Théorie du risque TD 1.

Exercice 1. Etablissez les identités suivantes:

E[(X —1),] = /F X @t ()

Exercice 2. Afin de déterminer la prime pure, nous pouvons choisir un principe de prime pénalisant différem-
ment la sous-tarification et la sur tarification, du type

Prime = argmin o (S —c)4] +BE[(c—S5)4]

Montrer que si a = 3, la prime est égale a la médiane et que si o # (3 la prime est égale au quantile d’ordre
a/(a+ B). Nous faisons ’hypothése que la distribution de S est continue.

Exercice 3. Montrez que quelque soient les risques X et Y de méme moyenne p , nous avons 1’égalité
suivante:

+00 1
/ (mx(t) —my (t))dt = 3 (Var(X) = Var(Y))
0
Ou mx (t) = E(X — t)4 est la prime stop loss pour un niveau de rétention ¢

Exercice 4. Soient les cotits de sinistres Xg, X1, X5 ... supposés positifs, continus et indépendants de méme
fonction de répartition F'. Nous souhaitons déterminer quand aura lieu le prochain sinistre ayant au moins le
méme colit que X ainsi que le montant de ce sinistre. Soit N le premier entier tel que X,, > Xy et posons
Y = Xy. Montrez que:

2. Déduisez que E(NN) = 400 et interprétez ce résultat.

3. Montrez que ~ ~
PY <z)=F(z)+ F(z) n F(x)

Exercice 5. Pour un sinistre S un principe de calcul de prime II est dit compatible avec un contrat de
réassurance de fonction de rétention h (h(0) =0et 0 < h (s) < 1) si:

II(S) = II(R(S)) + II(S — h(S5))

1. Donner un exemple de principe de calcul de prime compatible avec toutes les fonctions de rétention.

2. On suppose également que S admet une fonction de distribution continue et on note Fg ! sa fonction
inverse. On définit le principe de prime suivant:

M40 (S) = ES + BE(S — Fg'(1/2))

2.1 Montrer que
ES = /01 Fg'(u)du
B(s-rta2) = [ : (PG~ Fs' ) aus / 1 (Pt - 753 au

1/2 1
Mg (S) = (1—ﬁ)/0 F3M(u)du + (14 ) /1/2 Fg'(u)du

2.2 Soient h; et hodeux fonctions croissantes. Montrer que Fy 1( 5) = hi(Fg 1) et que

-1 _ -1 -1
Fh1(5)+h2(S) - Fhl(s) + FhQ(s)



2.3 En déduire que
Mo (h1(S) + h2(5)) = aa(h1(9)) + aa(h2(S))

et que Il,, est compatible avec toutes les fonctions de rétention.

Exercice 6. On considére une variable aléatoire S de fonction de répartition Fg et de fonction génératrice des
moments Mg(t) = E(e*¥). On définit pour tout h une nouvelle variable aléatoire S;, de fonction de répartition:

el dFs(s)

ES) = Ms(h)

Sh, est la transformée d’Esscher de S pour le paramétre h.
1. Exprimer la fonction génératrice des moments de S;, en fonction de celle de S.
2. Expliciter les transformées d’Esscher de paramétre h des lois

e Loi de Poisson Poi(\)
e Loi Gamma ~y(a, 0)

3. Donner Pexpression de E(S),) , 4=E(S) et Var(Sy) en fonction des dérivées successives de M. En déduire
que lapplication h — E(S},) est croissante.

4. On considére le principe d’Esscher de calcul de prime. Montrer qu’il vérifie le principe d’au moins la prime
pure, de translation et d’additivité.

Exercice 7. Un réassureur propose de couvrir un risque S avec 'un des contrats suivants:

e une quote-part: soit 0 < o < 1 , le réassureur rembourse S = .S

e un excédent de sinistre: soit M > 0, le réassureur rembourse S~ = (S—M)*+

On suppose que deux contrats ont la méme prime de réassurance E(aS) = E(S — M) et que S a une densité
strictement positive sur RY.

1. Tracer les fonctions de répartition de S, S et S

2. Comparer S et S” aTaide de la dominance stochastique d’ordre 2.

3. On suppose que le réassureur utilise le principe de la valeur moyenne. Quel est le contrat de réassurance qui
a la prime la plus chére?

Exercice 8. Un assureur doit choisir un contrat de réassurance pour un risque X donné parmi une com-
binaison linéaire de contrats du type excédent de sinistres. On suppose que les montants des priorités sont fixés:
0<dy<d; <..<d,avecd, >EX. L’ensemble des contrats possibles est donné par:

n n
7= {I(.) [I(z) = ai(z—di)y, 0;>0,) ;< 1}

i=0 i=0
Le réassureur utilise le principe de prime de ’espérance avec le coefficient de chargement [ et ’assureur se fixe
un montant P < E(X)(1 4 3) de primes qu’il désire souscrire en réassurance. Il choisit donc son contrat dans
I’ensemble:

Ip ={I() e IT|(1 + BE(I(X)) = P}

1. Soit d tel que (1 + B)E(X — d) = P. Montrer qu’il existe 0 < k <n — 1 tel que d, < d < dp41.
2. On suppose que le critére d’optimisation est cohérent avec la dominance stochastique d’ordre 2 et que
I’assureur minimise ce critére. Quel est le contrat optimal pour l'assureur?

Exercice 9. (les equivalents comonotones ont la somme la plus grande, au sens de la dominance stochatisque

d’ordre 2). Considérons un vecteur aléatoire X = (X;...X,) et définissons son équivalent comonotone
comme suit:

V=W,....Y,) = (F(U),...,.Fx'(U))
ou U ~ Uniforme(0,1).

1. Vérifier que Y a la méme distribution que la borne supérieure de Fréchet W,, = min(Fy(z1) ... F,(z,)).

2. Nous appelons support de Y la courbe des { Fi ' (u), ..., Fx ! (u) |0 < u < 1}, considérez deux points (1 . .. yn)
et (z1...zy,) de ce support. Est-il possible d’avoir y; < z1 et yo < 297

3. Montrer que l'inégalité suivante:
Yi+..+Y,>2X1+...+ X,



Théorie du risque TD 2.

Exercice 10. Soit deux distributions de probabilité Fy et G, qui sont telles que Fyy <gr» Gy pour tout y. Soit
U(y) une distribution quelconque.

1. Montrez que F(z) = [ Fy(2)dU(y) <sp2 [ Gy(x)dU(y) then F <gps G.

2. Montrez que l’espérance conditionnelle d’une variable aléatoire est toujours moins dangereuse & l’ordre
2 que la variable initiale. c-a-d. montrez que E(X|A) <gp2 X.

3. Soit U une variable uniforme et une variable aléatoire A indépendante. Sur base du résultat de la question
9, montrez que
X1+ Xo+ .o+ Xn <sp2 F [, (U) + ...+ Fi 1, (U)

4. Sur base du résultat de la question 9, montrez que
Fela(U) oo+ Fi z(U) <spe Fx[(U) +...+ Fx L(U)
Exercice 11. Le montant de sinistre causé par une police du portefeuille est de la forme:

g 0  avecuneprobabilité 0.9
| X avecuneprobabilité 0.1

1 3/2
PX>x)=—— z >0
( ) <x + 1)
1. Calculez la prime pure pour cette police.
2. Calculez le montant de la prime nette de facon telle que la probabilité que le montant de sinistre S dépasse

ce montant soit au plus de 1%.

Exercice 12. La charge totale S des sinistres relatifs & un portefeuille d’assurances vaut S = Zf\il X; ol
N ~ Poi()) , et ou les X; sont indépendants et de méme loi Expo(9).

1. Calculez la prime pure relative au portefeuille.

2. Fixez la hauteur du chargement de sécurité afin que la probabilité de ruine soit de maximum esi l’assureur
dispose d’un capital k.

e Sur base du théoréme central limite

e Sur base de I’approximation NP

Exercice 13. On suppose que Sja une loi Poisson composée de paramétres (A, Fix) et Sy a une loi Négative
Binomiale composée de paramétres (r,p, Fy ).

1. Donner les fonctions génératrices des moments d’une loi de Poisson de paramétre A et d’une loi binomiale
négative de parameétre (r,p).

2. Donner les fonctions génératrices des moments de Sy et So.

3. Démontrer que S; et Sy ont une méme loi si et seulement si

A=—rlnp

(1 7p)k *

Fx(z) 2220:1 TlonY(x)

Que concluez-vous de cet exercice?

Rappel: Si N a une loi de Poisson de paramétre A, alors

A"
X

P(N=n) = T

n>0

Si N a une loi binomiale négative de parameétres (r,p), alors

P(N=n) = Wﬂ(l—p)” >0



Exercice 14. Un assureur posséde un portefeuille composé de N risques indépendants Sy, ..., Sy. Un réas-
sureur lui propose plusieurs types de contrat non-proportionnel. 11 utilise le principe de la variance pour calculer
ses primes avec chargement (coefficient de chargement p), i.e. il demande la prime

(p(S)) = E(p(S5)) + pVar(e(S))

afin de réassurer la partie p(S) du risque S (0 < ¢’ < 1).

On suppose que les S; ont une distribution géométrique composée telle que:
N;
Si = ZYW avec Y ; ~ Exp(p;) et N; ~ Geo(q;)
j=1

Pour rappel, P(Y; ; > x) = exp(—f;z) , P(N; =n) = ¢ (1 — ¢;).

1. Donner les fonctions génératrices des moments, expérances et variances de Y; ; et de IV;.
2. L’assureur choisit un excédent par sinistre de priorité M; et de portée illimitée, i.e. , il conserve pour chaque
sinistre Y; jdu risque, le montant min(Y; ;, M;).

a. Contre quel type d’événement veut se prémunir I’assureur?

b. Montrer que le risque ¢ cédé au réassureur Zjvzl(Yi’j — M;)+a méme loi que Z;VZA? Y;; ot Ny, =
Z;.vzll Ly, >,y et les Y; ; sont indépendants (entre eux des Y; ;) et de méme loi que les Y; ;.

c. Calculer la prime pure de réassurance pour le risque ¢ et la prime pure de réassurance pour I’ensemble du
portefeuille.

d. Calculer la prime de réassurance avec chargement pour le risque ¢ et la prime de réassurance avec chargement
pour I'ensemble du portefeuille.

3. L’assureur choisit un excédent par risque de priorité MZ/ et de portée illimitée, i.e. il conserve pour le
risque i le montant min(S;, M, ).

. Contre quel type d’événement veut se prémunir l'assureur?

. Donner la loi de S;.

. Déterminer la priorité M; telle que la prime pure soit identique & celle de la question 2.c
d. Comparer alors la prime avec chargement identique & celle demandée dans la question 2.d.

o T

3. L’assureur choisit un excédent de perte globale de priorité M et de portée illimitée, i.e. il conserve le
montant min(S, M) ou S = va S;.

a. Quels sont les avantages et les inconvénients de ce traité par rapport au traité précédent?

b. La priorité M est déterminée de telle maniére que la prime pure de réassurance pour l’ensemble du porte-
feuille soit égale a la prime pure de la question 2.c. Donner un minorant de M en remarquant que la loi d’une
somme de variables indépendantes domine toujours & 'ordre 1 celle de leur minimum.

C. A votre avis, la prime avec chargement sera-t’elle supérieure ou inférieure a la précédente prime?

Exercice 15. On considére un portefeuille de polices d’assurance dont le montant agrégé des sinistres S
peut étre modélisé par une distribution Géométrique-composée de parameétre (p, Fix)

Fs(s) = P(S<s)=) (1-pp"F(s)
k=0

On définit v tel que Mx (y) = E(e?X) = p~ L.

1. Montrer que la fonction de distribution Fyg satisfait I’équation intégro différentielle:
Fs(s) = (1—p) +p(Fx * Fs)(s) s=0

ol Fx * Fg est la convolution de X et de S : Fx % Fg(s) = [ Fs(s — x)dFx(s).

2. On définit une suite de fonctions de distribution F;, de la maniére suivante:

Fo(s) = (I=p)+p(Fx*Fra)(s) s=0



2.a Supposer que Fi(s) > Fo(s), s > 0 et montrer que Fx x Fi(s) > Fx * Fy(s), s > 0. En déduire que
Fhi1(s) > Fo(s), s > 0et n > 1 puis que Fs(s) =1lim, o Fn(8) s > 0, et enfin que Fg(s) < Fy(s), s > 0.

2.b On pose
Fy(s) = (1 —a) +aG(s)

ou G(s)=1—e7 , s> 0. Montrer que

Fi(s) = (1= )4 (Fx(9 —a [ 0 arx(@)) 520

Montrer que la condition Fy(s) > Fy(s) s > 0 est équivalente &

a (1 —p/os e”de(ﬂﬂ)> > pe?*Fx(s).

2.c En utilisant la définition de ~y, montrer que a optimal est donné par

eV Fx(s)
ay =SUpP —(s0c————————_
* SZIS SOO €'Y$dFX (.1‘)

3. En déduire que -

a_e ¥ < Fg(s) <ape ?
ol _
e Fx(s)

a_ = infsup sgo———-—
s205>0 [ e®dFx(x)

4. Application: Fx est la distribution exponentielle de parametre 6. Montrer que v = 0(1—p),ar=a_=p
et que Fg(s) = pe~(1-P)%s,
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Exercice 16. Pour 0 < ¢ < 1, définissons la fonction de distorsion
go(x) = @)+ 27 (2)) O<az <L,

appelée “Normal transform” de niveau ¢q. La mesure de risque de Wang associée a de telles fonctions de distorsion
est appelée mesure de risque normal transform et est notée NT,(X). Montrez que

X ~ N(p,0%) = NT,(X) = VaR(X,q)

Exercice 17.
Considérons un portefeuille de 2000 polices. Soit S; le débours annuel de ’assureur pour la police numéro 1.
On suppose les S; indépendantes et de forme

g _ {() avecla probabilité 1 — g;

Y, awveclaprobabilité q;

ouY; ~ Exp(1) et les ¢; sont donnés dans le tableau ci-dessous:

’ Police i \ qi ‘

i=1,...,100 1%
i=101,...,1000 | 3%
i=1001,...,2000 | 5%

1. Décriver approximation collective de S¢ = >i, S; en vue de calculer une probabilité de déficit.

Exercice 18. On considére un portefeuille d’'un assureur qui peut étre modélisé a 'aide du modéle de
Cramer Lundberg:



e Les sinistres X; sont indépendants et de méme loi exponentielle F', d’espérance u
e Le processus de comptage des sinistres N (t) est un processus de Poisson de paramétre .

La prime d’assurance est égale & ¢ = (1 4 $)Au ot 8 > 0 est le coefficient de chargement. On rappelle que le
coefficient d’ajustement R vérifie la relation:

1+ §R = E(efX) = Mx(R)

Un réassureur lui propose une couverture de type quote part (1’assureur conserve une proportiion « du risque).
1. Donner le coefficient d’ajustement avant réassurance.

2. Le réassureur utilise un coefficient de chargement v = (. Calculer le nouveau coefficient d’ajustement
apreés réassurance. Qu’en concluez-vous?

3. Le réassureur utilise un coefficient de chargement v > 5. Quelle est la signification de cette hypothése? Est-ce
une pratique de marché? Exprimer la condition du profit net et donner le nouveau coefficient d’ajustement.
Comparer avec les questions 1. et 2.

4. Comment doit-il choisir le coefficient « afin de maximiser son coefficient d’ajustement?

Exercice 19. On se place dans le cadre du modéle de Cramer-Lundberg:
e les sinistres X; sont indépendants et de méme loi F' (d’espérance p)
e Le processus de comptage des sinistres N (t) est un processus de Poisson de paramétre .
e Le taux de prime par unité de temps est égal a ¢ = (1 4+ 8)Au avec 8 > 0.
e L[’assureur dispose d’un capital initial w.
On rappelle que:
e La probabilité de ruine est définie par:

N(t)
Yu) = P 3ttelqueu+ct—ZXk<0
k=1

le coefficient d’ajustement R vérifie:

1+ §R = E(eR¥) = Mx(R)
1. On suppose que F satisfait la condition supplémentaire:
F(r) < pe_Rm/ efdF (y)

1.a On note v, (u)la probabilité qu’il y ait ruine avant I'arrivée ot & larrivée du k™€ sinistre.

e Montrer que 1 (u) < pe~ v

e En remarquant que ¢y11(u) = E(¢r(u + ¢t — X)) ou T suit une loi exponentielle de paramétre A et est
indépendant de X, montrer que ¥(u) < pe B,

1.b Montrer que:

/ AR (y) = eFTF(x)+ R/ BV (y)dy

2. On suppose que F a un taux de hasard ¢(x) = —(d/dx)log F(x) qui satisfait ¢(x) < m < cc.

e Montrer que pour y > =



e En utilisant la question 1, montrer que:

P(u) < pe B ou p=1-R/m

3. On suppose que ¢ est décroissante pour tout = > 0:

e Montrer que pour y > z:

F(y) > F(z)F(y — x)

e En utilisant la question 1, montrez que

Exercice 20. On considére un portefeuille d’assurance modélisable & ’aide d’un processus de Poisson composé
ou

e les sinistres X; sont indépendants et de méme loi exponentielle F'; d’espérance pu.
e le processus de comptage des sinistres N (¢) est un processus de Poisson de paramétre \.

La prime d’assurance par unité de temps est égale & ¢ = (14 )\ ot 3 > 0 est le coefficient de chargement.

1. Donner I’équation d’ajustement? Quelle est la valeur du coefficient d’ajustement?
2. On considére un portefeuille d’un assureur qui peut étre modélisé & I'aide de la somme de deux processus

Poisson composés indépendants Zfill(t) X1, et Zivjl(t) X, .

e Les sinistres X ;sont indépendants et de méme loi exponentielle F; (d’espérance pu;), j =1,2.

e Les processus de comptage des sinistres N;(t) sont des processus de Poisson de paramétre \; j =1,2.

2.a. Calculer la fonction génératrice du montant cumulé des sinistres vazll(t) X1, —I—Zf\[:zl(t) Xs i, qu’en concluez-
vous?

2.b. En déduire la nouvelle équation que doit vérifier le coefficient d’ajustement. On suppose que A = A\ + Ay
et que A\ = A1pq + Ao ps, que signifient ces hypothéses?

2.c Quelles est la valeur de A; (en fonction de Ay , ;1 et ps) lorsque le coefficient d’ajustement est égal a celui
de la question 1.

Exercice 21. On considére un portefeuille modélisable un processus Poisson composé ot
e les sinistres X; sont indépendants et de méme loi exponentielle F' (d’espérance p)
e le processus de comptage des sinistres N (¢) est un processus de Poisson de paramétre \.

La prime d’assurance par unité de temps est égale & ¢ = (1 + S)Ap ou 3 > 0 est le coefficient de chargement.
On note u le niveau des fonds propres & 'instant initial £ = 0. Calculer la probabilité que la ruine aie lieu au
premier sinistre. Comparer avec la probabilité de ruine sur un horizon infini.



