610:6) = a(x.6) 030 3]x00) - (0.

u'P : (2P .

— sip#1 5— sip#2
oy=17° P ko) =12 P

log u sip=1 log u sip=2
Dans cette formalisation, E[X] = u et Var(X) = yuP = yE[X]P,
avec ¥ un parametre de dispersion > 0.

Lordre p € R™ (appelé paramétre d’indice), choisi (en fonction de
I'application) avant d’estimer u et ¢, définit le type de distribution:
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p < 0 : réalisations dans R; p = 0 : loi gaussienne,

0 < p < 1 : pas de distribution (pas de modéle Tweedie),

p =1 avec ¢ = 1 : loi de Poisson,

1 < p < 2: loi composée Poisson-Gamma (réalisations > 0),
p =2 : loi Gamma,

2 < p <3oup>3: positive stable distributions (x > 0),

A

p = 3 : loi inverse gaussienne.

En pratique, 1 < p < 2 trés utile lorsque I'on observe bc de 0 ds les
colts de sinistres, venant de la masse en 0 de la loi de comptage.
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© Modele individuel et modéle collectif en assurance
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© Modele individuel et modéle collectif en assurance
@ Les différentes approches
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Introduction

Objectif:

modéliser le montant agrégé des sinistres d’'un portefeuille de
polices d’assurance sur une période de temps fixée.

— C’est un sujet central des mathématiques de I'assurance car
la distribution de ce montant est rarement connue.

— Les méthodes numériques et les progrés de I'informatique
permettent alors souvent d’approximer cette distribution.
— On s’intéresse particulierement en queue de distribution.

Il existe # approches pour modéliser le colt d’un sinistre Y.
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Approche indemnitaire

Idée: colts dépendent de I'occurrence éventuelle d’un sinistre (au
plus un sinistre dans la période) et du montant qui en résulte.

b sil=1
y— s.|

0 sil=0
ou | ~ Bernouilli B(p) (occurrence du sinistre), et b déterministe.

— E[Y] =
— Var(Y) =

Exemple: co(t en sinistre d’un contrat d’assurance vie sur un an.
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Approche forfaitaire

Idée: Y est définie par 2 composantes. Une masse en 0, et une
composante continue pour le colt si un sinistre survient.

B sil=
Y — S.I =1,
0 sil=0
ou | ~ Bernouilli B(p) (occurrence du sinistre), et B 1L 1.
— E[Y] = , Var(Y)=

— Fy(y) =
— My(t) =

Exemple: le colt en sinistres pour le contrat santé i sur un an.
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Approche fréquence-séveérité: le + souvent en IARD

Idée: Y est fonction de 2 v.a., M et B;, respectivement le nombre
de sinistres et les montants associés.

0 siM=0

Y_{zj“; B siMs>0,

ou M est une v.a. discréte, M et B; sont 1L et les B; sont i.i.d.
— E[Y] = , Var(Y)=
— My(t) =
- Fy(y) =

Exemple: co(t pour le contrat d’assurance IARD j sur un an.
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Lien des approches avec modeles individuel / collectif

@ Le modéle individuel: le portefeuille est considéré comme un
groupe de risques individuels et hétérogénes.

Initialement apparu en assurance vie ou les probabilités de
déces et les capitaux sous risque sont # pour chaque individu;
@ Le modéle collectif: le portefeuille est considéré comme un

groupe de risques homogeénes.

L’élément majeur est le nombre aléatoire de sinistres N.
Ce modele apparait en 1903 dans la thése de Lundberg, le
précurseur de la théorie du risque en assurance.
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Les principales différences entre ces deux modeles sont

— modeéle individuel: un seul sinistre pour chaque police;

— modeéle collectif: montants des sinistres individuels sont i.i.d.

Nous verrons ici comment

— calculer les principales caractéristiques de la distribution
agrégée dans chacune des deux approches: moments,
fonction génératrice des moments (f.g.m.), distribution...

— approcher le modele individuel par le collectif;

— comprendre l'impact de la réassurance selon le modéle.
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© Modele individuel et modéle collectif en assurance

@ Le modeéle de risque individuel (MRI)

42/354



Le modeéle de risque individuel

Soit un portefeuille d’assurance de n polices.

On note dans la suite Y; le montant du sinistre de la jé™e police.

En général, cette v.a. Y; a une forte probabilite de prendre la
valeur 0 en assurance.

Le montant agrégé des sinistres du portefeuille est noté

S=Yi+Yo+..+Y,= Yj

n

j=1

43/354



Hypothéses du MRI

Lapplication du modeéle individuel requiert les hyp. suivantes:

— Y1, Yo, ..., Y, sont des v.a. indépendantes;

— le nombre de polices dans le portefeuille ne change pas au
cours de la période de couverture;

— les Y; peuvent avoir des distributions différentes;
— pour la j°™ police, le nombre N; de sinistre € {0; 1}:

P(N=1)=¢q et P(N=0)=1-g

Exemple
Le déces avec une probabilité annuelle qyx pour un assuré d’age x.
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Les premiers moments du montant agrégé S

Supposons que le montant du sinistre de la j*™ police est
déterministe, noté u; (capital déces), alors

Y; = ;.

On obtient ainsi

E[S] = > E[Y] =) qu.
j=1 j=1

Le fait que les risques soient indépendants permet d’écrire que

Var(S) = ) Var(Yj) = > qi(1 - g
j=1 j=1
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Généralisation: le montant B; du sinistre de la j°™e police est
stochastique et indépendant de N;:

Y, = BN,

Posons E[B)] = y; et Var(B;) = oj:

i) Méthode 1: grace a l'indépendance entre N; et B;,
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i) Méthode 2: grace au conditionnement et a I'indépendance,
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et
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FGM ou transformée de Laplace de S

La fonction génératrice des moments (ou transformée de Laplace)
d'une v.a. S est définie par

Ms(t) = E[e’s].
Permet de retrouver le moment d’ordre k!

Ici, on a donc

Ms(t) = E[e'S] = E[e' 2= YI] = E[e! 2= MBI = My, (1)...My, (1),

49/354



Or  My(t) = E[e"]=E[e™] = Ey [Ele™IN]]
= qE[e™MPIN; = 1]+ (1 - g))E[e'VPIN; = 0]
= qEle'®]+(1-q)
= 1+ qy(Mg(t) - 1)

et

My(t) = E[e™]
= P(Nj=1)xe"" +P(N;=0) x &°
= ge'+(1-q)=1+qg(e' - 1)

Donc on remarque que My;(t) = My,(In Mg,(t)). On a donc les
moments de S; quant a sa distribution, c’est plus compliqué...
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Approximation de la loi de S par une loi normale

Le montant agrégé S est une somme dont le nombre de termes
— est déterministe (n),

— est suffisamment grand pour envisager 'usage de résultats
asymptotiques.

Ceci nous améne a introduire le théoréme de Lindeberg.
— Généralisation du théoréme central-limite.
— Valable sous certaines conditions.
— Ce théoréme va nous permettre d’approximer la loi de S.
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Théoréme de Lindeberg (généralisation du TCL):

Theorem

Soient (Yx)k=1...n des v.a. indépendantes, de moyennes py et de
variances 2. Posons

Sh=Yi+ ..+ Yn, My = (1 + oo + o, sf=0%+..+03

Si ¥n >0,
n'fl,s_ Z E[Y§ L(vesnsn] = 0
Alors S

Sn
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Remarques:

— siles Yk sont de méme loi, alors m, = nu et s2 = no?, et par
convergence dominée

_ZE[Y ﬂlYkl>USn]: 1 SB[V Ly, vin| 72,0

n—oo
— siles Yk sont uniformément bornées (ex: binomiales) et si
lim infi>1 o2 > 0, alors la condition du théoréme est vérifiée.

. . . . 1 n
— siles Y sont des lois Gamma G(yk, c), et si Jmoﬁ Yhe1 Yk
existe, alors la condition est également vérifiée.
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Exemple: (cas de lois binomiales, car somme de Bernouilli).

Considérons un portefeuille de polices d’assurance décés avec

— 500 “jeunes” assurés de probabilité de déces dans I'année de
0,01 avec un capital déces de 100 000 euros;

— 80 “vieux” assurés de probabilité de décés dans I'année de
0,025 avec un capital décés de 160 000 euros.

Dans le modéle individuel, on aurait S = Y; + ... + Y, avec

P(Y; = 100000) = 0,01 pour1 < <500
P(Y; = 160000) = 0,025 pour 501 < j < 580.

D’ou E[S] =
et Var(S) =
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- Calibrons une loi avec les mémes moments que celle de S, i.e.
S ~ N(8,2x10% (3,15 x 10°)?),

et vérifions que P(S < 0) est petite avec cette approximation.

- Par exemple en utilisant le théoréme de Lindeberg,

P(S > 10°)

1

ou d est la f.d.r. de la loi normale centrée réduite.

D’autres techniques d’approximation peuvent étre utilisées a partir
des moments de S, que nous verrons plus loin.
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© Modele individuel et modéle collectif en assurance

@ Le modeéle de risque collectif (MRC)
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Lapproche modele collectif

Le modeéle collectif considére le montant total des sinistres d’'un
portefeuille composé de plusieurs polices homogenes.

Une police peut donner lieu a plusieurs sinistres.

Si les Y] sont les montants des sinistres individuels; et N est le

nombre total de sinistres pour tout le portefeuille;
Alors le montant agrégé S du portefeuille vaut

N
S=Yi+..+Yn=> Y,
=




Hypothéses et remarques sur le MRC

Lapplication du modéle collectif requiert les hyp. suivantes:

— les montants des sinistres Yy, Yo, ..., Yy sont des v.a. i.i.d.;
— le nombre de sinistres N est indépendant des Y;.

Remarques:

+ lindépendance entre les sinistres est contestable pour
certaines branches d’assurance dans lesquelles les sinistres
sont provoqués par un méme fait générateur (ex: tempétes);

+ I'hypothése “identiquement distribués” pour les sinistres peut
étre remise en cause sur de longues périodes (effet par
exemple des facteurs d’actualisation, de l'inflation...)
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+ on peut douter de I'indépendance entre nombre et montant
des sinistres.

Par exemple en assurance auto: la fréquence des sinistres en
zone rurale est faible, alors que la sévérité (colt) est plus
élevée (et inversement en zone urbaine). Il faut segmenter les
populations pour recomposer des classes homogénes.

+ les sinistres ont des distributions continues ou discrétes: dans
la réalité, elles sont continues; mais dans la pratique on les
considére parfois discrétes pour les approximer.

+ N est toujours une v.a. de comptage, donc discréte.

+ on considérera souvent que N n’est pas borné. Une hyp.
classique est de considérer que N ~ P(2).
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Les moments de la distribution agrégée S

La technique de calcul des moments de S est basée sur le
conditionnement par rapport au nombre de sinistres.

Rappelons que les Y; sont
— iid;
— de moyenne m;
— de variance o?

En utilisant la formule de 'espérance conditionnelle,

(E[S] = En[E[SINI]
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Calcul de la f.g.m. de S

Comme précédemment, on utilise I'espérance conditionnelle :

Ms(t) = E[e'| = En[Esn[e® IN]].

Pour N = n, on obtient

63/354



64/354



Distribution du montant agrégé S

Posons T, = Y7 + ... + Y,,. Par convention Ty = 0.
On note F}/ la ni®me convolée de la loi Fy telle que T, ~ F3.

Dans le modéle collectif, la f.d.r. de la distribution composée vaut

[Se]

Fs(s) =P(S<s)= > P(N=n)P(T,<s)= ZP n) F7(s).

n=0

Rappelons que si les Y; admettent une densité fy, les densités des
convolées s’obtiennent par récurrence:

S S
£7(s) = f fr(s—y) " () dy = f (s - y) fy(y) dy.
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En effet,

Parfois, on peut calculer cette fonction de répartition Fs. Sinon,

@ on peut calculer la f.g.m. que I'on inverse par des algorithmes
numériques (FFT);

@ on utilise des méthodes exactes pour déterminer Fs;

© enfin, on a recours a des techniques d’approximation
(Normal, Gamma translatée, ...).
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Les méthodes exactes

En général, la complexité pour déterminer la distribution de S
dépend principalement des complexités des lois de N et Y;.

’ Cas particuliers:

@ Fy est dégénérée: le montant du sinistre n’a qu’une valeur:
P(Y=c)=1, c>0.
Alors, S prend uniquement des valeurs de type: 0, ¢, 2¢, ...
Il est facile de calculer les probabilités exactes ici puisque

P(S = kc) = P(N = k): la distribution de S a une forme
identique a celle de N, mais concentrée sur d’autres points.
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@ Sion ades distributions “sympas”: ex. N ~ G(q), Y ~ Exp(2),
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S a donc une distribution qui est un mélange entre un dirac en 0 et
une loi Exp(A(1 - q)).
Remarque:

on aurait aussi pu calculer la f.g.m. et en déduire la loi en la
reconnaissant:

-9
Ms(t) = M(nMy() = T
N el BN A0 -aq)

On reconnait ainsi ladite f.g.m. !
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Cas général: on utilise I'algorithme de Panjer.

Relation récursive permettant I'évaluation de la fonction de masse
associée a une loi composée:

s_|ZE Y siN>0
o siN=0

Notations:
pn(k) =B(N =k), py(k) =P(Y;=k), ps(k)=P(S=k).

Hypothéses de I'algorithme:
— Netles Y; sont des v.a. a valeurs entieres,
— les Y sont indépendantes de N, les Y; sont i.i.d.
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La loi de N est discréte et doit appartenir a la famille de Panjer:

Jda<1, beR, Yk e N, pn(k) :(a+%) pn(k —1).

— Les lois classiques qui appartiennent a cette famille sont £(2)
(a=0etb=21);B8(np)et NB(r,p).

— La loi de S obtenue est discréte.

Pn(0) sipy(0)=0 j=
P(S = f) = MN(quY(O)) | Si py(O) >0 j=0,
Tapro) Thor (@ ) pr(k)psti-k)  vjerr
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Preuve.
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Méthodes de discrétisation de la loi du montant

plnorm(x)

0.8

0.6

0.4

0.2

0.0

upper
lower

rounding
unbiased

T
5
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Visualisation de la distribution agrégée

Aggregate Claim Amount Distribution

o | S
@ |
o
© |
o
=
-
L
<
o
8 —— recursive + unbiased
—— recursive + upper
—— recursive + lower
simulation
o o .
S normal-approximation

T T T T T T T
0 10 20 30 40 50 60
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Avantages et inconvénients de I'algorithme de Panjer

+ Technique de calcul trés générale.
+ Simplicité de mise en oeuvre de par I'algorithme.

+ Fournit une approximation trés précise de la distribution de la
sinistralité.

- Nécessite une discrétisation préalable.

- Nécessite que la loi de fréquence appartienne a la famille de
Panjer.

- Temps de calcul si le pas de discrétisation est trés fin.



Les méthodes approchées

a) Approximation avec la loi Normale.

On calcule la moyenne et la variance du montant agrége S.
Si le nb aléatoire de sinistres N est suffisamment grand, le TCL
fournit une approx. de la distribution de S par la loi N(u, o), ou

u=E[S] et o®=Var(S).

Mais il y a des limites a ce résultat:

— Dans la réalité, S a une distribution concentrée sur [0, col:
P(S < 0) = 0. C’est en contradiction avec la gaussienne!

Approx. mauvaise < P(S < 0) grande.
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— la densité gaussienne est symétrique et CV vite vers 0.

Or la plupart des distributions en assurance sont tres
asymétriques et ont des queues de distributions épaisses.

Par exemple, le coefficient d’asymétrie (skewness) d’'une
Poisson composée vaut

EYY] 4
Skew(S) = W P

Remarque: si A devient grand, la distribution de S devient de
plus en plus symétrique! (on retombe sur le TCL)
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b) Approximation avec la loi Gamma translatée.

Quand I'approximation normale est insuffisante, on a recours a
d’autres distributions. La loi Gamma

— est a support positif,
— a une distribution asymétrique.

Mais elle peut étre insuffisante pour décrire le comportement de
queue... D’ou la loi Gamma translatée d’'une constante k:

si S ~Ga(a,5) alors S=S8 +k~ TGa(a,6, k).

Objectif: calculer les 3 premiers moments empiriques de S, puis
égaliser moyenne, variance et skewness de la loi Gamma
translatée a ceux de S.
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La densité de la loi TGa(e, 6, k) est donnée par

(SQ(S _ k)a—1 e—é(s—k)
> K.
M) ’ 5=

fs(S) =

Ses premiers moments sont

E[S] = ;—y +k  Var(S) = 6% Skew(S) = %

On calcule leurs équivalents empiriques, puis on résoud le
systeme en inversant les relations:

2 2+/Var(S)

k = E[S] -

5 2
‘= (SkeW(S)) °= Skew(S) +/Var(S) Skew(S)
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¢) Approximation par construction d’1 base de polynémes orthog.

Lobjectif est d’approcher la densité / f.d.r. a des ordres supérieurs.

Contexte général
Soit I c R et w(s) > 0 une fonction de pondération sur I. On
considére une famille de polynémes orthog. I1;(s) de degré i:

Posons Cx = [, N2(s)w(s) ds.

Si la densité f est réguliére, alors on montre qu’elle peut s’écrire
comme une somme pondérée infinie de polyndmes:

|fs(s) = AoMo(s)w(s) + ATl (S)a(s) + ..
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ou les coefficients Ak sont déterminés par

f, Me(s)is(s)ds = f, Mi(s) [i A,n,-(s)w(s)] ds

i=0

<o Ax fﬂi(s)w(s) ds = A Cx,
)

et donc
A — f,l‘lk(s)fs(s) ds B E[HK(S)]
k= Cx TG

Pour une approx. a l'ordre k, il faut donc connaitre les moments
d’ordre k, obtenus a partir de ceux de N et Y; lorsque S = Z,-’L Y.

Voici donc maintenant quelques techniques utilisant ces
propriétés.
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— Lapprox. a I'aide de la fonction Gamma (due a Bowers).

Idée: approcher fs par la densité d’une loi Gamma G(«, 6); en
égalisant moyenne, variance et moment d’ordre 3.

_ @ _ @ _ E[SP . E[S]
Bls = 5 var(S) = sz < 9T Var(S) — Var(S)
Soit g7 ladensité de Z ou Z =S avec B = VEE(Sé) : ainsi
;o B , B[z .,
Z~G(a,6), orE[Z] = Var(Z) = 6 = Var(Z) ~ 1, a =E[Z]

d’'ou on en déduit la loi de Z ~ G(a’, 1) (1 seul paramétre).
On approche gz(z) = AolMo(z)w(z) + A1l4(z)w(2) + ... avec
les poids w(z) et les polynémes de Laguerre.
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S(z/ -1

(%)= Fa)

—-S

R ,
eS et M(s)=(-1)ks' @ gs—(gkte -T1g5),
k(s) = (-1) dsk( )

Mo +k)

@) et

Les coefficients Cx sont donnés par Cx = k!

1 , ,
Ab=1 A =A=0 Ag:E(E[(Z—a)S]—Za).

Finalement, les approx. de g et G (f.d.r.) a 'ordre 3 valent
gz(2) = w(z)+ A3N3(2) w(2) puis en intégrant
Go2) = W(2)+As f Mo (u) w(u) du

0

: 1 2z 22
W _A @ —Z _ .
(2)-Asz"e (r(a’ +1) T(a +2) - Mo +3)
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d) Approximation par séries approchant une distrib. de proba.

— Lapproximation de Gram-Charlier (de type Normal-Power).

On approxime la densité fs par une gaussienne de méme
moyenne et variance, en utilisant les moments d’ordre >.

Notons u = E[S], 0% = Var(S), et Z = %
Z ~ N(0,1), etnotons g7 la densité de Z, et Gz sa f.d.r.

On approxime g sur | =] — oo, 0o & I'aide de la pondération
w(s) et des polyndmes d’Hermite:

ou ¢ est la densité d’'une loi normale centrée réduite.
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Les coefficients Cyx valent Cx = k!, et

E[Z3 E[Z*] -3
Ao=1 A=A =0 Ag=- [3|] A4:[4]I

Application: S ~ PComp(4, Fy).
Posons px = E[Y/] = u=E[S]=4p1, E[(S-pu)?] = 1pe,
E(S-w)°l=aps et E[(S—pu)*]=aps+32%p5

P 3,2 (cf slide 79) }

:AgetA4r> 0.

l\)l\)

Par contre As ~ 52 et Ag ~ S5
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— Lapproximation d’Edgeworth (de type Normal-Power).

Soit Z =5, alors Z ~ N(0,1). Notons M(t) = E[e?].

o

Le développement de Taylor de In Mz(t) en t € v(0) donne

1 ok
InMz(t) = ap+ast+apt®+.., avecax = — — InMz(t)
Kl dtk o
t2
= Mz(t) = exp(E) exp(ast® + ast* + ...)
2 a3
o exp(E)(1 + ast® + ast* + ast® + (53 + as) 8+ ) (1)
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Et remarquons aussi que (avec ¢(z) densité d’'une N(0, 1))
2 00 2 00
exp(%) = f ep(z)dz, t¥ exp(%) = (—1)"f eZ¢()(2) dz. (2)
—0o0 —00

Mz (t)

Par unicité de la transformée de Laplace, on peut retrouver la
densité gz par identification dans l'intégrale en reprenant les
équations (1) et (2).

Ainsi, gz doit satisfaire

9z(2) = ¢(z)—a3¢(3)(z)+a4¢(4)(z)—a5¢(5)(z)+(%3 + as) ¢®(2)-...

89/354



— Lapproximation d’Esscher (découlant d’Edgeworth).

On considére une v.a.p. S de f.d.r. Fs et f.g.m. Ms(t).

On définit pour tout h une nouvelle v.a. Sy telle que

e™dFs(x)
Ms(h)

_ Ms(t+ h)

th(X) = Mh(t) = Ms(h)

Exemple: S ~ Pcomp(A, Fy), donc S = 3N . Yi:

)

B Ms(t + h)

Mh(i’) = Ms(h) = Mh(i’) = exp (ﬂMy(h)[

ce qui revient a remplacer A par AMy(h) et Y par Y}, (slide 15).

Par ailleurs, E[Sy] & M,(0) avec M,(t) = "= Ainsi,
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’ _ M (h)2
6156[;73” M (h)MAEIZ)T)Z M (h)? _ ML (0)— (M, (0))? = Var(S) > 0

En s’intéressant a Fs(x) = P(S < x) pour un x donné,
choisissons h tel que

M
E[Sh] = MS

[Tis possible si x > E[S] et h > 0, ou x < E[S] et h < 0]

] i , R _ Sp-E[Sy] .
Appliquons le développement d’Edgeworth a Z, = Var(n)

B _E[(Sh=x)] (3 N __Y=x
fa(y)dy = ¢(2)dz Bvar(s,)2? (2)dz=g(z)dz, |z= )
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Rappelons que

Pour h > 0, nous obtenons

F(x) = M(h) e~ (EO(U) 6(Var(Sy)3/2

_EB[(Sh— %))

E3(U) + ...

avec u = h+/Var(Sp) et Ex(u) = [~ e 2¢()(2) dz.
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Exemple (suite) :

AMy(h) = x

Var(Sp) = AMy(h)
E[(Sn-x)*] = aMy)(h)

M) (h)
 BVA(M ()32

F(x) = el(Mrn-t)-hx (Eo(u) E3(u)

ol u=h JAM,(h).

Les inconvénients de la méthode sont notamment:

+ nécessité de connaitre Mj;
+ étre capable d'inverser E[Sy] en fonction de h.
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Probleme
Ce sont des dvp formels: on ignore la question de CV, ce qui nous
amene a considérer des séries tronquées (perte en précision).

- l'approximation d’Edgeworth est trés bonne autour de la
moyenne, mais mauvaise dans les queues de distribution;

+ Lui préférer dans ce cas-la I'approximation d’Esscher;

- Gram-Charlier DV en général: la qualité de I'approx. n’est pas
forcément améliorée par I'ajout de termes...

+ Edgeworth et Gram-Charlier approchent une distribution de
proba. par ses cumulants (~ moments);

+ Edgeworth et Gram-Charlier sont identiques pour les termes
3 et 4, mais pas pour les autres.
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Approximation du MRI par le MRC

Comment approximer le modéle individuel par le modéle collectif ?

Lidée est d’écrire le modéle individuel d’'une autre maniere afin de
retrouver I'expression classique du modéle collectif. On rappelle
que

S — vy, + .. +Y,,

avec Y;=N;B, ou N;~B(p).
Rq: Y s’écrit aussi Y; = Z:\L B;, avec la convention 39 , = 0.

i=1
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i) Premiere approximation : on remplace Y; par
N
Y=Y =>"B; avecN;~P(p) et B~ B iid.
i=1

En notant “ac” I'approximation par le modéle collectif, on retrouve

S% =Y+ ..+ Y

S2¢ g’écrit donc sous la forme d’un modeéle collectif, ou

S% ~ PComp(a ij, F= Z FB,
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E[S*] =
Var(S%)
Var(S™)

Donc | Var(S%) > Var(S™).

Rg: E[N] =E[N], et S estplus conservatif (prudent) car

‘ < Fj (x) pour x € [0, 1] N >spo N
-p, . j =sb2 INj
e =1 p,=>{ F}(x)zF (x) pour x €]1, oof S >gp, S
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ii) Seconde approximation :

S% = Y + ...+ Yi¢ avec

Vi
= Y@=V, avec Y~ Y iid. et v ~P(1).

13

Y
i=1
Ainsi
S2 ~ PComp [/l =
E[S%] =
Var(S%) =
Donc | Var(5%°) > Var(S™)

et

vi>gpe 1 =

Sac >gp2 Smd A
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Réassurance et impact sur la sinistralité dans le MRC
Objectif: analyser I'impact de la réassurance sur la distribution du
montant agrégé des sinistres dans le modéle collectif.

Ceci est étudié pour deux grandes familles de contrat:

— les contrats quote-part: proportion fixe de chaque sinistre.
Si un sinistre de montant X; se produit, I'assureur paie

Y; = aX.

De son c6té, le réassureur paie donc Z; = (1 - a)Xi.
Au final I'assureur paie S, le réassureur (1 — @)S.
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Le nb de sinistres reste identique, seule la loi du montant est
modifiée par une homothétie: pas d’impact notoire sur les
calculs dans le cadre du modéle collectif [MRC(N, Y; = «X;)].

les contrats en excédent de sinistre (Excess-of-Loss): priorité
P (ou rétention) et portée du contrat.

Supposons par exemple la portée illimitée. Pour un sinistre X;,

I'assureur paie Y; = X siXj<P
PEETI=1 P six>P
0 siXj<P

et le réassureur paie Z; = { Xi—P siXj>P.
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Définissons  Np = ZjN:1 lix<py et Np= Z,-IL Lix>p]-

Lassureur considére le nv modéle collectif MRC(N, Y)).
Le réassureur considére le modele collectif MRC(N, Z)).

MRC(N, Zj) a la méme distribution que MRC(N}, Z)) ou

o N, alaméme distribution que Np,
o N, estindépendant des Z;,
o les Z; ont méme distrib. que Z; conditionnellement & Z; > 0.

Lobjectif est donc de déterminer ces différenles
distributions... en particulier celles de N et Np.
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Distributions de N, et Np

Exemple

. N Ne ~ P(1-Fx(P)) —=X>P
Si N~®(a), alors {NP ~ P(AF(P)) L X<P

Preuve.
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Exemple
_ p
Ne ~ NB (r, W)

Si N~N8(r,p), alors P
Ny ~ NB(", W)

Preuve.
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Moyenne de la sinistralité du risque individuel

By =

Exemple 1:si  X; ~ Exp(d) alors  E[Yj] = 1(1 - exp(-1P)).

Exemple 2: si  Xj ~ Pareto(e, 1) alors

7 YA+P

A
E[Y] = —(
=37 \15p

a—-1"
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© Modele individuel et modéle collectif en assurance

@ Choix des rétentions et priorités en réassurance
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Introduction

Dans toute cette partie, nous nous plagons dans un modéle de
risque individuel ou la distribution de chacun des risques est
modélisée par une approche fréquence-codt:

S=85+..+S,

— N
avec Sj = 3..°, Yij.

Hypothéses et notations:

— les Yjjsontdes v.a. i.i.d. de f.d.r. F;;
- w=E[§] et of=Var(S);
— [; : prime d’assurance du j® risque / 1 j: prime réassurance.
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Question:

sachant que 'assureur a la possibilité de se réassurer, quel est le

meilleur mode et niveau de conservation des risques?

Déclinaisons de la problématique: dans le cas de traités EoL ou
excédents de pleins, les niveaux de rétentions et priorités
dépendent-ils de la nature des risques individuels du portefeuille?

Contexte: critére d’optimisation = maximisation de I'espérance du
résultat net de réassurance sous contrainte de variance fixée.

Parameétres du probléme: caractéristiques des risques a réassurer
et principe de calcul de prime du réassureur.

107/354



La réassurance proportionnelle par quote-part (QP)
(quota-share ou QS)
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Effet sur la distribution des pertes de I’'assureur
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La réassurance prop. en excédent de plein (XP) (Surplus)

Lassureur fixe un niveau de rétention et une limite, le partage des
primes équivaut 4 la part du risque conservée (a; # a; pour i # j).
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Effet sur la distribution des pertes de I’'assureur
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Optimisation de I'assureur et réassurance proportionnelle

Supposons que le taux de rétention du risque j vaut a; et que le
réassureur reverse une commission de réassurance, de taux y;.

La prime de réassurance vaut donc |1, = (1 — a;)(1 —¥;)M; |

On veut trouver les taux de rétention (a;)j=1,..» t.9. la variance du
résultat de I'assureur (net de réassurance), donné par

n n
R = > (M-Ny)->(1-(1-a))§
= =
n n n
= D= @S+ ) vl - ey,
j=1 =1 =1

112/354



soit la plus petite possible, sous la contrainte que I'espérance soit
fixée a Ry et appartienne a

n

n
Ro € Z)’j”j; Z(nj—ﬂj) :
=

=

Remarques:

— XL M; est I'espérance du résultat net si la réassurance
prend en charge 100% du risque (y; est un taux de frais versé
par le réassureur a I'assureur pour la gestion des contrats);

n ) z 7
- Xy (Mj — y;) est 'espérance du résultat net sans
réassurance.
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Theorem
Soit kj = (1 —v;)M; —pj.  Alors pour tout j,

| K
aj = aj(p) = mm(pg—’z, 1},
j

ol p esttelque Ry — 2}721 yilly = 2721 aj(p)k;.

Remarque: k; > 0 puisque (1 — y;)I1; doit couvrir plus que le risque
pur y;. Les taux de commission satisfont donc nécessairement

ki>0 = vyi<1- % (LR: Loss-ratio)

J
~——

LR
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Preuve. Premiére étape: retrouver la forme de «;.
En reprenant I'expression du résultat net:

R =
E[R] =

Var(R) =

Et on cherche a résoudre I'un des programmes suivants:

@ argmaxy XL jkj  sc. XL 1aja Vo et a;€[0,1],

Q mlnz 1020']2 s.C. Z ', ajkj = Ro— Z/ 1y etaje[0,1].
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Le Lagrangien du 2°™ probléme s’écrit

e s |

avec 2p le multiplicateur de Lagrange. Ainsi,

aL ki
=20j02 - 20k =0 & aj=p—20.

Or q;j € [0, 1] et on cherche un min; donc on choisira logiquement
: ki

@j(p) = min [1, p—jz]
]

Interprét.: + la prime est chere, 4 la commission est faible, ou +
la variance du risque est faible, plus la part conservée est grande.
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Deuxiéme étape: existence et détermination de p = p* ?

On va naturellement utiliser la contrainte sur I'espérance du
résultat. Vu I'expression de aj(p), ona XL ej(p)kj > 0.

Clairement, Z !, @j(p)k; est croissante et continue en p comme
somme de fonctlons croissantes et continues. De plus,

n n
i(0)=0 j(®)=1
Dla(0)k =0 et ) ag(eo)k Zk > Ry - Zy]
j=1 j=1
(la derniére expression équivauta Ro < XL (IM; — )

On sait donc que Jdp* grace au théo. des valeurs intermédiaires /

n n
ERI=Re & > e )k=FRo— D %M,
=1

=1
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Cas particulier : assurances a valeurs déclarées déterministes c;.

On suppose souvent que la charge sinistre S; s’écrit ¢;U;, avec

— U; estune v.a. qui prend ses valeurs dans [0, 1];
- Vj, E[U]=p et Var(U) =02

Supposons égaux tous les taux de commission, i.e. y; = .

Alors
2
Hj = UG o =0 C
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Mj = nc; et Kj:(1—7)7TCj—,qu:ij
donc en utilisant le théoréme:

ke

' , c
—/2 = min (1 : —),
ot c Cj

aj=min|1, p

avec ¢ = .
g

Exemple de réassurance proportionnelle sur assurance a valeurs

déclarées: traité en excédent de plein ou C: plein de conservation.

— Lorsque C; < C, il y a absence de cession.
— Lorsque C; > C, la conservation est égale au plein.
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Optimisation de I’assureur et réass. non-proportionnelle

Supposons que

— le réassureur utilise le principe de I'espérance mathématique
pour tarifer sa prime: le coefficient de chargement du risque j
est noté g;;

— le nombre de sinistres est poissonnien: N; ~ P(4;).

Nous allons étudier dans cette partie deux types de contrats:
@ les contrats en excédents de sinistre;
© les contrats en excédents de perte.
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Les excédents de sinistre (XS) (Excess-of-Loss ou XL)

Traités utilisés pour la couverture contre les gros risques.
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Effet sur la distribution des pertes de I’'assureur
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Les contrats en excédent de perte (Stop-Loss ou SL)

Ce type de traité est activé lorsque I'assureur est en perte.
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Effet sur la distribution des pertes de I’'assureur
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1) Optimisation pour les traités en excédents de sinistre

Chaque risque j est réassureé a I'aide d’un traité EoL (co XS P;), ou

P; est la priorité du risque j.
Lassureur conserve par risque j (ou chaque risque est modélisé
par fréquence-colt) le colt suivant:

N;

N;
. notation
P) =), min(Yi, B)  "E V(P
i=1

i=

On cherche a déterminer les niveaux des priorités (Px, ..., Py) tels
que la variance du résultat net donné par

R—Zn:(n,—n,, ime (Yijr P))
j=1

j=1i=
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soit la plus petite possible sous contrainte d’espérance fixée a Rqy
et appartenant a l'intervalle

n

Z(nj 1+ B))uj) Z
=

j=1

Theorem
Vi,  Pp= KB
avec K tel que

n

Ro— Y (M= (1+Buy) Zﬁ,E[N,] E[min(Yij. KB)))-

=1 =
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Preuve.
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2) Optimisation pour traités en excédent de perte par risque

Chagque risque j est réassuré avec un Stop-Loss de priorité P; et
de portée illimitée. On note Fg; la distribution de S; = Zf\L Yij.

Lassureur conserve alors (par classe de risque) la sinistralité

N
Si(P;) = min [Z Yi. P,-].
i=1

On veut déterminer les niveaux de priorité (P})j—1....
variance du résultat net de réassurance donné par

n tels que la

R=)(M-N,;-S(P))
=
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soit la plus petite possible sous contrainte d’espérance fixée a Ry
appartenant a l'intervalle

n

D= +8) ;DM w)|.
=

=

Theorem

Pj
vj, P; = KB; + j(; Fsl.(X) ax,

avec K tel que Ro — XL (M = (1 + B)y) = ZiL, Bi(Py — KBy).-
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Preuve.
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e Calcul de prime et introduction aux mesures de risque
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Définition

Soit la variable aléatoire positive (v.a.p.) S du montant cumulé des
sinistres d’une police pour une période de garantie donnée.

Soit F 'espace des fonctions de répartition (f.d.r.) des v.a.p.

Un principe de calcul de prime est une fonction

H: F —RTU{w}
F — H(F)
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La prime déduite du principe H dépendra des caractéristiques de
la f.d.r. de S, notée Fs.

Par exemple:

— le premier moment: E[S] = [~ s dFs(s);

— la variance: Var(S) = [”(s - E[S])? dFs(s).

Vocabulaire: une prime infinie définit un risque inassurable.
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e Calcul de prime et introduction aux mesures de risque
@ Les principes classiques de tarification
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Principe de I'espérance mathématique

Notons I1 la prime, S le montant cumulé des sinistres de la police.

Le principe de la prime pure donne | 1(S) = E[S].

Le principe de I'espérance mathématique donne

IN(S)=(1+p)E[S, >0

— Chargement trés simple, mais n’apporte aucune information sur
les fluctuations de S autour de sa moyenne...

Difficulté de ce principe: choix de .
Remarque: pour des risques dégénérés (P(S = s) = 1), on
devrait avoir I1(S) = s ce qui n’est pas vrai ici.
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Pour évaluer son risque de perte, I'assureur peut utiliser la théorie
des grandes déviations et le lemme de Chernoff.

Lemme

(Chernoff). Soient Sy, So, ..., Sy des v.a.p. indépendantes et de
méme loi que S telles que E[e'®] < co pour un t > 0. Posons
Xi=S;- (1 —‘rﬁ)E[S,] Alors

n n
1
P(Z X; > 0] <p" et lim— IogP(Z X; > o) = log p,
i=1 i=1

ou p= irt1f Mx(t) <1 et Mx(t) = exp(—t(1 + B)E[Si]) Ms(t).
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Preuve.
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Ainsi, si 'assureur souhaite majorer par ¢ la probabilité d’un
résultat négatif sur la période, donc

n
P(Z X; > o] <e,
i=1
il choisira g tel que

p"(B) = e.

Exemple
Si S ~ &xp(A), alors p(B) = eP(1 + ).
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Principe de la variance

Le principe de la variance donne

N(S) =E[S] +BVar(S), p>0.

Inconvénient: symétrie par rapport a 'espérance.

— On comptabilise les valeurs négatives de la v.a. (S - E[S]),
pourtant favorables a 'assureur.

Conséquence: on augmente trop les chargements techniques.
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i) Application du principe a la réassurance proportionnelle.

Cherche une couverture pour une proportion A € [0, 1] du risque S:

N(AS) = E[AS] + B Var(AS) = AE[S] + 428 Var(S) < AN(S).

Donc I'assuré aurait intérét a diviser son risque initial en n
parties égales car il paierait moins cher: en effet,

nTl (%) <M(S).

Rag: lim (%) = lim (E[S] + gVar(S)) = E[S] (prime pure).

n—oo
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ii) Principe de la variance et réassurance non proportionnelle.

Suivant les cas de figure, la prime pour I'assuré sera plus ou moins
intéressante suivant que I'assureur se réassure lui aussi ou non.

iii) Principe de la variance et agrégation de risques indépendants.

Si on considere deux risques indépendants S; et S,, on a

>

] N(Si + S2) = N(S1) + N(Sz)

ce qui implique que I'accumulation de risques indépendants ne
conduit pas au principe de diversification.

Donc pas de diminution de la prime. Ceci parait peu vraisemblable.
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Principe de I’écart-type

Le principe de I'écart-type donne

IN(S) =E[S] +80(S), p>0.

A l'inverse, le découpage du risque ici ne conduit pas a une
diminution de la prime:
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Principe exponentiel

Le principe exponentiel donne

nes) = éln(E[e"s]).

Le paramétre a est appelé coefficient d’aversion au risque.

D’aprés l'inégalité de Jensen, la prime technique est supérieure a
la prime pure:
M(s) > E[S].

En effet, si a est proche de 0, en utilisant les propriétés de la
transformée de Laplace:
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nes) = 2—y|n (1 + «E[S] + %ZE[Sz] - o(a2))

! (cx]E[S] + %215[3])2 + o)

22

— E[S]+ g Var(S) + o(a)

— :—K(QE[S] + %Z]E[Sz])

On retrouve le principe de la variance...

Si
— a — 0: principe de la prime pure;
— a — oo: principe de la perte maximale,

M(S) - sup{s : P(S<s)<1}=rs.
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Principe de I'utilité nulle

Le principe de I'utilité nulle (ou équivalent certain) donne pour une
fonction d'utilité u strictement croissante et concave, I1(S) telle
que

E[u(N(S) = S)] = u(0).

Globalement, en incluant des réserves R affectées au risque, on
peut avoir

E[u(R +N(S) - 8)] = u(R). |

Ainsi, M(S) : prix auquel I'assureur est indifférent entre offrir une
couverture d’assurance ou ne rien faire.
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En utilisant I'inégalité de Jensen pour des fonctions concaves,

def Jensen

u(R) = E[u(R+MN(S)-S)] < u(R+N(S)-E[S)).

u croissante: u(R) < u(R+T(S)-E[S]) = R < R+T1(S) -E[S],
donc
Nnes)-Eg[sj=0 = T1(S)=>E[S].
Pour
— u(x) = x: aversion au risque nulle (principe de la prime pure);
— u(x) = —e™*: fonction d’utilité CARA (principe exponentiel).

Remarque: le choix de u est délicat !
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Principe de la valeur moyenne

Le principe de la valeur moyenne s’appuie sur une fonction f
continue, convexe et strictement croissante sur R*:

n(s) =" (EI(S))) |

Idem au principe exponentiel, I'inég. de Jensen = T1(S) > E[S].

Pb: le choix de la fonction f est aussi délicat. Par exemple,

— f(x) = xP: principe de la moyenne d'ordre 8 (8 > 1);
— B — oo : principe de la valeur maximale;
— f(x) = e*: principe exponentiel.
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Illustrations

i) Principe de la valeur moyenne lorsque le risque S est faible.

S peu variable, donc posons S = E[S] + Aw, ou w est centrée.
Si A petit, un dénveloppement de Taylor donne

nes) = (E[f(E[S]Jrﬂw)])

= Bl + GBI D 1 o)

= E[S]+ @ Var(S)

On retombe sur le principe de la variance, mais le facteur devant la
variance depend de S...
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Remarquons aussi que f peut se réécrire f(y) = —u(-y) avec u
fonction d'utilité croissante et concave.

Eneffet f (y) = u'(-y) et f (y) = —u"(~y), ce qui donne

f'(E[S]) _ _u'(-E[S])

FE[S])  u(=E[S])

qui est le coefficient d’aversion au risque en —-E[S].

Remarque:

Si I'utilité est exponentielle, a(S) ne dépend pas de S car
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ii) Agrégation de risques individuels.

Soit un portefeuille de n risques 1L de méme loi S;. La sinistralité
agrégée s’écrit S = Y., S;.

Les primes sont données par
N(s) = —u™ (E[u(-S)))-

On veut comparer

nes) =-u! (E[u[—i&ﬂ] et Y nes;).
i=1 i

—

Supposons S peu risqué, alors MR(S;) = ”ZE[ 2]{ ﬂ}
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Ainsi les chargements techniques respectifs sont donc

’”

12 & 2 u (- ’n: E[S])
= ? ;E[wl] {_ U’(— ,n:1‘1 E[S’]) } ’

i) = 2 (S

et

Puisque les risques sont identiquement distribués: E[w;] = E[w], et
donc pour avoir MR (2721 S,-) <Yy MR(S)), il faut

u(-xn 1E[S]) 1 Z”:u"(—E[S,-])

J(-y L E[S]) = n & U (-ES))
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Ce qui équivaut & avoir

U (-nE[Si]) T U(-E[Si])

u'(=nE[S]) _ _u (-E[S])

Il suffit donc que le coefficient d’aversion au risque soit décroissant
(DARA: Diminishing Absolute Risk Aversion).

Exemple: les fonctions logarithmique ou puissance ont cette
propriété. Avec I'utilité exponentielle, il y a égalité.
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Principe d’Esscher

Le principe d’Esscher préconise de choisir une prime égale a

aS
nes) = —%Eis]].

On peut montrer que M(S) > E[S] puisque Cov(S, e*°) > 0.

Cette prime est 'espérance mathématique calculée avec la
nouvelle f.d.r. G définie par

e dFs(x)

dG(x) = —fooo v dFg(x)

qui est la transformée d’Esscher de Fs.
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Principe de Wang (proportional hazard transform)

Le principe de Wang s’appuie sur la définition

n(s) = fo " (Fs(x))" dx.

ol Fs =1 - Fs (survie), etr € [0,1]. Ona MN(S) > E[S].

Ce principe est trés utilisé en réassurance.

En effet, la transformée de Wang permet de calculer tres
simplement les primes des traités en excédent de sinistre.
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Par exemple, pour un traité (noté dans la pratique: hXSa)
@ de priorité a,
@ de portée h,

on a:
0 si 0<S<a

hXSa:{S—a si a<S<a+h
h si a+h<$8

La prime vaut

N(hXSa) = v[;h(lz's(x—i— a)) dx = faJrh(F's(x))'dx.
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Principe du fractile

Dans le principe du fractile, on adopte la prime I1 qui vérifie

N(S) = inf(p|Fs(p) > 1 - €) = inf (p|B(S > p) < e).|

C’est donc la plus petite prime telle que la probabilité que le
sinistre dépasse la prime est au plus de e.

Par exemple,
— si e = 1/2, alors la prime est la médiane de la distribution;
— si e =0, alors la prime suit le principe de la perte maximale.
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Utilisation pratique de ces concepts

Dans la pratique, pourquoi utiliser tel ou tel principe?

Mesure de Wang - traités de réassurance Excess of loss
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e Calcul de prime et introduction aux mesures de risque

@ Propriétés souhaitables des principes de tarification
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Un assureur utilisant une mesure de risque donnée attend d’elle
un ensemble de propriétés “naturelles” censées refléter la réalité...

@ La prime vaut au moins la prime pure: I(S) > E[S].
On peut ajouter que si P(S = s) = 1, alors 1(S) = s.
Ceci implique qu'il n’y ait pas de chargement injustifié.
Parfois, le chargement peut méme étre négatif suivant les
conditions de marché (concurrence, ...).

@ Invariance par translation: M(S + ¢) = ¢ + MN(S), Yc > 0.

¢ est une constante, et en particulier 1(0) = 0.
Tout risque déterministe est tarifé a sa propre valeur.
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© Additivité: |_|(S1 + 82) = I'I(S1) + rl(Sg),
si Sy et S, sont indépendants.

Cependant, cette propriété ne vérifie pas le principe de
diversification des risques. On lui préfére la propriété

NSy + S2) < N(Sy) + N(Sz).

Rappelons au passage que le principe de la variance est
additif, alors que celui de I'écart-type est sous-additif.

Cette propriété induit un gain de diversification, qui profite
+ soit a I'assuré (prime plus faible),
+ soit a I'assureur (probabilité de ruine moins élevée).
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© Homogénéité: M(1S) = AMN(S), ¥a = 0.

= invariance par changement de numéraire, elle est
essentielle pour la réassurance proportionnelle.

Propriété remise en cause par quelques auteurs lorsque A est
grand (M(AS) > ATI(S)).
Q ltérativité: MN(Sy) = N(MN(S11Sz)).

On peut calculer la prime du risque S en deux étapes:

— on applique d’abord la prime [T a la distribution de S;
conditionnelle a S»;

— on obtient une v.a.r., fonction de S5, a laquelle on applique de
nouveau le principe de prime.
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Exemple

Le nombre annuel d’accidents d’un chauffeur est modélisé par une
loi de Poisson P (). Le profil de risque A est inconnu et différent
pour chaque chauffeur, donc la réalisation d’une v.a.r. \. La loi du
nombre d’accidents conditionnelle a A = A est de Poisson, et si

N\ ~ Gamma alors la loi est une binomiale négative.

Q Convexité: MN(AS1 + (1 = 1)S2) < AN(Sy) + (1 = )N(S2),
YA e [0, 1] et 81, 82.

Cette propriété est utile pour la recherche de décisions
optimales dans le choix de contrat d’assurance ou de
réassurance.
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e Calcul de prime et introduction aux mesures de risque

@ Résumé des propriétés de chaque principe de prime
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Propriétés

Principes Prime pure Trans. Addit. Itérat. Homog.
Prime pure + + + + +
Espérance + - + - +
Variance + + + - -
Ecart-type + + - - +
Exponentiel + + + =+ -
Utilité + + e e -
Valeur moyenne + e e + -
Esscher + + + - -
Fractile + + + + -

+ : la propriété est vérifiée; — : la propriété n’est pas vérifiée;

e : vérifiée en considérant les fonctions u et f qui nous permettent
de retomber sur les principes exponentiel et prime pure.
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Vérification des propriétés dans les cas spécifiques

Proposition

Le principe de la valeur moyenne (dans lequel f est convexe) vérifie
l'invariance par translation si et seulement si

f(x) =e™ ou f(x)=x.

Preuve
i) Condition nécessaire (CN «):
-f(x)=x = MN(S+c)=E[S+c]=E[S]+c=T(S) +c.

~f(x) = e = 1 In(E[e"*)]) = T In(e°E[e*S]) = L In(E[e**]) + c.
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ii) Condition suffisante (CS =):
Posons Sq1 = (1-q)do+qdor et N(q) =" E[f(Sq1)]-
Onadonc f(M(Sq1)) = f(M(q)) = (1 —q) f(0) + g f(1).

En dérivant par rapport a g a gauche et a droite de I'égalité puis en
se plagant en 0, on obtient

f(N(0))M'(0) = £ (0) I (0) = f(1) - £(0).

Dériver une nouvelle fois en 0 améne a

f'(o)n©2+fOn@©=0 (1)
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On applique 'hypothése d’invariance par translation a

f(N(Sg1 +c)) =f(N(Sg1)+c)=(1-q)f(0+c)+qgf(1+c).

Dérivons 2 fois cette derniére expression,

f'(N(q) + )M (q) +f (N(q) +¢)N"(q) =0

_F
Doncen0,ona f'(c)M(0)2+f(c)N’(0)=0 (2).

(1).(2) f'(c) f(0)
Or T1r()>0 Ve, —— = .
=0 = 7o) ~ 7(0)
Donc sachant que f convexe,
— soit f'(0) = 0 alors f est lingaire;
— soit f'(0) > 0 alors f est exponentielle.

171/354



Proposition
Le principe de la valeur moyenne vérifie la propriété d’additivité si et
seulement si

f(x) =e™ ou f(x)=x.

Preuve. Considérons deux risques Sy 1L So.

CN) - pour f(x) = x : c’est trivial (par linéarité de I'espérance).
- pour f(x) = €™ : N(Sy + S;) = L In(E[e*(S1+5)]) =
Lin (B[e*>] E[e*%]) = 1 In(E[e"®]) + 1 In (E[e*%]) = N(S1) + N(S2)

CS) Soit ¢ une constante, S 1L c¢. Par additivité,
N(S +c¢) =MN(S) + N(c) = N(S) + ' (f(c)) = N(S) +c.

Donc on a invariance par translation, et on utilise cette propriété
avec la proposition d’avant pour conclure.
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Proposition
Le principe de I'utilité nulle (u " et concave) vérifie la propriété
d’additivité si et seulement si

—aX

u(x) = -e ou u(x)=x

a une relation linéaire pres.

Preuve.

CN) Si u(x) = x = évident!
Si u(x) = e = E[u(N(S) - S)] = u(0) & E[-e~(M(S)-9)] =
S E[e*S] = -1 N(S) = -1InE[e*5], qui, on le sait,

u(0)
est additif (C’est le principe exponentiel).
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CS) Aprés normalisation de la fonction d’utilité, on peut toujours
avoir

Posons Sy, = (1-q)d0+qé, et T(q) =TM(Sqyz).
On a par I'utilité nulle que  qu(M(q) - z) + (1 - q) u(N(q)) = 0.

En dérivant par rapport a g a gauche et a droite de I'égalité puis en
se plagant en 0, on obtient

—u(0) +u(-z) + N'(0) w =u(-z)+N'(0)=0.
=0 =1
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Dériver une nouvelle fois en 0 améne a

’ ’

2M'(0) u'(-z) - 2M'(0) + N"(0) —an’'(0)? = 0.

Soit Ty la somme de deux variables 1L de méme loi que S ;:

Tq=(1-9)%60 +2q9(1 - q) 6, + G%2,.

Par additivité, on sait que
MN(Tq) = 2M(q)
et

q” u(2nM(q) —22) +2q(1-q) u(2M(q) - 2) + (1-q)* u(2M(qg)) = 0.
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Donc en dérivant 2 fois et en se placant en 0, on a

2 u(-2z)-4 u(-z)+81M(0) u'(-z)-2M'(0)+2N"(0)-4aM'(0) = 0.

En éliminant N”(0) puis M'(0), on a finalement

u(-2z) - 2u(-z)u' (-z) - au(-z)® = 0.

Finalement, en résolvant I’équation diff., on obtient
— sia =0, alors u(x) = x;

— sia>0,alors u(x) = 37(1 — e ),

176/354



Proposition
Le principe de I'utilité nulle est itératif si et seulement si

—aX

u(x) =-e ou u(x)=x

a une relation linéaire pres.

Preuve. Laissée au lecteur...
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e Calcul de prime et introduction aux mesures de risque

@ Mesures de risque célébres
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Introduction et définition

Soit la variable aléatoire positive (v.a.p.) S du montant cumulé des
sinistres d’une police pour une période de garantie donnée.

Soit F 'espace des fonctions de répartition (f.d.r.) des v.a.p.

Une mesure de risque est une fonction

R: F -RTU{w}
F — R(F)

179/354



Les mesures de risque s’utilisent a de nombreux égards, parmi
lesquels:

— des calculs d'immobilisation de capital dans un objectif de
solvabilité;

— des calculs de capitaux a investir initialement a probabilité de
ruine donnée;

— le calcul de réserves IBNR (tardifs)...

Analogie: le notion de mesure de risque ressemble fortement a la
notion de principe de prime. C’est le cash a mettre de c6té face a
l'acceptation d’'un nouveau risque dans un objectif de prudence...
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Propriétés souhaitables des mesures de risque

Comme pour les principes de prime, un ensemble de propriétés
sont exigées car “naturelles”.

Invariance en loi:  S1 =S, = R(S1) = R(Sz).
Monotonie: S1>S; = R(Sy) = R(S2).

Invariance par translation: YA e R, R(Si + 1) = R(Sy) + 1.
Homogénéité positive: YA€ Rt, R(1S1) = AR(Sy).
Sous-additivité:  R(S; + S2) < R(S1) + R(Sz).

Convexité:

Ll Ll

VB €[0,1], R(BS1 + (1 -B)Sz2) < BR(S1) + (1 - ) R(S2).
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Mesure de risque cohérente: approche axiomatique

Selon Artzner et al. (1997), une “bonne mesure de risque” doit
satisfaire certains des axiomes précédents, en particulier:

— Monotonie: S1>S; = R(S1) = R(Sz).

— Invariance par translation: V1 eR, R(S1 + 1) = R(Sy) + 4.

— Homogénéité positive: V1€ RT, R(1S1) = AR(Sy).

— Sous-additivité:  R(S1 + Sz) < R(S1) + R(Sz).

Remarques: d’autres définitions existent. Mesure de risque
monétaire, convexe...
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Notion de comonotonie

Introduite dans le contexte assurantiel, cette idée représente une
corrélation “totale” entre 2 v.a.r.

Les pertes Sy et S, sont dites comonotones ssi ce sont des
fonctions croissantes d’'une méme variable aléatoire réelle Z, ou

Vo,w" € Q, {Si(w) - S1(0")}{S2(w) = S2(w")} 2 0
ou encore,

(81.8) = (F5/(U). F5/(U)).  U~Upyy.

— Intuitivement Sy et S, évoluent donc dans le méme sens!
— R(S1 + S2) = R(S1) + R(S2) quand S; et S; comonotones.
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La Value-at-Risk (VaR)

La plus connue: c’est le standard utilisé en finance / assurance
dans le calcul des réserves de prudence préconisées par 'ACPR.

Pour un risque S, la VaR est définie pour un seuil p € (0,1)
comme le quantile suivant:

VaR,(S) = F5'(p) = inf{s : P(S <s) > p}.

Inconvénient: la VaR n’est pas sous-additive = ne prend pas en
compte I'effet de diversification des risques.
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Dans la pratique, on considere la
— VaR au niveau 99,9% en finance (Bale Il);

— VaR au niveau 99,5% en assurance (Solvabilité Il).

Mais...

La VaR n’est pas une mesure de risque cohérente au sens
d’Artzner...

La VaR ne permet pas de capter la forme de la queue de
distribution du risque au-dela du quantile recherché...

= La réglementation recommande aussi 'usage de la TVaR.
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La Tail-Value-at-Risk (TVaR)
Le principal attrait de la TVaR est qu’elle permet d’intégrer
linformation sur la queue de distribution (dangerosité du risque).

Pour un risque S, la TVaR au niveau p € (0, 1) est définie comme
moyenne arithmétique des VaR au-dela de p:

1 1
p

— Peut se reécrire TVaR,(S) = VaRy(S) + 5 pESp(S)

— La TVaR est une mesure de risque cohérente.
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LExpected Shortfall (ES)

Pour un risque S, on définit 'ES au niveau p € (0,1) comme la
quantité

ES,(S) = E [(s - VaRp(S))+] .

Interprétation: c’est la prime stop-loss dans le cas ou les exces
au-dela de d = VaR,(S) sont réassurés.

Cette mesure de risque est sous-additive, et est méme une
mesure de risque cohérente.
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La Conditional Tail Expectation (CTE)

Dans le cas continu (sans saut de Fg), c’est aussi la TVaR.

Pour un risque S, la CTE au niveau p € (0, 1) est définie comme

CTE,(S) =E[S|S > VaR,(S)].

C’est donc la perte moyenne dans les 100(1 — p)% pires cas.
On peut la reécrire sous la forme

1
T I Fs(VaRy(9))

CTE,(S) = VaR,(S) ES,(S).
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F(s)

VaR[.5]=VaR[.7]

Exemples:
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Profil en fonction de la proba. p (croissance, dérivabilité)
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Les mesures de risque de distortion

Lidée est de déformer la fonction de répartition du risque
sous-jacent afin de donner plus de poids a un certain type de
sinistres.

Une fonction de distortion concave accordera par exemple
davantage de poids aux grands sinistres et les surpondérera.

On appelle mesure de risque de distortion le nombre

R(Fs, G) = f; F5'(1 - u) dG(u),

ou G est une f.d.r. sur [0, 1] appelée fonction de distortion.

191/354



Quelques exemple de mesures de distortion

- La VaR correspond a une mesure de risque de distortion ot G
est un dirac.

- On peut voir 'Expected-Shortfall comme une mesure de
distortion avec G la f.d.r. de la loi uniforme (pondération uniforme):

ESy(S) = fF§1(1 — u) 115 1p.1(u) du

- La mesure de Wang: c’est une somme pondérée de VaR !

Remarque: on peut montrer qu’'une mesure de risque de distortion
avec G concave est cohérente.
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e Classification et comparaison de risques
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Introduction

Nous présentons ici des relations de préordre.

Elles permettent de comparer deux risques (variables aléatoires)
du point de vue de leur dangerosité.

Ces risques
— portent sur la méme période,
— admettent une distribution de probabilité.

Question: dans quel cas préfere-t-on le premier risque au second?
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© Classification et comparaison de risques
@ Comparaison a l'ordre 1
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Dominance stochastique d’ordre 1

Soient Sy et S; deux v.a.r. de f.d.r. Fg, et Fs,, qui représentent les
montants cumulés de sinistres de deux risques.

Definition
Le risque Si domine stochastiquement le risque S, a l'ordre 1, noté
Sy >sp1 So si et seulement si

E[w(S1)] > E[w(S2)],

pour toute fonction w croissante.

Rq: on trouve parfois la déf. avec u croissante (w(x) = —u(—x)):

—E[u(=S2)] < -E[u(-S1)] (& E[w(S2)] < E[w(S1)]).
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La relation Sy >gp1 S est une relation de préordre car elle est
— réflexive: Sy >gp1 Sq,
— ftransitive: Sy >gp1 So et So>5p1 S35 = St >gp1 Ss.

Mais...

— elle n’est pas antisymétrique car si S; >sp1 S» et So >sp1 Sy,
alors S; = S, en loi mais non presque slirement.

— elle n’est pas totale car deux risques peuvent ne pas étre

comparables...

Remarque: la relation >gpy peut aussi étre caractérisée par les
f.d.r., c’est I'objet de la proposition suivante.
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Proposition

Le risque Sy domine stochastiquement le risque S a l'ordre 1 si et
seulement si
Fs,(x) > Fs,(x), Vx>0.

Preuve.
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Remarques:
— si Sy <gp1 Sy, alors v(Sz) <sp1 v(St1) quand v croissante.

— larelation d'ordre “p.s.” est: Sy <ps S1siP(Sz < Sy) =1.

Proposition

i) Si Sp <ps. St alors S <sp1 Sy.
i) Réciproquement, si Sy <gp1 St alors S’ ~ Sy t.q. Sz <ps. S’

Preuve. i) Evident!

i)
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Proposition
Si S1 et S, admettent des densités et s’il 4 une constante ¢ > 0 t.q.

fs, (x)
sz (X)

\%

fs,(x)  pourx € [0,c|

IA

fs, (x) pour x € [c, ],

Alors Si >spy So.

Preuve.

Remarque: résultat généralisable pour les distributions discretes.
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Proposition

Si S; est une v.a. indépendante des risques S et S" t.q. S >sp1 S,

alors

S+S8 =>sp1 S +8i.

Preuve.
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Proposition

Si Sy, ... Sy et S, ..., S, sont des suites de v.a. indépendantes telles
que S; >sp1 S; pour tout i,

alors
n n
s o S
i=1 i=1

Preuve par récurrence.
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Proposition

Si Sy, ... SyetS,, ..., S, sont des suites de v.a.p. 1L t.q. Sj >sp1 S;
pour tout i, et si N et N'sont deux variables de comptage 1L de (Sp)
et (S,) et telles que N >spy N';

alors >N.S 2sp1 XN, S

Preuve (en deux temps).
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Proposition

Si S et S’ sont deux risques tels que S >sp1 S, alors
nes) > n(s’).

pour les principes de la prime pure, de I'espérance mathématique,
de I'utilité nulle, de la valeur moyenne et de Wang.

Preuve. - Prime pure (et espérance math.): utilisant la prop. avec
les f.d.r.,

nes) = g[s] = fom Fo(s)ds 2 fom Fo(s)ds = E[S] = N(S).
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- Principe de Wang: prop. avec f.d.r. 4 fonction puissance 7,

hyp

nes’) —fom (Fer(s)) ds < fom (Fs(s)) ds = ().

- Principe de I'utilité nulle (pour rappel u croissante et concave) :
S>sp1 S B VN e R, E[u(N(S)-S+R)] <E[u(N(S)-S +R)] (1)

o E[u(N(S) - S+ R)] = u(R)
"\ E[u(n(S) - S’ + R)] = u(R)

donc  E[u(N(S)-S+R)] =E[u(N(S)-S +R)] (2.

Ainsi (1) et (2) impliquent que
Elu(N(S)-S +R)] < E[u(S)-S +R)] (3)
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Si N(S") > N(S) alors E[u(N(S) - S + R)] > E[u(N(S) - S" + R)]
car u est /. Mais ceci est en contradiction avec (3)!

Donc par I'absurde  (S") < 1(S) ! O
Remarque: pour certains principes de prime, on ne peut pas

conclure. D’un point de vue gestion de risque, cela peut donc
poser probleme.

C’est le cas par exemple
— du principe de la variance,
— du principe de I'écart-type.
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Exemple (principe de la variance): soit S’ ~ 8(1,p) et S = 1 p.s.

On peut montrer que S >sp1 S’ (en prenant par exemple w = Id
et en calculant les espérances), mais

nsS)=1 < NS)=p+Bp(1-p) si pp>1.
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© Classification et comparaison de risques

@ Comparaison a l'ordre 2
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Dominance stochastique d’ordre 2

Des notions # sont traduites par cette relation, notamment la prise
en compte des comportements d’aversion au risque.

Ceci se traduit par la concavité de la fonction u.

Definition
Le risque Sy domine stochastiquement le risque S, a 'ordre 2, noté
S1 >spo So, si et seulement si

E[w(S1)] = E[w(S2)],

pour toute fonction w croissante et convexe.

La relation est parfois notée >, 5, pour “risk aversion”.
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— cette inégalité est équivalente a E[v(-S;)] > E[v(-S1)] ou

v(x) = —w(—x) est croissante et concave;

— l'ordre >gpy compare les espérances pour une classe plus
large de fonctions, et inclut donc la dom. stoch. d’ordre 2;

— 2 risques incomparables a I'ordre 1 peuvent I'étre a I'ordre 2.

Definition

La transformation stop-loss de la f.d.r. Fs est définie par

ns(y) =E[(S-y)"] Vy=zo.
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Proposition

Le risque S domine stochastiquement le risque S’ a I'ordre 2 si et
seulement si
ns(y) 2 ng(y)  Vy=0.

Onécritaussi S>spp S © S>48.

Preuve.
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Proposition

S >sp2 S’ si et seulement si 3 une variable aléatoire D telle que

S+D<s et E[D|S]>0ps.

Preuve.

Remarque: parfois, on dit que S” est moins variable que S.
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Proposition

Si E[S'] < E[S] et s'il existe une constante ¢ > 0 telle que

o
0
A

Fs(s)  pours €[0,c|

o
0
v

Fs(s)  pours € [c,oof

Alors S >gpo S

Preuve.
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Exemple: S' ~ Ujpz et S ~ Exp(1)  (ici E[S] = E[S)).

Exercice indépendant (relation moments / prime stop-loss):
Montrer que Vk > 2, E[SK] = k(k —1) [ s"~?n5(s) ds,

etque si S>spp S’ alors E[SK]>E[SK] Vk>2.
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Proposition

Si S est une variable 1L des risques Sy et S, tels que Sy >sp2 S,

alors

Si+S >=5p2 S; + S.

Preuve
Identique a l'ordre 1.
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Proposition

Si Si,...Shet S,..., S, sont des suites de v.a.p. 1L t.q. Si >sp2 S;
pour tout i,
alors PSS 2spe 214 S

Soient des proba. (pi) t.q. Y., pi =1, alors

n n
Z piFs,  >sp2 Z PiFS;-
i= i=

Preuve. La 1" inégalité s’obtient comme la domin. stochastique
d’ordre 1 et la 2° (mélange) en utilisant déf. et prop.: I'hyp. donne

Ns(y) = Ng(y) = > p E[(Si-y)']= > b EI(S - y)'].
i=1 ~ = T

7s, () mg (¥)

i
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Proposition
Siona

— Si,.., Sy et S, ..., S, sont des suites de v.a.p. indépendantes
telles que S; >sp2 S; pour tout i,

— N et N sont deux variables de comptage indépendantes de
(Sh) et (S,,) telles que N >spo N';

Alors NS 2s;2 IR, S

Preuve.
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Exemple
Prenons N = i p.s. et N ~ P(u). Alors N >sps N'.

Proposition

Si S et S' sont deux risques tels que S >spp S,
alors T1(S)>N(S") pour le principe de la valeur moyenne.

Preuve.

C’est immédiat car par définition du principe de la valeur moyenne:
Nes)<n(S) e f'E[f(S)] < f'E[f(S)] (f. etconvexe).

Equivalent & E[f(S)] < E[f(S)] (cf définition de la relation >gpo).
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Proposition
Le principe de calcul de prime vérifie les propriétés suivantes:
i) siS>sp2 S etFy # Fs, alorsT(S) > N(S');
i) siP(S=s)=1,alorsT(S) =s;
iy S’, Sy et Sy sont des risques et p € [0, 1].
Si MN(Sy) = N(S2) alors

|_|(st1 + (1 _p)FS') = n(pF82 + (1 _p)FS')

ssi il existe une fonction f continue, croissante et convexe telle
que N(S) = ' E[f(S)].

iv) de plus, siona S et S’ deux risques indépendants, alors
NS+ 8" =n(s)+n(s’) etalors

f(x)=e"™ ou  f(x)=x.
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Preuve. (Ebauche)

1)i) Si S >sp2 S, alors E[f(S)] < E[f(S)].
ii) Evident.
i) On a

f(N(pFs, + (1 -p)Fg)) = PE[f(S1)]+ (1~ p)EIf(S)]
= PE[f(S2)] + (1 - P)E[A(S)]
= f(N(pFs, + (1 = p)Fs')).

2) Soit @ > 0, posons Sp s = (1 — p) 6o + p Ja.
On définit ¢(p) = M(Sp,a). On a alors ¢(0) = 0 et p(1) = a par ii).
Pour p; < pz, i) donne Sp, 2 >sp2 Sp, .4 €t Fsm,a * Fspz,a, donc

#(p1) < ¢(p2) et ¢ est une fonction strictement croissante. On peut
aussi montrer par I'absurde que ¢ est continue.
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Puisque ¢ est une fonction croissante continue, posons

f(u) = ¢ "(u) pouru e [0,al].
Siu=¢(t)out=f(u),

N(St) = u=¢(t) = N((1 - f(u))da + f(u)do).

Par i), si (X)) = N(X") et N(Y) = N(Y"), alors
MN(tFx + (1 —t)Fy) =M(tFy + (1 - t)Fy ).
De méme on montre que

si N(F)=N(G) alors Zp,F, N, piG).
i
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Considérons maintenant la v.a. X € [0, a] t.q. Fx(x) = X; pjd¢(x),
ou0<c<aet

M(6g) = ¢ = N((1 = f(cj))da + f(¢j)d0)-

On obtient

nx) = n [Z Pjécj] = H[Z pi((1 = f(cj))oa + f(Cj)5o)J
j

j
= n [(1 - > pf(6))a + ) P/f(Cj)50] = ¢[Z ij(Cj)]
j j j

— £ EIFX)]).

Si Fx est continue alors elle peut étre encadrée par FJ.Jr et Fj* t.g.
N(F7) <N(Fx) < I'I(Fj*); puis passe a la limite et CV monotone.
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© Classification et comparaison de risques

@ Application: réassurance optimale
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Le contrat de réassurance optimal

La question centrale ici est

Quel type de réassurance est le plus intéressant
pour un assureur sachant que le montant de la
prime de réassurance est fixé ?
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Critéres de choix

Soit S le montant du sinistre que I'assureur doit couvrir.

Supposons que les traités de réassurance satisfont certaines
caractéristiques: la part cédée au réassureur doit étre

— continue et non-négative,
— non décroissante,
— augmente moins vite que le montant des sinistres.

Plus précisément, c’est un élément de

’

I ={()]1(0)=0;0</(s) <1}
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Des contrats type appartenant a 7 sont

— la quote-part: I(s) = as, pour un « € [0, 1];

— le stop-loss (S: montant agrégé) ou I'excédent de sinistre par

risque (S: montant individuel): I(s) = (s —d)*, pour un d > 0.

Supposons que I'assureur décide du montant P a allouer pour sa
réassurance. Il choisit ainsi un contrat dans I'ensemble

[Zp = () € Z1N(I(S)) = P},

ou I, est le principe de calcul de prime du réassureur et P est
inférieur a la prime d’assurance.
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Lassureur considére le montant du sinistre aprés réassurance:

Z=S-1(S).

Il optimise certaines caractéristiques de cette variable, son critére
noté ¢ dépend donc de la distribution de Z.
Nous supposerons que I'assureur minimise c(Fz) sur Ip.

Rq: un certain nb de critéres d’optimisation conduisent a des
préférences cohérentes avec I'ordre >gp», donc de la variabilité.

Dans la pratique: avec ces critéres, un sinistre aprés réassurance
est préféré s'il est inférieur au sens de l'ordre >gp> (ou stop-loss).
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Definition

Si la propriété suivante est vérifiée: Y, € I avec Z; = S - [i(S),

Zi<sp2 Zo = C(Fz) <c(Fz),

Alors on dit que le critere d’optimisation ¢ préserve l'ordre de
variabilité sur 'ensemble 1.

Caractérisation: d’aprés la définition de la dominance stochastique
d’ordre 2, on peut conclure qu’un critere qui préserve 'ordre de
variabilité peut s’écrire sous la forme

c(Fz) = E[v(2)],

ou v est croissante et convexe.
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Exemples de critéres d’optimisation (pour I’assureur)
préservant I'ordre de variabilité.

— Maximisation de I'utilité espérée du résultat net (prime
d’assurance et réassurance fixées):

e(Fz) = —E[u(N(S) - P - 2)],|

ou
o u est la fonction d’utilité de I'assureur (croissante et concave),
o [1(S) est la prime d’assurance pour le montant du sinistre
initial S,
@ P estla prime de réassurance identique pour toutes les
formes de contrat,
o et Z est le montant du sinistre aprés réassurance.
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— Minimisation de la variance de la part conservée du sinistre
sous contrainte d’égalité des moyennes.

Rappelons la transformation stop-loss sur le risque Z :

) =EZ-0"1= [ @-par) = [ R,
qui permet de comparer trés facilement les moments puisque
E[ZX] = k(k - 1)f0°° 22 nz(2)dz, k=2

Onsaitque Zj <gpp Z» = nz(z) <nz(z), donc

Zi<spp 22 = BE[ZK|<E[Zf] (k=2)
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Sous contrainte E[Z;] = E[Z,], on a donc Zy <gp» Z» implique
Var(Zy) = E[Z?] - (E[Z:])® < E[Z5] - (E[Z)])? = Var(Z).

Si I'on suppose par exemple que le principe de calcul de
prime du réassureur est celui de I'espérance mathématique
(M:(I(S)) = (1 + B) E[I(S)]), alors E[Z1] = E[Z],

(Zi = S - 1i(S)) et I'on peut poser

c(Fz) = Var(2) = E[(Z - E[Z])3].

w(Z) = (Z-E[Z])? / convexe dc répond a la caractérisation.
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— Minimisation de la prime d’assurance: I'assureur préfere
retenir un risque aprés réassurance pour lequel il fera payer
lui-méme la plus petite prime a son assuré.

La prime MN(X) demandée a I'assuré est la somme des primes
de I'assureur N(Z) et du réassureur P:

N(X) =P+N(2).|

Puisque P est fixée, minimiser IN(X) revient & minimiser M(Z2).

En posant un critére c¢(Fz) = MN(Z2), il faut choisir un principe
de calcul de prime cohérent avec la relation >gpo: par ex.,
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a) la prime pure: M(Z) = E[Z];
b) 'espérance mathématique: M(Z) = (1 + B) E[Z];

¢) la variance: M(Z) = E[Z] 4 BVar(Z) (sous la contrainte que
le réassureur utilise I'espérance math.);

d) I'écart-type (idem que c);

e) princ. exponentiel: M(Z) = o' InE[e*?] (exp. ,/ convexe);
f) la valeur moyenne: N(Z) = f~'E[f(Z)], avec f convexe, ,/;

g) l'utilité nulle: E[u(N(Z) — Z)] = u(0).

Eneffet:  Zy <spp Z», Y = E[u( - Z)] < E[u(M - Zy)].
Donc

E[u(N(Z1) = 21)] = E[u(M(Z) - Z2)] = 1(Z) <N(Z).
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— Minimisation de la probabilité de ruine: 'assureur choisit son
risque de maniére a diminuer sa probabilité de ruine:

|c(Fz) = vz(u),

ou u sont les fonds propres initiaux.
On se place aussi sous la contrainte d’égalité des moyennes
E[Z1] = E[Z,],

i.e. le principe de calcul du réassureur est celui de
'espérance mathématique.

< lide 302
En effet, 21 Ssp2 22 } -

E[Z1] _ E[Zg] = Yz, (U) < %022(“)
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— Maximisation du coefficient de Lundberg (cf plus loin).

Zy <sp2 2>

De méme,
E[Z1] = E[Z,]

} = Rz1 > R22

et on peut choisir
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Theorem
Soit S un risque, |1 et > deux contrats de réassurance dans I avec

E[h(S)] = E[l2(S)].
Si  dc >0 tel que

@ I1(s) < k(s)pour0<sc<c,
@ 1(s) = k(s) pour s > c,

Alors
Zy <sp2 2,

ou Zy et Zo sont les deux montants de sinistres aprés réassurance.
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Preuve.
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Le contrat de réassurance optimal pour I’assureur

Le choix du type de contrat de réassurance est fonction de deux
parameétres:

— le principe de calcul de prime du réassureur,
— le critére d’optimisation de I'assureur.

Cas 1: I, est le principe de I'espérance mathématique et le critére
de minimisation est cohérent avec I'ordre de variabilité.

Lensemble des contrats se réduit a (8: chargement de sécurité)

Zr = () e Z1 (1 +)ENS) = PL]
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Theorem

Pour tout critére d’optimisation préservant I'ordre de variabilité, le
traité de réassurance optimal sur I'ensemble 1 p est de la forme

l4(s) = (s - d)™,

ou d est tel que (1 + B) E[l4(S)] = P.

Preuve.
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Cadre du modeéle collectif en assurance

Considérons maintenant un modele collectif, avec des montants
de sinistres individuels X; i.i.d.

Supposons que le contrat de réassurance doit étre de la forme

n

T(n, X1, Xg, ..., Xp) = Z I(x;), avecle Ippgn,
=

ou n est la réalisation de la v.a. N.

Dans ce cas,

|(1+B)E[T(S)] = P = (1+B)EIN]E[((X)]. |
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Theorem

(Réassurance optimale par sinistre). Pour tout critere d’optimisation

préservant I'ordre de variabilité, le contrat de réassurance optimal
sur I'ensemble I p est donné par

n

T(n, X1, X, o Xn) = (%= )T = D" lg(x)
j=1

=

avec d tel que E[(X; — d)T] = UTI;E[N]'

Preuve (analogie avec le résultat précédent).

¥ risque individuel, le contrat I4 est optimal, le risque retenu est
moins variable que tout autre risque retenu. Puisque la dominance
stoch. d’ordre 2 est stable par composition, il en est de méme pour
le risque agrégé. Le contrat optimal est donc un EoL par risque.
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Cas 2: I, est le principe de la variance et le critére d’optimisation
est le critére de la moyenne-variance du résultat net.

Lensemble des contrats se réduit a

\Tp = {I(.) € T|B[I(S)] + pVar(/(S)) = P},

ou B est un coefficient de chargement de sécurité.

Theorem

Supposons que le critere d’optimisation est la moyenne-variance du
résultat net (aprés réassurance), le contrat de réassurance optimal
sur 'ensemble Ip a la forme I,(s) = as, ou « est tel que

E[N(l(S))] = P.
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Preuve.
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@ Théorie de la ruine
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Introduction

Lobjectif de cette partie est d’étudier le processus de richesse
d’'une companie d’assurance au cours du temps:

— augmente au cours du temps avec la collecte des primes;
— diminue lors de remboursement de sinistres.

Lorsqu’il devient négatif, on parle de ruine.

Rq: c’est une ruine “mathématique”. Lassureur peut faire appel a
ses actionnaire, emprunter, consommer ses fonds propres...

Une ruine économique serait une situation comptable dans
laguelle la companie ne peut plus faire face a ses engagements.

250/354



@ Théorie de la ruine
@ Le modéle de Lundberg
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Le modéle de Lundberg

Modele proposé par Lundberg dans sa thése de doctorat en 1903.

Son modele est caractérisé par cing composantes:

@ les sinistres : les montants de sinistres (Xx) sont positifs et
i.i.d., de distribution commune Fx (avec la densité associée
fx), et de moyenne u = E[X1].

@ la survenance des sinistres : les sinistres arrivent a des
moments aléatoires

0<Ti<Ta<..ps.
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© le processus de survenance : le nombre de sinistres dans
Iintervalle [0, t] est noté

N(t)=sup{n>0: T, <t}, t>0.

Equivalence des événements {T, < t} = {N(t) > n}.

© Les durées inter-sinistres : i.i.d. de loi exponentielle Exp(A).
On note ces durées

Yi=Ti, Yo=To-Tqy, .., Yk=Tk— Tk

@ Les suites (Xx) et (Yk) sont indépendantes entre elles.
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Une conséquence des 2°™M¢, 38Me gt 46Me points est que

’ (N(t))t=0 est un processus de Poisson homogéne d'intensité A > 0.

En effet,

Ainsi, Vt, N(t) ~ P(at).
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Propriété:

Le processus de Poisson est un processus markovien tel que N(0) =
0, et (N(t))t=0 est un processus a accroissements indépendants et
stationnaires.

Preuve.
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Proposition
Si N(t) est un processus de comptage qui vérifie les propriétés :
1 N(t) est un processus a accroissements indépendants,
2 N(t) est un processus a accroissements stationnaires,
3-1 P(il y a plus d’un sinistre a un moment donné) = 0, ou
3-2 P(infinité de sinistres sur un intervalle de longueur # 0) = 0,
Alors  N(t) suit une loi de Poisson pour tout t.

Preuve. En exercice.

Rq: le processus des pertes agrégées (S(t))t»o du portefeuille

N v o
S(1) :{ (%],.21 Xi si N(t) >0,.

est Poisson composé.
si N(t)=0 P

Ce processus est a accroissements indépendants et stationnaires.
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@ Théorie de la ruine

@ La probabilité de ruine
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La probabilité de ruine

Le processus de richesse de I'assureur a la date t vaut:

[U(t) = u+ct - S(1)|

Ce processus est aussi appelé processus de réserve, processus
de risque ou “surplus” de I'assureur.

Hypotheses:

— les revenus de I'assureur sont linéaires: crédible s’il y a
beaucoup d’assurés, qui paient leur prime de maniére
équi-répartie au cours du temps;
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— les sinistres gardent la méme distribution au cours du temps:
on néglige l'inflation monétaire, ou la déviation de certains
parametres de la loi sous-jacente;

— on ne tient pas compte des intéréts dégagés par le placement
des primes collectées sur les marchés financiers.

Rq: en réalité les intéréts des primes placées permettent a
'assureur de survivre, autant que la mutualisation induite par la
LGN (particulierement dans les branches a développement long)!

Voici une trajectoire typique d’un processus de risque dans le
modeéle de Cramer-Lundberg :
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Au 5°™ sinistre, les sinistres cumulés (X; + ... + Xs) sont > aux
fonds propres plus primes pergues u+ c(Y1 + ...+ Ys): il y a ruine.

262/354



Definition
La probabilité de ruine sur un horizon de temps fini est

Y(u, T) =P(U(t) <0 pourunt < T),

avecu>0et0< T < oo,
En horizon infini, on écrit

Y(u) = ¥(u, ), u>0.
La durée avant la ruine en horizon fini vaut
(T)=inf{t : 0<t<T, U(t) <0},

avec0 < T < 0.
Nous écrirons T, = 1,(o0) pour un horizon infini.
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Proposition
— — Cc—-Au p.s.,

avec u = E[X]] et A paramétre du processus de Poisson.

Preuve.
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Remarquons aussi que E @] — ¢ — Au : c’est une sorte de LGN
pour le processus (U(t))sso-

La condition de profit net du modéle de Lundberg s’écrit

C
C>/l,u (=4 ’0:,1__1>0
u

Alors U(t) P% o : certaines trajectoires peuvent conduire a la
ruine, mais cela n’a pas lieu avec probabilité 1 a horizon infini.
C’est donc aussi une condition de non-ruine (y(u) < 1).

Vocabulaire: p est appelé coefficient de chargement de sécurité.
C’est une prime de risque destiné a éviter une ruine certaine.
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Ainsi, le montant des primes pergues sur la période [0, t] vaut
ct=(1+p)ut=(1+p)E[S(1)].

On pense immédiatement au principe de prime de I'espérance,
sauf que ici p peut dépendre des caractéristiques du processus...
(attention donc!)

Il existe plusieurs fagons de calculer la probabilité de ruine, ou d’en
donner des majorants:

— la formule de convolée de Beeckman,
— les équations intégro-différentielles,

— la théorie des martingales,
N
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Introduisons L la perte maximale du montant agrégé :

L= r?z%x{s(t) —ct}|.

y(u) = P(U(t) <0pourunt>0)

= 1—P(U()>Opourtoutt20)
= 1-P(u> S(t) - ct pour tout t > 0)
— 1-B(uxL)=B(L > u)=1-F(u).

Comme ¥(0) < 1 sous la condition de profit net, on en déduit que
¥(0) =1-F.(07) <1

= L : mélange d'un dirac en 0 (avec proba. (1 —(0)) et d’'une loi
continue (avec proba. ¥/(0)).
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Voici un résultat central de la théorie de la ruine:

Theorem

Le montant agrégé de la perte maximale a une distribution
géométrique composée donnée par

M
L=>L
i=1
avec P(M=m)=(1-y(0)w(0)™ LiZS()-clo etto=
inf{t : S(t) —ct > 0}.
De plus,

WO) = —— et 1-Fi(x) = :fom“ ~ Fx(u)) du.
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Preuve. Sur la figure suivante on voit que la perte agrégée est
I'addition des montants Ly a L4, les différences entre le précédent
et le nouveau niveau le plus bas. Ce sont les “records en bas”.

A
U®)
i Xu %
! i
N i = X
L. i
: I
! i X4
Ls | i
! |
|
I
La i X
i
I
: : : : | >
Y Y2 Ys Y4 Ys
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M est alors le nombre de records. Nous pouvons calculer
P(M = 0) = P(réserves nulles et pas de ruine) = 1 — (0).

Ensuite, on utilise la procédure suivante pour M > 1.

@ Aprés un record, on prend un niveau des réserves égal ala >,
des records précédents. On le ramene a 0 pour retrouver une
proba de ruine classique avec des réserves = 0.

© Puisque le processus de Poisson a des incréments L et
stationnaires, la proba que le processus de risque atteigne un
nouveau record en bas est égale a la probabilité de ruine
avec un capital de départ initial nul.

D’ou aprés m records,

M~Gy(0) o PBM=m)=(y(0)"(1-y(0)).
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© Déterminons maintenant la loi des L;. Posons
G(u,y) = P(y < 00, U(ty) €] — 00, —y[, U(0) = u),
et montrons que

aG(u,y) 2

)~ ety - [ (- xp) e - Futu )|

Pour cela, décalons le pb de 0 en dt:
— avec proba (1 — Adt) : pas de sinistre, réserves = u + c dt.

— avec proba Adt : un sinistre de montant X = x:

@ si x < u: pas de ruine, réserves = u + cdt — x;
@ siu < x < u-+y: ruine, mais cela ne répond pas aux conditions;
@ si x> u+ y: ruine, dont l'intensité est donnée par x.
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On en déduit que pour dt petit :

G(u,y) = (1-1dt)G(u+cdt, y)+/ldt[f0u G(u+ cdt — x,y) dFx(x) + fm dFx(x)|+o(dt).
u+y

On obtient le résultat avec la définition de la dérivée partielle,

0G(u,y) lim G(u+ cdt,y) - G(u, y)
du  dt—0 cdt

Montrons maintenant que
+y
G(z,y)- [f G(u,y)(1 = Fx(z—-u)) du - f (1 = Fx(u)) duj.

Nous avons tout d’abord que [BG(”)] = G(z,y) - G(0,y).
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Puis

foz f;u G(u-x,y) dFx(x)du = foz j(;z_v G(v,y) dFx(w) dv,

avec le changement de variable
vV = UuU-xX, 0 < vV <2z,
=
w = X. 0 < w<z-v.

D’ou
fz fu G(u—x,y)dFx(x)du = fz G(v,y)Fx(z—-v)av.
o Jo 0
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D’autre part,

fozf:dex(x)du:foz(1—Fx(u+y))du:fyz+y(1—FX(v))dv,

En prenant les deux parties, on obtient le résultat et on en déduit

G(0,y) = %fymﬁ ~ Fx(u)) du.

On montre par CV dominée que G(z,y) = 0. De plus, (admis)

foz G, y)(1 - Fx(z - u)) du foz/z G, y)(1 - Fx(z - u)) du

+ G(u,y)(1 = Fx(z—u))du
z/2

V4 V4 V4 V4
(1-m(3)+36(59) =0
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D’ou la probabilité de ruine avec des réserves initiales nulles

00) = 6(0.0) =5 (1= Fe@) du =% ([x(1 - (s + [ xPx(x ) = .

De méme la distribution de L se caractérise par

) _ G(0,y)  G(0.y)
T=Rul) = Bl =207 = G(0.0)
1

= ﬁj;mﬁ — Fx(u)) du

ot f,(x) = £(1—FX(X)),

puisque G(0,y) =P(ilyaruineetLy >y) =y¢(0)P(Ly >y). m
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On obtient sous la condition de profit net la formule de convolution
de Beeckman (approchable par I'algorithme de Panjer)

car
= y(u)=1-F(u),
- L=3" L

277/354



e Théorie de la ruine

@ Probabilité de ruine et distributions a queue fine
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Probabilité de ruine et distributions a queue fine

Supposons ici qu’il existe un voisinage de 0 sur lequel la transform.

de Laplace de la loi du montant des sinistres est définie:

dr >0, Mx, (r) < oo.

C’est une caractérisation des distributions a queue fine.

Exemples:
— la loi exponentielle,
— la loi Gamma.
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Dans certains cas, on peut donner explicitement la proba de ruine.

Exemple.
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Transformée de Laplace de la probabilité de ruine

Quand on ne peut pas calculer explicitement la proba. de ruine, on
peut obtenir sa forme par inversion de la transformée de Laplace.

Theorem
Soit L le montant agrégé de la perte maximale, alors

(-
ML) = o a @) ()~ 1)

La transformée de Laplace de la probabilité de ruine est donnée par

foo e"y(u) du = 1F[ML(r) -1].
0
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Preuve.
Déterminons la f.g.m. de L (ss I'hyp. que X en ait une)

1-4(0)

ML(I') = MM(In ML1(I')) = Wy

ou M, (r) = ,117](;00 e”(1 - Fx(y))dy

= 1([ery_ e —Fx(y))]: +fooo(eryr_1) de(y))

u r
1

= E(Mx(l’) - 1).

283/354



1-y(0) _ 1-y(0)

1= (My(r)—1) 1= 5(Mx(r) 1)

(
(=)
O GER)

ML(I‘) =

Enfin,
M(r) = fomemdﬁ(u):1-¢(0)+fomef“d(1-¢(u))
= 1w~ [ e
— 1-u(0) - [y +r [ eMu(u)du
0

= 1+rf e"y(u) du u
0
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Exemples
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Coefficient d’ajustement et majoration de la proba de
ruine

Nous avons vu qu'il était souvent difficile de fournir une forme
explicite de la probabilité de ruine.

Une idée consiste a en donner un majorant. Introduisons le coef.
d’ajustement, noté R, solution de I'équation d’ajustement

c
1427 = E(e™) = My, (r).

Cette équation en r admet une solution non nulle car la droite
d’équation 1 + (c¢/A) r a une pente plus grande que la dérivée en 0
de My, (r) d’aprés la condition de profit net, et My, est convexe.
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Exemple
Supposons que X; ~ Exp(a), alors R vérifie

a
a—-R’

c
1+-R=
+/l

Ainsi,

Donc

R:af—dzaf—;:a(1—#): il .
1+p
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Theorem

Dans un modeéle de Lundberg avec des fonds propres initiaux u, la
probabilité de ruine est majorée par

w(u) < e .
Plus précisément, on a

e—Ru

= E[e—R U(Tu) |TU < oo] ’

y(u)

Preuve.
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Proposition
La probabilité de ruine est asymptotiquement de la forme

w(u) ~Ce MY,

avec
R [ pee -
C= [—f xe™Fx(x) dx
PH Jo
De plus la limite asymptotique de la densité de l'intensité de la ruine

est

R = =
— | e™Fx(y + x)dx
PH Jo

Preuve.
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Ordre stochastique et probabilité de ruine

Proposition

Considérons deux processus de risque Poisson-composée avec
— un paramétre de Poisson identique,
— des distributions des sinistres X et Y tels que E[X] = E[Y],
— des proba. de ruine yx(u) et yy(u),
— des taux de prime instantanés identiques.

Alors

X<sp2Y = yx(u)<yy(u),
X<spp Y = Rx > Ry.
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Preuve.
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Impact de la réassurance prop. sur la proba. de ruine

Le modéle de Lundberg ne met en jeu qu’'un seul type de risque.
La quote-part ou I'excédent de plein apporte ici la méme
couverture, a savoir un taux de rétention de I'assureur valant a.

Soit y le taux de commission. Voici la nv équation d’ajustement :

(@+y(1-0a))c
A

1+ R, = E[e[ 1] = My, (aR)).

— Siy =0, le nouveau coefficient d’ajustement vaut R, = g;
— Sivy >0, le nouveau coefficient d’ajustement satisfait R, > g.

¥(u) \, exponentiellement avec l'inverse du taux de rétention.
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Impact de la réassurance non-proportionnelle sur R

Soit un contrat en excédent de sinistre avec priorité P et portée
illimitée. Pour chaque sinistre, 'assureur conserve min( X, P).
Soit q(P) le taux de prime du contrat EoL.

Le coefficient d’ajustement est la solution strictement positive de

g 0zaPhey fp e dFx(x) + %P (1 Fx(P)).

A 0

En général, il n’existe pas de solution explicite.

Rq: si le réassureur utilise le méme principe de prime que
'assureur, on montre que R, > R.
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@ Théorie de la ruine

@ Distributions a queue épaisse
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Distributions a queue épaisse et assurance

Soit un portefeuille d’assurance de n risques (n déterministe)
— chaque risque i est de loi S; ~ Pareto(a, 1), avec a > 1;
— chaque risque a une espérance finie donnée par (o — 1)~".

On cherche la valeur de la prime pure par la moyenne empirique

Cet estimateur est naturellement sans biais et CV (LGN) vers

E[S] = (e-1)".
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Supposons savoir que S = maxi<j<n Sj est < M (constante).
Question: quelle est alors I'espérance de la moyenne empirique?

Elin| Sy < M] =

Lerreur relative est donnée par

Elin SF% <M= (@=1)" _ (1M~ (14 M)

(@— 1)1 I I (V)R
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Choisissons M tel que

P(Sy* <M)=p=(B(S1 <M))"=(1-(1+M)™)". pelo.1],

et exprimons l'erreur relative a I'aide de p:

Elin| ST < M] — (a — 1) (- pl/m=(e=Nla _ (1 _ p1/n)

(1) pi/n

A titre d’illustration, le tableau suivant donne les erreurs relatives
pour p = 0,99 et n = 1000:

@« | 105 | 11 | 115 | 12 | 125 | 13 | 14 | 15

Erreur | -60,7% | -38,6% | -25,6% | -17,6% | -12,5% | -9,1% | -5,2% | -3,2%
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Quelques remarques:

— en assurance incendie, on a souvent 1 < a < 1,5;
— n = 1000 = la LGN peut s’appliquer;
— p = 0,99: tient compte des grandes valeurs de I'’échantillon

Mais

e sia = 1,25 (queue épaisse): la prime pure calculée
sous-estime de plus de 12% en moyenne la valeur théorique
dans 99% des cas;

e c’est une erreur importante;

e attention donc aux procédures usuelles d’estimation des
primes: elles doivent étre corrigées...
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Réassurance et distributions “dangereuses”
Une autre maniere de considérer la dangerosité d’une distribution
consiste a regarder I'espérance résiduelle.

Exemple: un assureur réassure un risque S par un EoL de priorité
M et de portée illimitée. Sa prime pure de réassurance vaut

M,(M) = E[(S-M)*] = E[(S-M) Lissm] = B(S > M)E[S-M| S > M|

— la proba. de toucher le traité (fréq. d’occurence): P(S > M)

— le montant moyen résiduel du sinistre une fois le traité
déclenché: e(M) =E[S-M|S > M.
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A fréquence d’occurence fixée, on peut donc avoir des charges
sinistres tres différentes selon le comportement de e(M) lorsque
M devient trés grand.

Ceci dépend de la distribution de S...

— S~ &xp(A):
P(S > s) = exp(-415) e(M) = %
— S ~ Gamma(a,p):
Y i L1
P(S>s)_fs B x r(a/)dx e(M)_,B
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— S~ Weibull(t,1):

P(S > s) = exp(—x") e(M) = M7

— S ~ Pareto(a,1):

M+
oa-1

P(S >s) = ( e(M)

(07
1+ x)
Ainsi, la fonction d’espérance résiduelle tend vers l'infini pour des
distributions a queue épaisse...

Autrement dit, leur queue de distribution décroit moins vite que
celle de I'exponentielle! Lassureur doit étre trés attentif lorsqu’il

couvre ce type de risque (cat. nat., incendie, risques industriels)...
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e(u)
1.0 15 2.0 25 3.0

0;5

0.0

Weibull: tau < 1
or lognormal

Gamma: alpha > 1

Exponential

Weibull:
tau > 1
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Formellement on a:

Definition
Une distribution F a une queue épaisse si elle n'admet aucun
moment exponentiel, i.e. VYe > 0:

lim e€* F(x) = co.

X—00

En particulier, si X a une distribution a queue épaisse, alors

Mx(t) = E[e¥] = 0Vt > 0.
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Caractérisation probabiliste des queues a variations
régulieres

Definition
(a) Une fonction L positive, mesurable sur (0, ), est a variations
lentes en o (noté L € Ry) si

jim (%)

=1 .
AT s t>0

(b) Une fonction H positive, mesurable sur (0, ), est a
variations réguliéres en « d'indice « € R (et noté H € R,) si

fim H)

= 1%, t>0.
X—00 H(x) >
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Rq:

— si H € R,, alors H peut tjs s’écrire comme
H(x) = x* L(x).

— les distributions avec queues a variations régulieres sont une
généralisation de la loi de Pareto.

Ex. de fonctions a variations lentes: (In(1 + x))*, In(In(1 + x)).

Contre exemple: la fonction 2 + sin(x) !

Présentons maintenant un résultat important sur la convolution
des distributions avec des queues a variations réguliéres:
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Proposition

(a) Si Fy et F sont 2 distributions positives t.q. Fi(x) = x™L;(x)
poura >0 et L; € Ry(i = 1,2), alors la convolution G = Fy « F a
une queue de distribution a variations réguliéres t.q.

G(x) ~ x(L1(x) + Lo(x)),  x — co.

(b) Si F(x) = x™*L(x) poura >0 etL € Ry, alorsVn > 1:
F(x) ~nF(x),  x— oo.
F(x) = x™L(x) pour a > 0 et L € Ry, alors

P(Sp > x) ~ P(M, > x), X — oo,
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Preuve. (a) Cherchons un équivalent de G(x) = P(Xy + Xz > x).
) {Xy > x}U{Xo > x} c{X;+Xo>x}, donc

P(X1 + Xo > X)
P(X1 + Xo > X)

P(X1 > x) + P(Xz > x) = P(X1 > x) P(X2 > x)
(F1(x) + Fa(x)) (1 + o(1))

puisque P(Xq > x)P(Xz2 > x) = o(P(X; > x)), i =1,2.  On déduit

que

1 <lim inf _ G
x> Fy(x) + Fa(x)

ii)
{X14+Xo > x} c{X1 > (1-6)xJU{Xa > (1-9)x}U{X1 > 6 x, Xo > § x}
avec 0 < 6 < 1 (faire un graphique), donc
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(X1 +X5 > X) (X1 ( ) )+P(X2 (1—5)X)+P(X1 > 5X) P(XQ > 5X)
et

. Li((1 = 90)x) + Lo((1 - 8)x)
x—o0 F1(X) + F2(x) (1=6)™ fim fﬂiﬂ Ly(x) + Lo(x)
= (1-6)" -1 lorsqueé — 0.

A

On a utilisé la propriété selon laquelle une somme de fonctions a
variations lentes est une fonction & variations lentes.

(b) D’apres (a),

F™(x) ~ (L1(X) + ... + Ln(x)) x™* = nL(x) x™® = nF(x).
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(c) Remarquons enfin que

P(Mp<x) = P(X1<X,...X, <x)=F"(x)

P(M, > x) = 1—F”( y=1-(1-F(x))"
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Probabilité de ruine et distributions a variations lentes
ou régulieres

Le théoréme de Karamata stipule qu’une fonction a variations
lentes peut étre considérée comme une cste pour l'intégration (et
parfois pour la dérivation).

Theorem
SoientL € Ry eta > 1. Alors

Z(x):foot“’L(t)dt ~ (a=1)"Tx T L(x).

Preuve partielle.
Nous montrons uniquement que x®~'Z(x) est une fonction a
variations lentes.
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Soientx >0, e>0, Ay telque Vy=>n,

(1-e)L(y) <L(xy)<(1+€)L(y)

De plus,

()" Z(yx) = y*! f m(f)w L(t) a_ yo! f "o L(tx) dt.

xy \X X y

Pour tout y > 7:

(1-ay™'z(y) = (1-e)y f CreL(ta
y

IA

ye! f "L (i) dt = (yx)* Z(yx)

IA

Autrement dit, y*~1Z(y) est a variations réguliéres. [ ]

(1+e€) “‘f rrL(t)dt = (1 +e)y* ' Z(y).
y

323/354



Rappel: dans le modele de Cramer-Lundberg, la probabilité de
ruine a la forme suivante

_ P N 1 " £xm
v =7 3 () e

avec Fi,(x) =1 ["7(1 - Fx(u)) du.

Sous la condition Fx € R_, pour un @ > 1, nous conjecturons que

TR ER TR TER
FLW( 1+p 1+p FL1(u T+p &“\1+p

=1
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Attention toutefois a 'intervention des limites!

— Une condition d’uniformité est nécessaire pour utiliser le
théoréme de CV dominée...

D’aprés le théoréme de Karamata, nous avons alors

Fi,(x) ~ (-7 xTL(x) et y(u) ~ (e-7 Ut L(u).

p pu

Remarque: ce résultat est trés # du précédent ou la vitesse de
décroissance était exponentielle (y(u) ~ Ce™RY).

Les proba. de ruine sont donc bc plus importantes lorsque u
devient grand.
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Les distributions sous-exponentielles

Definition
Une distribution F de support (0, o) est sous-exponentielle, si
pour toutn > 2: _
F*n
jim )
= F(x)

Lensemble des fonctions de distribution sous-exponentielle sera
noté S.

N.B.: toutes les distributions a variations réguliéres sont
sous-exponentielles.
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—

si FeS, alors
P(Sp > x) ~ P(M, > x) ~ P(Ji tel que X; > x).

Interprétation: les grandes valeurs de la somme de variables
sous-exponentielles proviennent du max. de ces variables. La
plus grande valeur donne quasiment sa valeur a la somme:
un unique sinistre peut couler la compagnie d’assurance.

Fr(x)

comme liminf =) > n, il est suffisant de montrer que
X—00
F*(x
lim sup— () <
X—00 F(X)

En réalité, on peut établir que si la condition est vérifiée pour
n =2, elle I'est pour tout n.
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Contre-exemple:

une distribution qui n’est pas sous-exponentielle peut par exemple

étre la loi exponentielle.

En effet notons S, = Xi + ... + X, et supposons que les
Xi ~ 8xp(ﬁ).

Ainsi, S, ~ Gamma(n,B). D’aprés la régle de I'Hospital,

P(S, > x) p'x"1eBX B B 1
P(X;>x)  T(n)peBx  (n—1)!

Donc tous les éléments de la somme participent aux grandes
valeurs!
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Propriétés des distributions sous-exponentielles

Proposition

(a) Si F € S, alors uniformément pour tout y appartenant a un
compact C de (0, ):

- Flx-y)
M Ee oW

(b) Si (x) est vérifiée, alors Ye >0, lim e*F(x) = co.

X—00
(c) SiF eS8, alors, soite > 0 fixé, A une constante K telle que
YVn>2etx >0, _
F*(x)
_ <K(1+¢€).
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Preuve.
(a) Rappelons que  P(X; + Xz < x) = [ B(X; < x — t) f(t) dt.
Soientx >y > 0,

P00 g FOZ P g (TR g
0

FO)
Y E(x - t) X F(x - t)
1 fo o ()dt+fy Fog (et
> 14 Fy) + DE R0 - Fi)
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On conclut en remarquant que

L (FE0 G
tim (k=1 FO)) (R0~ Fy) " = |

(b) D’aprés (a), Folne Ry, ce quiimplique que

lim x¢F(In x) = oo.

X—00

(c) Soit ap = supysg % et T < .
Ex(n+1) X BN (y _
F (X)—1+f F(x-y)
0 F

oo w W
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et donc

X I‘:*n _ X ,‘:*n _
ant1 <14 sup f MdF(y)—l—supf MdF(y)
0 0

0<x<T

Posons A(T) = sup OX F_*r,l__((’)‘(;y) dF(y) < =.

Par CV dominée, on a pour T suffisament grand:

fx F(x-y) F(x-y) “F(x-y)
0

sup
x>T

Fix-y) F(x =T Jo F(x)

dF(y) < apsup | —————=dF(y) < an(1+e€).
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Enfin, puisque a1 = 1,

@n41

<
<

IA

IA

IA

14+ A(T) +an(1+€)

(1+AM) + (1 +e)((1+A(T) + an1(1 +¢))

n

A+AM)) > 1T+ +(1+e)"

i=0
n

(1+€)"(1 +A(T))[Z(1 +e)

i=0

(1+¢e)"(1 +A(T))(1 +

1

+(1+¢)"

)SK(‘I—i—e)”.

333/354



Calcul de probabilité de ruine des distributions

sous-exponentielles

Soit le montant agrégé des sinistres jusqu’a l'instant t donné par

N(t)

S(t) = )" Xn.
n=1

On s’intéresse a la proba (avec p;(n) = P(N(t)

(o)

P(S(1) < x) = Gi(x) = )" pi(n)F™"(x)

n=0

Rq: dans Cramer-Lundberg, N(t) ~ P(At) = pi(n) = (/lt)”%ﬂ

n))

x> 0.
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Nous formulons maintenant un résultat sur le montant agrégé des
sinistres dans le cas sous-exponentiel:

Theorem

Supposons que F € S, fixonst > 0, et faisons 'hypothése que
(pt(n)) satisfait

D o(1+6)pi(n) < o

n=0

Alors G; € S et

Gi(x) ~ E[N(D] E(x),  x — co.

Ra: Yo o(1 +€)"pi(n) < oo équivaut a 33>, pr(n)e"™ analytique
au voisinage de 0, ou encore N(t) admet une f.g.m. autour de 0.
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Preuve.

Soite>0telque X7 (14 ¢€)"pi(n) < co.

,‘_—*n
?(S)() <K(1+¢€).

On peut ainsi écrire que

) F*n
Z <szt (1 +€)" < 0.

n=1

Grace au théoréme de CV dominée, on peut intervertir les limites,

et on obtient

Z npi(n) =E[N()]. m
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Exemples:

— le modéle du processus de Poisson (E[N(t)] = Var(N(t)));

— le modéle du processus Binomial négatif: ¢c’est un processus
d’arrivée des sinistres qui vérifie Vt:

Fy+n)( B V([ t
P = Ty (ﬁ+t) (,8+t) net =0
- E[N(t)]:%t Var(N(t))z%t(Hé)

En posant g = % p= et utilisant la formule de Stirling

et

F(x +1) ~ V2rx(x/e)”,

on obtient finalement  py(n) ~ ny“p”%.
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Interprétation du théoreme: la distribution de la somme agrégée a
la méme queue que celle des sinistres. Dans le cas ou les
distributions ne sont pas sous-exponentielles, la forme de la queue
de distribution dépend a la fois de celle de N(t) et de celle des X;.

Modélisation de ce dernier processus: le voir comme un
processus de Poisson mélangé.

Supposons que © ~ Gamma(y, ).
Considérons le processus de Poisson conditionnel a ©, de
parameétre A.

Alors le modéle marginal est un processus Binomial négatif.

[Cela revient a effectuer un changement de temps aléatoire.]
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On retrouve ensduite la proba. de ruine grace a la convolée de

Beeckman:
e N1\ 2
Lj = F:* Ll .
v =5 3 ) A

D’apres le th. précédent, si L1 € S alors pour des FP initiaux u
grands, on a:

00~ 72 Y (i) B = R = L [T Fw o

+p 1+p PU

n=1

Résultat radicalement # des distributions non sous-exponentielles
puisque I'on avait alors que y(u) ~ Ce~FY. Les probabilités
asymptotiques de ruine ont des vitesses de décroissance vers 0
bc plus lentes!

339/354



On a méme un théoréme de Cramer-Lundberg pour des sinistres a

queue épaisse:

Theorem

Considérons le modéle de Cramer-Lundberg avec la condition
de profit net vérifige.

Alors les assertions suivantes sont équivalentes:

(i) F, €S,

(ii) L €S,

() ) 1

Naturellement, ce théoréme induit des questions intuitives...
@ SiFxeS, alorsatonF, €S?
@ Réciproquement, si Fi, € S, alors a-t-on Fx € S ?
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Réponses: si Fx varie réguliérement, alors oui d’aprés le th. de
Karamata. Voici d’autres cond. suffisantes pour la 1°® question.

Proposition

Soit le taux de hasard de X, noté h(x) et tel que h(x) =
Soit la fonction de hasard associée H(x) = —In Fx(x).

Si I'une des conditions suivantes est vérifiée:

(i) lim sup xh(x) < oo,

X—00
xh(x)
H) < 1,

(ii) XIim h(x) =0, Xlim xh(x) = oo, etlimsup

X—00
. . Fx(x/2)
(i) E[X] =pu < oo et IlTjgp )

< o0,

Alors
FL1 eS.

x(x)

Fx(x)
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@ Théorie de la ruine

@ Etude du phénomeéne de ruine
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Quand et comment arrive la ruine?

Les questions d’intérét de cette derniére partie sont les suivantes:

— quelle est la taille du sinistre qui conduit a la ruine?
— quelle est la distribution asymptotique du temps de ruine?

— quelle est I'allure de la trajectoire du processus des réserves
juste avant la ruine?

On étudie ces questions suivant que les sinistres aient ou non des
distributions a queue épaisse...
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Rappel: la probabilité de ruine est donnée par ¢/(u) = P(L > u),

avec L = sup (S(t) — ct) = sup R(t).
t>0 t=0
On écrit R(t) de fagon discrétisée:
n
sup R(t) = sup Ry, ou R, = Z Z,
k=1

t>0 n>0

avec Zx = Xx —cYx et E[R(t)] = (1 + p)AE[X] — ct.

Si X admet une f.g.m., le coef. d’ajustement R vérifie

14 %R — My(R) = E[e™X].
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De plus,

Mz(R) = E[e™] = f " e dFz(y) = B[R]

. A Mx(R)

— EE RX Ez —-CF?\/ — A/1 F? — —
[ 1Ele™™] = Mx(R) R 1+ °R

On peut alors définir la transformée d’Esscher de Z, notée Z, dont
la f.d.r. vaut

[ e dFz(y)

G(x) Mz(R)

X
— [ ey,

(%)

avec pour espérance

E[Z] = Im x dG(x) = j:oo xe™ dFz(x) = My(R) > 0.

o0 [Se]
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1€" cas: X admet une f.g.m. au voisinage de 0.

Soit la distribution (f.d.r.) empirique des Z :

1 n
Hn(x) = n Z Lz <x)-
k=1

On sait d’aprés le théoréme de Glivenko-Cantelli que

sup |Hn(x) = Fz(x)| =0 ps.

XeR

7, est linstant de ruine et on note P(*) |a proba. conditionnelle a
I'événement 7, < oo.

On sait que si u — oo alors T, — o p.Ss.
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Enfin on a la propriété suivante:

sup |Hn(z,)(x) - G(x)) — 0 P - proba.
XeR

u—oo

Interprétation:

— au moment de la ruine, les v.a. Zx “changent” de loi et se
transforment en Zy;

— 0n passe

e d’'une marche aléatoire avec tendance négative...
e a une marche aléatoire avec tendance positive lorsque I'on
regarde ce qui s’est passé jusqu’a la ruine.

— plus précisément, on a le résultat suivant:
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Theorem
Lorsque u — oo,

(a) sup ’R(””) /ltE[Z]| -0  PU - proba.
te]01]
Ty — =%
(b) — 2 N, P - distribution
K+Vu

ou N a une distribution N(0, 1), et K est une constante.

() (R(Tu) U, R(ry) - R(z; )) Q@ PW  distribution

ou Q a une distribution non-dégénérée.
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Remarques:

—

—

R(7y) — u mesure I'importance du défaut;

R(7u) — R(7y) est la taille du sinistre qui provoque le défaut
(de loi # de Fy);

lim (t) = —Cc+ Au = AE[Z] <0 : R, estune marche

t—o0

aleatowe avec tendance négative.

Aux alentours de l'instant de défaut 7, R, se comporte
comme si la distribution des incréments de la marche
aléatoire changeait de Fz a G;

il y a un changement de la tendance (devient > 0) dd a une
accumulation de sinistres qui causent la ruine.
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28me cas: distributions sous-exponentielles. Dans ce cas,

sup |Higr,) (X) = Fz(x)] — 0 P(Y) — proba.

Theorem
Lorsque u — oo,

(a) sup |2
te]0,1]

R(t7y)

(b) ~AE[Z] 5 = Ze, P(Y) — distribution

R(ry)-u, R(7y)-R(ry)- L. i
(©) (R e((u)) (-] -7,  PW — distribution

ol Zyi, T non-dégénérées, et e(u) = E[X —u|X > u] = [

- AtE[Z]| -0 PO - proba

F( ax.

F(u)
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Interprétations et remarques :

— le comportement d’'une trajectoire de R, juste avant la ruine
apparait normale: elle ressemble a n’importe quelle autre
trajectoire;

— la ruine est causée par un unigue sinistre;

— il est tellement grand qu’on doit diviser par I'espérance
résiduelle pour obtenir une loi asymptotique de I'excés du
processus de risque par rapport a u;

— 71,4 converge a la vitesse e(u), qui est inférieure ou égale a u.

Le défaut a donc tendance a arriver plus vite que dans le
premier cas !
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ANNEXES
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Théoréme de convergence monotone

Soit (E, A, 1) un espace mesuré.

Pour toute suite croissante (f,) de fonctions mesurables sur E et a
valeurs dans [0, +oo[, la limite simple de la suite est mesurable et

Iim(ffnd,u) = f(limfn) d.

Corollaire: si les intégrales ff,, du sont toutes majorées par un
méme réel, alors la fonction lim f, est intégrable (donc finie p.p.), et
1

. L
on peut exprimer le résultat en disant que f, — f.

353/354



Théoreme de convergence dominée

Soit (E, A, 1) un espace mesuré.

Si (fn) une suite de fonctions mesurables sur E et a valeurs réelles
ou complexes, telle que

— (fn)new — fsurE;
— June fn. g, intégrable t.q. Yn € N, Vx € E, |f,(x)| < g(x);
Alors
fintégrable, et nli_r)r!oj;lfn —fl du=0.

Cecientraine:  lim [ fo du = fg lim fo o = [ f du.
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