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Chapter 1

Reminders in Probability theory

1 Probability space
Let © be a set. We denote by P(2) the power set (i.e., the set of all subsets) of €.

Definition 1.1 A sigma-algebra A on € is a collection of subsets of § that is non-empty, closed
under taking complements, and closed under countable unions.

In the following, we fix a sigma-algebra A on 2.

Definition 1.2 A probability measure (or law, or distribution) on (Q, A) is a function P : A —
[0,1] such that P(Q2) = 1 and, for any sequence (A;) of pairwise disjoint sets in A, we have

p (U Al) = P(4).
=0 =0
Definition 1.3 A probability space is a triple (2, A, P), where Q is a set, A is a sigma-algebra on

this set, and P is a probability measure on (£, A).

Example 1.1 Trivial; finite or countable set; uniform measure on [0,1] and the Borel sigma-
algebra; Cartesian products.

In the following, we fix a probability space (€2, .4, P). The sets in .4 will be called events.

Proposition 1.4 (Probability of an increasing union) Let (A;)i>1 be a sequence of sets in A such
that for all 1> 1, A; C A;y1. Then,

[e.e]
P | =1 ;).
<U Az) lim P(4;)
=1
We can therefore calculate the probability of a union of events when these events are disjoint or
nested. In other cases, we use the inclusion-exclusion principle (formule du crible):
Proposition 1.5 Let (A;)i1<i<n be a sequence of sets in A. Then,
n n
P (U Ai) => ) ()P4 NN AL,
i=1 k=11<i1<..<ip<n

When n = 2, this enables to get the famous formula P(AU B) = P(A) + P(B) — P(AN B).
Exercice: give the formula when n = 3.
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Definition 1.6 Let A and B be two events such that P(B) > 0. The conditional probability of A
given B is defined as
P(ANB)

P(B)

The mapping A € A~ P(A| B) is a probability on (2, A) such that P(B | B) = 1.

P(A|B) =

We thus have P(ANB) = P(A | B)P(B). This formula generalizes to the case of the intersection
of n events:

Proposition 1.7 (Compound probabilities) Let (A;)1<i<n be a sequence of sets in A such that
P(Al n---N An—l) > 0. Then,

P(Alﬁ'-‘ﬂAn):P(An|A1ﬂ-~-ﬂAn_1)P(An_1|A1ﬂ-‘~ﬂAn_2)-"P(A2|A1)P(A1).

Proposition 1.8 (Total probability formula) Let (A;)i>1 be a partition of Q@ (that is, a family of
pairwise disjoint events such that |J; A;i = Q) such that P(A;) > 0 for all i > 1. For any event A,
we have

+o0
P(A) = P(A| 4)P(4)).
i=1

2 Random variable
Let (£2,.A) be a space equipped with a sigma-algebra.

2.1 Definition

Definition 2.1 (Discrete case) Let E be a finite or countable set, equipped with the sigma-algebra
E = P(FE). A random variable X taking values in E is a function X : Q — E such that, for every
x € E, {X =z} is an event (i.e., an element of A).

Notation: {X =z} ={w e Q: X(w) =z}

Proposition 2.2 Let X be a function from ) to a finite or countable set E. X is a random variable
if and only if for every A € €, {X € A} is an event.

Definition 2.3 (Real case) Let E = R be the real line, equipped with B, the Borel sigma-algebra.
A real random wvariable is a function X : Q — R such that, for every A € B, {X € A} is an event.

Proposition 2.4 Let X be a function from (Q,A) to (R,B). X is a random variable if and only
if for every open interval I in R, {X € I} is an event.

Definition 2.5 (General case) A random variable taking values in a set E equipped with a sigma-
algebra € is a function X : Q — E such that, for every A € £, {X € A} is an event.

2.2 Distribution (law)

Definition 2.6 Let X : (2, A) — (E,&) be a random variable. The mapping A € € — p(A) =
P(X € A) defines a probability on (E,E), called the distribution of X.

Notation: X ~ p means that X follows the distribution p.
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2.2.1 Discrete case

Definition 2.7 If E is a finite or countable set, the probability mass function f of a probability
measure (1 on E is the function f : E — [0,1] defined for all x € E by f(x) = p({z}). The
probability mass function fx of a random variable X taking values in E is the probability mass
function of its distribution, given by fx(x) = P(X = z).

Proposition 2.8 A probability measure p on a finite or countable set E is fully characterized by
its probability mass function.

Proposition 2.9 Let E be finite or countable. A function f : E — [0,1] is the probability mass
function of a probability measure on E if and only if Y . f(x) = 1.
2.2.2 Real case

Definition 2.10 The cumulative distribution function of a probability measure p on R is the func-
tion F' : R — [0,1] defined for all v € R by F(z) = p((—o0,x]). The cumulative distribution
function Fx of a real random variable X is the cumulative distribution function of its distribution,
given by Fx(z) = P(X < x).

Proposition 2.11 A probability measure on (R, B) is fully characterized by its cumulative distri-
bution function.

Theorem 2.12 A function F : R — [0,1] is a cumulative distribution function if and only if it is
non-decreasing, right-continuous, lim,_, o F(x) =0, and lim,_, 4o F(z) = 1.

2.3 Density

Definition 2.13 A probability measure p on R has a density function f : R — [0,00][ if, for every
Borel set A in R,

p) = [ fae
€A
Notation : X ~ f means that X follows the distribution with density f.

Proposition 2.14 For a density to exist and be the function f, it is sufficient to verify the above
equality for all sets A of the form (—oo,a], with a € R.

Proposition 2.15 The density, if it exists, fully characterizes the probability measure.

Proposition 2.16 If u has a density and if F' is the cumulative distribution function of u, then
f = F' is the density of .

Proposition 2.17 Any function f : R — [0,00] such that [, f(x)dx = 1 is a density of some
probability measure on R.

2.4 Examples

Discrete case: Dirac distributions, Bernoulli distributions, binomial distributions, Poisson dis-
tributions, geometric distributions.

Real case: exponential distributions, normal distributions.
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3 Expectation

Here, (2, A, P) denotes a probability space, and X is a random variable defined on (Q,.A, P)
taking values in R. The objective is to give a mathematical meaning to the intuitive definition:
"The expectation of X is the average of the values of X’ .

3.1 Indicator function

Definition 3.1 To every event A € A, we associate the random variable called the indicator of A,
denoted 14, which is defined by

1a(w) =
AW) 0 otherwise

{1 ifwe A

The distribution of the variable 14 is thus the Bernoulli distribution with parameter P(A).

The notation 1 replaces conditions (the ’if” statements) with numerical values (0 or 1). This is
very useful in practice: we can add and multiply numbers, which is more difficult to do with ’if’
statements. Thus,

Proposition 3.2 If A and B are two events,
o lanp=14-15.

e 15 =1—14. More generally, if (A;)ier s a sequence of events that forms a partition of €,
then  ;c;1a, = 1.

e If A and B are disjoint, then 14y = 14 + 1. More generally, 1aup = 1a+ 1 — 1 anB.

Definition 3.3 Let (A;)icr be a sequence of events that forms a partition of Q. We say that the
variable X decomposes over the partition (A;)ier if and only if X can be expressed as

X =) aila, (1.1)
el
which means that X is constant on each A; and takes the value x; on A;.

Proposition 3.4 If X takes a finite or countable number of distinct values (x;);er, the events
A; ={X = z;} form a partition of Q over which X decomposes as

X=> x4,
i€l

The expression (?7?) is not unique. For example, if A, B,C is a partition of Q, and X =
214+ 15 +21¢, we can also write X = 21 4u¢ + 1. This expression is unique (up to permutation)
if the z; are all distinct.

Definition 3.5 X is a step variable if and only if there exists a partition (A;)ier (with I having a
finite or countable cardinality) over which X decomposes:

X=> aila,
el
In other words, a step variable is a variable whose values form a set with finite or countable cardi-

nality.
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3.2 Finite or countable universe

When the universe () is finite or countable, the construction of the expectation is simple to
understand, as detailed below.

Definition 3.6 Let X be a positive variable defined on (2, A, P). The expectation of X is given
by:
=) X(w)P({w}) € [0;+00]. (1.2)

we

In the case where 2 is a countable set, E(X) is a series with positive terms, which can take the
value +o00.
A particular (yet important!) case of (?7): for any A € E, E(14) = P(A).

Proposition 3.7 Let X and Y be two positive variables defined on (2, A, P). The following prop-
erties hold:

1. B(X) >0
2. E(X) =0 if and only if X = 0 almost surely (a.s.).
3. If 0 < X <Y almost surely, then 0 < E(X) < E(Y).

4. If a and B are positive real numbers, then E(aX + 8Y) = aE(X) + SE(Y).

Proposition 3.8 (Writing the expectation as a function of the distribution of X ) Let X be a positive
variable defined on (2, A, P), and let (z;)ier be the distinct values taken by X .

=Y " #P(X = x;) € [0;+00]. (1.3)

el

If f is a measurable function from (RT, B(R™1)) to (RT, B(R™)),

Zf z;)P(X = z;) € [0; +00].

el

Proposition 3.9 (Case of positive step variables) Let X be a positive stepped variable:
X = Z ailAi;
el

where o are positive real numbers and (A;)ier form a partition of €,

= a;P(A;) € [0;+00]. (1.4)

el

If f is a measurable function from (R, B(RT)) to (R*, B(RT)),

Zf a;)P € [0; 4-00].

el

3.3 General case

Except for a few toy cases, the universe ) is much larger than a set of finite or countable
cardinality. In this general framework, an idea of constructing the expectation is provided in the
appendix to this chapter. It follows these steps:

5 5/ 77



3. EXPECTATION CHAPTER 1. REMINDERS IN PROBABILITY THEORY

e We start by defining the expectation of a positive variable. This expectation is a positive
number that can take the value +o0.

e We then define the expectation of a random variable X by
E(X)=E(X") - EX"),

where X+ and X~ are the positive and negative parts of X. This expression does not make
sense if E(XT) = F(X~) = 4o00. Therefore, we define E(X) only in the case where E(|X|) <
+00. Since E(|X]|) = E(X™") + E(X ), this is equivalent to saying that E(X*) < 400 and
E(X™) < 4+00. We say that the random variable X is integrable.

We focus here on the important properties of expectation.

Proposition 3.10 (Properties of the expectation operator)
Let X and Y be random variables defined on (2, A, P) taking values in (R, B(R)).

1. If X > 0 almost surely, then E(X) > 0. If X > 0 almost surely and E(X) =0, then X =0
almost surely.

2. If X andY are positive or integrable and X <Y almost surely, then E(X) < E(Y).

3. If X and Y are integrable, for all real numbers o and (3,

E(aX +p8Y)=aE(X)+BE(Y).

Proposition 3.11 (Inequalities)

1. Jensen’s Inequality If X is integrable and ¢ is a convex function such that ¢(X) is integrable,
then
P(E(X)) < BE(¢(X)).

2. Markov’s Inequality Let X be a positive random variable. For all x € RT,

1
P(X > x) < —E(X).
T
3. Bienaymé—Chebyshev Inequality Let X be a random variable such that E(X?) < oo.
Define m = E(X) and 0? = E((X —m)?) as the mean and variance of X. Then, for any

e >0,

02

P(| X —m|>¢) < a2

3.4 Compute the expectancy

Proposition 3.12 (Ezxpectation in the discrete case) Let X be a random wvariable on (Q, A, P)
whose values (z;)ier form a finite or countable set in (E,E). Let g be a measurable function from
(E, &) taking values in (R, B(R)) such that

Z 9(xi)|[P(X = ;) < +o0.
el
Then,
E(g(X)) =3 gla) P(X = ;).

i€l

6 6/ 27
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Proposition 3.13 (Expectation in the real case with density function) Let X be a random variable
defined on (2, A, P) taking values in (R, B(R)) with density fx. Let g be a measurable function
from (R, B(R)) to (R, B(R)) such that

[ lo@rx@ s < oo
R

Then,
EMXD=Aw@h@Mw

3.5 Specific functions
3.5.1 Generating function

Definition 3.14 Let X be a random variable taking values in N. The generating function of X,
denoted Gx, is the function

+oo
Gx :[-1,1] =R, s+ Gx(s)=E(s*) =Y s*P(X =k).
k=0

Proposition 3.15 The properties of the generating function are:

1. The generating function characterizes the distribution of X. P(X = k) is the coefficient of s*
in the power series expansion of Gx:

2. If E(|X]) < 400, then E(X) = limy ,;- G5 (s).

3.5.2 Characteristic function

Definition 3.16 Let X be a random vector taking values in R, The characteristic function of X,
denoted px, is the function
ox :RT 5 R

defined by
t— ox(t) = E(eit-x) _ E(ei(t1X1+-..+thd)).

Proposition 3.17 (Properties of the characteristic function)

1. The characteristic function of X characterizes the distribution of X.

2. If E(|X]) < 400, then px is differentiable, and ¢y (0) = iE(X).

4 Sequence. Consistency

In the entire chapter, (2, A, P) denotes a probability space. (X, )n,>0 and X are random variables
defined on (€, A, P) taking values in R?.
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4. SEQUENCE. CONSISTENCY CHAPTER 1. REMINDERS IN PROBABILITY THEORY

4.1 Types of convergence
Definition 4.1 Convergence in probability: The sequence (X,)n>0 converges in probability to
X (denoted as X, _% X ) if and only if for every e > 0,

n—oo

lim P[|X, — X]|| > ¢ = 0.

n—-+o0o

Definition 4.2 Almost sure convergence: The sequence (Xy)n>0 converges almost surely to X
(denoted as X, £ X ) if and only if:
n—oo

P <{w : Er}rq Xp(w) exists and equals X(w)}) =1.

Definition 4.3 Convergence in LP(p > 1): The sequence (X,)n>0 converge to X in LP (denoted
X, L, X ) if and only if :
n—oo
lim E[|X, - X|P] =0,

n—-+4o0o

for some p > 1.

Definition 4.4 Convergence in distribution: The sequence (X,)n>0 converge in distribution
to X (denoted X, nﬁo X ) if and only if, for every bounded continuous function f on R? taking
values in R, we have:

lim E[f(X,)] = E[f(X)].

n——+0oo

Remark 4.5 Convergence in distribution is not strictly a convergence of random variables. This
notion of convergence only concerns the sequence of distributions of X,. Thus, the definition of
convergence in distribution makes sense even if the variables X, are not defined on the same space
(Q, A, P), but on different spaces (Qp,, Apn, Py). However, the space of values taken by these variables
is the same for all variables.

Remark 4.6 Be careful with the convergence in distribution!

One must be cautious about certain "automatisms" when working with convergence in distribu-
tion. For example, a statement such as:

IFX 5 XandY = Y, then X+Y — X +Y.
n—00 n—00

n—oo

remains true if we talk about convergence in probability, almost sure convergence, or convergence in
LP. However, this is not the case with the convergence in distribution!

4.2 Criteria for convergence in distribution

Proposition 4.7 (Convergence in distribution and CDF) Let (Xy)n>1 and X be random variables
taking values in R with distribution functions (Fy,)n>1 and F. There is an equivalence between:

1. X, % x,

n—oo

2. For every real t where F' is continuous, F,(t) — F(t).
n—oo

Corollary 4.1 Let (X;,)n>1 be a sequence of random variables taking values in R, and let a be a

d P
real number. If X,, — a, then X,, — a.
n—oo n—o0
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For this reason, we can resume our routines when we "compose" two convergences in distribution,
as long as one of the two convergences occurs towards a constant. For example, the following
statement is true:

Let a be a real number. If X, 4, 4 and Y, 4, Y, then X,, +Y, LI +Y.
n—oo n—oo n—oo

Proposition 4.8 (Convergence in distribution and characteristic functions) Let (X )n>1 and X
be random wectors taking values in R with characteristic functions (¢n)n>1 and ¢. There is an
equivalence between

1. X, % x,

n—oo

2. For every vector t € RY, o, (t) — o(t).

n—00

The implication 1. = 2. is a direct consequence of the definition of convergence in distribution.
It is the implication 2. = 1. that is useful. The latter is a weakened version of the following theorem
due to Paul Lévy:

Theorem 4.9 (Paul Lévy’s theorem) Let (X,)n>1 be random vectors taking values in RY with
characteristic functions (¢p)n>1. If for every vector t € R, @, (t) converges as n — +oo to a
function @(t) that is continuous at 0, then the function ¢ is the characteristic function of a random

d
vector X, and we have X,, — X.
n—oo

Remark 4.10 The theorem by Paul Lévy is a seminal result in probability theory. For instance,
the proof of the Central Limit Theorem (CLT) is based on this theorem.

4.3 Almost sure limit and expectation

The following proposition provides general and important results linking the limit of expectations
and the expectation of the limit.

Proposition 4.11 1. Monotone Convergence Theorem (Beppo-Levi’s): If (X,,) is a se-
quence of positive random variables that is non-decreasing, and if X = lim,_, 1 X, almost
surely, then

HETOOE(XTL) = E(X).
2. Fatou’s Lemma: If (X,,) is a sequence of non-negative random variables, then

E <lim inf Xn> < liminf E(X,).
n——+oo

n—-+o0o

3. Dominated Convergence Theorem of Lebesgue: If (X,) is a sequence of random vari-
ables that converges almost surely to a random variable X, and there exists an integrable
random variable Y such that | X,| <Y for all n, then X is integrable and

E (X, — X|) — 0.

In particular,

lim E(X,) = E(X).

n—-+o0o
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4.4 Relations between the different types of convergence
Proposition 4.12 Convergence in LP implies convergence in probability.

Proof: By Markov’s inequality, for all € > 0 and for all p > 1,

1
Pl Xn — X > e] = P[lXn — X" > "] < S E[[| X — X|].

Proposition 4.13 Almost sure convergence implies convergence in probability.

Proof: Suppose that X, :—8> X. Noting Y, = 1 x_x, ||>e, We have
n—oo
Pl X — X[ > ] = E(Yn).

Since Y, ¥ 0 and |Y,| <1 (and the indicator is integrable), we can deduce from the Dominated
n— oo
Convergence Theorem that
E(Y,) == 0.

Proposition 4.14 Convergence in probability implies convergence in distribution.
In summary,
a.s. convergence = convergence in probability = convergence in distribution
and

convergence in L” = convergence in probability = convergence in distribution

5 Exercices

See the correction on manuscript papers.

Exercise 1

Let (A;)i>0 be a sequence of events such that P(A;) =1 for all ¢ > 0. Show that:
P <ﬂ Ai> =1.

Prove the following formulas: - The inclusion-exclusion formula, - The formula for compound
probabilities, - The law of total probability.

Exercise 2

Exercise 3

Calculate the cumulative distribution function for the following distributions:

(a) The binomial distribution B(n, p),

(b) The Poisson distribution P(\),

(¢) The exponential distribution Exp(A),
)

(d) The distribution with density f(z) = x exp(—22/2) for > 0 (and zero otherwise).
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Exercise 4

Let F' be the cumulative distribution function of a distribution. A number m is a median of F
if:

lim F(y) <

1
— < F(m).
y—m=— 2

Does such a median always exist? Is it unique?

Exercise 5

Let X be a real-valued random variable with cumulative distribution function F'. For all a,b € R
such that a < b, express the following quantities in terms of F', a, and b:

P(X € (a,b]), P(X € (a,b)), P(X €]la,b]), P(X €]a,b)), P(X=a).

Exercise 6

Let X be a real-valued random variable with a continuous cumulative distribution function F'.
Let G be a continuous and strictly increasing function on R. Find the cumulative distribution
functions of the following random variables:

1. —X,

Exercise 7

Let X be a real-valued random variable with cumulative distribution function F, and a < b two
real numbers. Calculate the cumulative distribution functions of the random variables Y and Z

defined by:

X ifa< X <b,
1. Y=<a if X <a,

b if X >b.

X if | X] <,
2. 7 =

0 otherwise.
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Exercise 8

Find (if it exists) a value for ¢ such that the function f(x) defined by the following formula is a
valid density function:

4 ifr>1
{caz ne=n and  f(z) = ce®(1 +€%) 72

0 otherwise.

Exercise 9

Let a >0 and 0 < p < 1. Let X be a random variable with a Poisson distribution P(a). Let Y
be a random variable with integer values such that for all integers 0 < k < n,

P =k |x == ({)ita -t
What is the distribution of Y? And what is the distribution of Z =X —Y?

Exercise 10

Let T be a random variable taking values in N such that:
-ForallmeN, P(T >n) >0,
-Foralln,meN, P('>n+m|T >n)=P(T >m).

(1) T is said to have no memory. Why? Is it reasonable to model the duration of a phone call as
a memoryless variable?

(2) Show that T is a geometric random variable with parameter ¢ = P(T = 0) (i.e., for all n € N,
P(T=n)=(1-q)"q).
Exercise 11

(1) Let T be a random variable with values in R such that:
Vi>0,P(T>t)>0; Vt,s>0,P(T>t+s|T>s)=P(T>t).
T is said to be memoryless. Why?

(2) Define the function f(t) = log(P(T > t)) for t > 0. Show that f(x) = zf(1) for all positive
rational z, and then for all positive real z. Conclude that T is an exponential random variable.

(3) Let T be an exponential random variable. What is the distribution of the variable |T'| (the
integer part of T')?
Exercise 12

Let X be a random variable taking the values 3, —1,1, and Y be a random variable taking the
values —1,3. Write the random variables X, Y, exp(X), X2, X + Y in the form Y ier @ila,, where
the «; are all distinct.

Exercise 13

In a die roll, you win 2 euros if the number rolled is prime, and you lose 2 euros if the number
rolled is even. Thus, if you roll a 2, you win 2 — 2 = 0 euros. Let X be the gain obtained.

(1) Write a triplet (€2, A, P) modeling the experiment.
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(2) Write X in the form . ; a;l4,, where the o; are all distinct.

(3) Calculate E(X).

Exercise 14

Calculate the expectation of a random variable X for the following distributions:
(1) Binomial distribution B(n,p) (Answer: np),
(2) Poisson distribution P(\) (Answer: \),
(3) Exponential distribution Exp()) (Answer: 1),

(4) Normal distribution N(u,c?) (Answer: p).

Exercise 15

Let X be a random variable taking values in N. For each integer j, let p; = P(X = j) and
q; = P(X > j). Show that the expectation of X is:

E(X) =) g
=0

Exercise 16

For a > 0, we define the function I'(a) as:

F(a):/ e o da.
0

The Gamma distribution with parameters a and A (where a > 0 and A > 0), denoted G(a, A), has
the probability density function:

_ A® a—1_—Az
f(:x)—r(a)m e, x>0.

(1) Verify that I'(a) is well-defined for a > 0, show that I'(a + 1) = aI'(a), and compute I'(n) for
n € N*.

(2) Let X be a r.v. with the Gamma distribution G(a, \). Calculate E(X) and Var(X).

(3) Let Y be a standard normal random variable N(0,1). Show that Y2 has the Gamma distri-

1).
bution G (%, %) From this, deduce the value of I’ (%)

Exercise 17

For natural numbers n, we define the the function B(n,m) as:

1
B(n,m) :/0 2"(1 —x)" dx.

This is also given by:
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Let the probability density function be:

(n+m+1)!
nlm!

fam(z) = 2" (1 — )™ 1o 1y ().

(1) Show that f,,(x) is a valid probability density function.

(2) Show that if X has the density f, ., (x), then for any integer p, E(XP) = %.

(3) If X has the density fy, n(z), what is the distribution of 1 — X, and X/(1 — X)?

Exercise 18

We say that Z follows the Log-normal distribution with parameters m and o (o > 0) if Z is a
random variable with values in R¥ such that In(Z) follows the normal distribution N (m,o?).

(1) What is the probability density function of Z7?7

(2) Determine the expectation and variance of Z.

Exercise 19

(1) Calculate the generating function of a random variable X with the binomial distribution
B(n,p). (Answer: (1 —p+ sp)").

(2) Calculate the generating function of a random variable X with the Poisson distribution P(\).
(Answer: exp(—A(1 — s))).
Exercise 20

(1) Calculate the characteristic function of a random variable X with the exponential distribution

E()\). (Answer: /\iit)'

(2) Calculate the characteristic function of a random variable X with the symmetric exponential
distribution with parameter A\, and density )‘72 exp(—Alz|) on R. (Answer: /\2’\7;2)

(3) Using the previous result and the Fourier inversion, calculate the characteristic function of
a random variable X with the Cauchy distribution with density on R. (Answer:

exp(=|t]))-

_ 1
m(14x2)

(4) Calculate the characteristic function of a random variable X with the normal distribution
. 242
N(u,0?). (Answer: exp(itu) exp <_%>)

Exercise 21

Let X be a random variable with values in N and its generating function defined on [—1, 1] by
G(t) = % Determine the distributions of X and Y := X/2.

Exercise 22

Let (X5)n>0 be a sequence of real random variables such that for all n, X,, has the density

X, -4 0

n—oo
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Exercise 23

Let (X5)n>0 be a sequence of random variables where X,, ~ B(n,py) and np — A > 0. Show
that X,, converges in distribution to a Poisson distribution P(\).

Exercise 24 (Chernoff Inequality).

Let € be a symmetric random variable (P(e = 1) = P(e = —1) = 1) and (¢;);>0 be a sequence
of independent random variables with the same distribution as e. We define S, =Y, ¢;.
1. Using Markov’s inequality on exp(tS,,), show that for all ¢ > 0 and all 6 > 0,

P(S,, > ) < exp(—0dt) - ch(t)".

2. By optimizing this inequality with respect to ¢, deduce that for all § > 0,

P <S" > 5) < exp(—nh(9)),

n

where the function h(d) is defined as:

Exercise 25

An urn contains an unknown proportion p of white balls. We perform a series of n draws of a
ball with replacement, and estimate p by the proportion Y,, of white balls obtained in the n draws.
Show that for any € > 0,

P(|Y,—p| >¢) < e
From this, deduce a condition on n for the approximation to provide a value of p to within 0.01
with a probability greater than or equal to 95%.

Exercise 26

Let X be a Cauchy random variable, and (X,,),>0 be a sequence of i.i.d. random variables with
the same distribution as X. We define S,, = Y_"" | X;.
Show that S,,/n converges in distribution.

Exercise 27

Let (Xn)n>0 be a sequence of i.i.d. random variables with the density f(z) = 3(1 — 2?) 1<
Define &, = max(X1,..., Xp).

1. Show that &, —— 1 in probability.

2. Show that \/n(1 — &,) converges in distribution, and give the expression for the density of
the limiting distribution.

Exercise 28

We generate 100,000 random numbers uq, ..., u100000 according to a uniform distribution on
[0, 1], and calculate their geometric mean:

1/100000
(U1U2 e Ulooooo) / .

This value will be very close to a certain number a. What is this number a?
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Exercise 29

Let (Xy)n>1 be a sequence of i.i.d. random variables with a common distribution having density
f(x) = 12,39 (). Define, for all n > 1, Y, = [}, Xi.

1. Show that the sequence (Y},)n>0 converges almost surely to 0. (Hint: consider the sequence
logY,).

2. Does the sequence (Y;,),>o converge in L7

Construction of the expectation

Case of Positive Step Variables.
We no longer assume that €2 has a finite or countable cardinality. In this case, expression (?7) does
not make sense (due to the sum over an uncountable number of terms). However, expressions (?77?)
and (??) continue to be meaningful for any positive variable taking a finite or countable number of
values. These expressions then serve as definitions of expectation.

If we choose expression (?77) as the definition of the expectation of a step variable, we must
verify that this expression does not depend on the chosen representation. For example, if X =
214 + 1+ 21¢ = 214uc + 1B, this leads to two expressions for E(X):

E(X) = 2P(A) + P(B) + 2P(C)

and

E(X) =2P(AUC) + P(B),

which are indeed identical. Expression (?7) is then a particular case of (?7).

If we choose expression (?7?) as the definition, we must then show that the expression (?7) for
the expectation of a step variable is valid. This can be done by using the linearity of expectation,
provided we have demonstrated this linearity from definition (??)... Try to convince yourself that
this linearity holds true by considering a particular case.

With this definition, propositions ??, ??7 and 77 remain true.

Case of positive random variables.
In the case where the set of values taken by X is not countable, neither expression (??) nor (?7?)
makes sense. To define E(X), we use a limiting process. We approximate X by a decreasing
sequence (X,,) of step variables: for example,

Since 0 < X,41 < X, we have E(Xp4+1) < E(X,). The sequence (E(Xy))n>1 is a decreasing
sequence of positive reals. Therefore, this sequence has a limit, which we define as E(X):

E[X] = lim E[X,)].

n—0o0

To verify that this is indeed a definition, we must ensure that this limit does not depend on the
decreasing sequence of step variables that approximate X.

General case: real-valued random variables.
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Let X be a real-valued variable that is not necessarily positive. For any real number z, we define
the positive part 27 of by 7 = max(z,0), and its negative part 2~ by = = max(—=z,0). These
are two positive numbers, and we have x = 27 — 2~ and || = 27 + x~. We can therefore write:

X=X"-X"
and
IX|=XT+X".

We have seen how to define E(X™) and EF(X~). We then define E(X) by setting F(X) =
E(X™) — E(X™) as soon as this expression makes sense, i.e., as long as we do not encounter the
indeterminate form +o0o —oo. This is particularly the case when E(X) < 400 and E(X ™) < +o0,
or equivalently when E(|X|) = E(X ") + E(X ™) < 4o0.
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Chapter 2

Random vectors

1 Random vectors, joint distribution, marginals

In the entire chapter, (€2, A, P) denotes a probability space,
Let (Ej)i<i<d be a family of sets, each equipped with a o-algebra &;. For every i € {1,...,d},
we define a function X, : (Q, 4) — (E;, &).

Definition 1.1 The family X = (Xi)i<i<a : Q@ — Xi<i<qli is a random wvector if, for every
ie{l,...,d}, X; is a random variable taking values in Ej;.

Definition 1.2 The product o-algebra £ = ®i€[ & on E = Xi<i<qll; is the smallest o-algebra on
E that makes these two points equivalent for any family (X;)1<i<a:

1. (Xi)1<i<d s a random vector;
2. X = (Xi)i<i<a is a variable taking values in (E,E) in the sense of definition 7?7 of Chapter 1.
It is the smallest o-algebra containing all sets of the form Xi<;<qA;, where A; € & for all v €

a,....d.

Definition 1.3 The joint distribution of the random vector X is the distribution of X viewed as a

random variable taking values in (E,E). The marginal distributions of X are the distributions of
X;, forie 1.

Proposition 1.4 If we know the joint distribution p of X, then we know all the marginal distribu-
tions p; of X. The reverse is false.

1.1 Discrete case

In this subsection, the FE; are finite or countable. Therefore, E is finite or countable, and
the distribution of X is characterized by its mass function f : E — [0,1] defined for every x =
(r1,...,24) € E by

f(a:l,...,xd) :P(X1 :xl,...,XdICIZd)

Proposition 1.5 (Marginal distributions in the discrete case). Let j be fixed between 1 and d. If
f is the mass function of X, and f; is the mass function of X;, then for all x; € E;, we have

fj(.ﬁl)j): Z Z Z Z f(xl,...,:vd).

T1€EE zj—1€E; 1 xj+1€E5141 rq€Eg
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1.2 Real case

In this subsection, we assume that all F; are equal to R and E = R¢.

Definition 1.6 The cumulative distribution function of X is the function F : R — [0,1] defined
forall x = (x1,...,24) by

F(xy,...,2q) = P(Xy <x1,..., X4 < z4).

Proposition 1.7 (Cumulative distribution function of marginal distributions). Let j be fized be-
tween 1 and d. Let F be the cumulative distribution function of X and F}; that of X;. Then, for all
z; € R, we have

Fj(:cj): lim ... lim lim .. lim F(:Ul,...,xd).
xr1—+00 Tj—1—>+00 Tj41—+00 rq—+00

and these limits commute.

Definition 1.8 The measure p has the joint density function f : R? — [0, +oo] if, for every Borel

set A C R?,
J(A) :/.../IGAf(m) da.

Proposition 1.9 If u has a density f, and if F' is the cumulative distribution function of u, then
almost everywhere (a.e.) we have

QF
8331 s 8$d '
Proposition 1.10 (Densities of marginals). Let j be fized between 1 and d. If the distribution of

X has a joint density f, then the distribution of X; has a density f;, referred to as the marginal
density, and for (almost) every x; € R,

(wl,...,:pj_l)ERJ*1 (1’j+1,...,$d)€Rd73

1.3 Others

In a random vector, some coordinates can be discrete random variables, while others can be
real-valued random variables.
Examples: Complex random variables.

1.4 Computations

It is often of interest to study the distribution of a vector Y defined from a vector X with a known
distribution, through a relation ¥ = ¢(X). One can then attempt to calculate the cumulative
distribution function or the characteristic function of Y, as these two functions characterize the
distribution of Y. More generally, one may try to express E(h(Y)) for a bounded measurable
function h (methode de la fonction muette). If X has density f, then we have

E(h(Y)) =E(hop(X)) = /h op(z)f(x)dry - dxg.
We then seek to express this integral in the form

/ h(y)g(y) dy.

If this is possible, ¢ is the density of Y. In this context, we recall the change of variables formula.
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Proposition 1.11 (Change of variables). Let ¢ : R — R? be a diffeomorphism (i.e., a dif-
ferentiable bijection with differentiable inverse p~1) that associates v = (x1,...,xq) with y =
(Y1, va) = @) = (p1(z),...,pa(x)). We denote by Jy(x) the Jacobian matriz of g, defined

by

og1(z) .. Og1(z)
o1 oxg
Jg(x) = : . :
994(x) . 0Og4(z)
oz O0xg

Then, we have
/ hop(x)dry - -drg= / h(y) |det Jw_l(yﬂ dy...dyg.
R R?

Example 1.1 (In dimension 1, thus with random variable and not random wvectors). Take the
lognormal distribution, defined from the Gaussian one. Indeed, the lognormal distribution Y is such
that:

Y = eX,

where X follows a Gaussian distribution, i.e. X ~ N (u,a?).

Here, ¢(x) = €%, then ¢~ '(z) = In(x). It follows that (p~'(x)) = 1/x. We then obtain

1 (n(m)-w? 1 1 (In(y)—p)?
Y =Jx ln X ¢—1 /: e_ 202 - = 6_ 202
fy(y) = fx(In(y)) x (¢—1(y)) Noro e

We recognize the density of the lognormal distribution.

More generally, still considering the transformationY = ¢(X), and looking in terms of the CDF:

Fy(y) = PY <y)=PpX)<y) =PX <o (y)=Fx(¢ '(y), then
fy(y) = (Fy(y)), we thus have
fr) = Fx(o' W) =@ ') fx(¢ ')

The latter formula applied to the lognormal example above obviously gives the same result.

2 Covariance matrix

2.1 Variance, covariance

Let X and Y be two real random variables such that E(X?) < 400 and E(Y?) < 400 (in this
case, we say that X and Y are square-integrable).

Definition 2.1
var(X) = E (X — E(X))?) = E(X?) — (E(X))*.

cov(X,Y) :=E[(X —E(X))(Y —E(Y))] = E(XY) — E(X)E(Y).
Proposition 2.2 (Properties of the variance)
1. var(X) > 0.
2. var(X) = 0 if and only if X is almost surely constant (equal to E(X)).

3. For allm € R, var(X) < E((X —m)?). Thus, E(X) is the best prediction (in the sense of
quadratic risk) one can make for the variable X .
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4. For any real a, var(aX) = o? var(X).
5. var(X +Y) = var(X) + var(Y) + 2cov(X,Y).

2.2 Extension to random vectors

Let X = (X1,...,Xy4) be a random vector such that E(|| X|?) < +cc.

Definition 2.3 The covariance matriz of X is the square matriz of dimension d, denoted by T,
defined by
Vi, j € {1,...,d}, Fi,j :COV(XZ',X]‘).

Proposition 2.4 (Properties of the covariance matriz)
2
1. For any vector o € R%, we have a'Ta =E |:(ch‘l:1 a;(X; — E[XJ)) ] > 0.

2. T is a symmetric positive semidefinite matriz.

3. I' has an eigenvalue of zero if and only if the variables X; are linearly dependent, i.e., there
exist real numbers ag, aq,. .., aq such that

ag+ a1 X1+ -+ agXqg =0 almost surely.

4. If A is an l x d matriz, and Y = AX, the covariance matriz of Y is the square matriz of
dimension | given by

AT AT, where AT is the transpose matriz of A.

3 Independence

3.1 Independence of events

Definition 3.1 Two events A and B are independent if and only if P(AN B) = P(A)P(B) (or
equivalently, when P(B) > 0, P(A|B) = P(A)).

Definition 3.2 A family of events (A;)icr is a family of independent events if and only if for every
finite subset of indices J C I, we have

P (4| =]]PAy.
jed jed

3.2 Independence of random variables

Let X and Y be two random variables defined on (2,4, P) with values in (E,€) and (F,F),
respectively.

Definition 3.3 X and Y are independent if and only if for all A € £ and B € F, we have
P(X €AY eB)=P(X € AP(Y € B).
Proposition 3.4 Measurable functions of independent variables are independent. Let f be a mea-

surable function from (E,E) to (E',E"). Let g be a measurable function from (F,F) to (F',F'). If
X and 'Y are independent, then f(X) and g(Y) are independent.
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Proposition 3.5 Case of discrete variables. Independence in terms of the mass function. If the
sets E and F are finite or countable, the variables X and Y are independent if and only if for all
x € FE andy € F, we have

P(X=2zY=y)=PX=2)P(Y =y).
(the mass function of the pair is the product of the mass functions of each variable)

Proposition 3.6 Case of real variables. Independence and non-correlation. Suppose E = F = R
and € = F = B(R), and that the variables X and Y are square-integrable. If X and Y are
independent, then cov(X,Y) = 0. The converse is false.

Proposition 3.7 Case of real variables. Independence in terms of the cumulative distribution func-
tion. Suppose E =F =R and &€ = F = B(R). The variables X and Y are independent if and only
iof for all x € R and y € R, we have

P(X <z, Y <y)=P(X <z)P(Y <y).

(the cumulative distribution function of the pair is the product of the cumulative distribution func-
tions of each variable)

Proposition 3.8 Case of real variables. Independence in terms of the characteristic function.
Suppose E = F =R and € = F = B(R). Let o(X,Y), vx, and @y be the characteristic functions
of the pair (X,Y') and of the variables X andY , respectively. The variables X andY are independent
if and only if for all 0 = (0,,0,) € R?, we have

(X, Y)(0) = ox(02) ey (6y)-
(the characteristic function of the pair is the product of the characteristic functions of each variable)

Proposition 3.9 Case of real variables with density. Independence in terms of the density. Suppose
E =F =R and € = F = B(R), and that the pair (X,Y) has density h(z,y). Let f and g be
the densities of X and Y (which exist according to Proposition ?7). The variables X and Y are
independent if and only if for almost every (z,y) € R2, we have

h(z,y) = f(z)g(y).
(the density of the pair is the product of the densities of each variable)

All of the above generalizes to more than two random variables.

4 Special case: Gaussian vectors

Definition 4.1 Let X = (X,...,Xy) be a random vector of dimension d. X is a Gaussian vector
if and only if every linear combination of the coordinates of X is a Gaussian real variable: for every
a=(a1,...,aq) €RY,

<a,X> =X+ agXy

1s a Gaussian variable.

Proposition 4.2 Characteristic function of a Gaussian vector. X is a Gaussian vector if and
only if there exists m € R and a positive symmetric matriz T of dimension d x d, such that the
characteristic function px of X is given by

ox (1) = exp(ift,m)) exp (—;(t, Ft>> .
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Here, m is the mean vector of X and I is its covariance matriz:

E(Xl) var(Xl) COV(Xl,Xd)
m = : , I':= : : :

B(X,) cov(Xg X1) oo var(Xy)

We denote this by X ~ Ng(m,T).

Proposition 4.3 Linear transformation of a Gaussian vector. Let X be a Gaussian vector of
dimension d: X ~ Ny(m,T'). Let A be a matriz of dimension | x d and b a vector of dimension .
The vector AX + b is a Gaussian vector with distribution Nj(Am + b, ATAT).

Proposition 4.4 Independence in a Gaussian vector. Let X = (Xi,...,Xq) be a Gaussian vec-
tor. For all index subsets I,J of {1,...,d}, (Xi)icr and (Xj)jes are independent if and only if
cov(X;, X;) =0 forallie I and all j € J.

Proposition 4.5 Density of a Gaussian vector. Let X be a Gaussian vector of dimension d: X ~
Nyg(m,T). X has a density on R? if and only if T is positive definite. In this case, the density of X
s given by

—;ex —lx— o — )T
x(o) = e (5 -l e )]

5 Conditioning

5.1 Conditional distribution

Let (X,Y) be a pair of random variables taking values in (E, ) and (F, F) respectively.
The goal of this section is to answer the question: if I observe the variable Y, what can I say about
the distribution of X7

5.1.1 Independence or not

Proposition 5.1 The variables X and Y are independent if and only if for all y € F, the condi-
tional distribution of X given Y =y does not depend on y:

VA€ E, P(XeAlY=y) =PXecA).

5.1.2 Discrete conditioning variable

For every possible value y of the variable Y such that P(Y = y) > 0, the conditional distribution
of X given Y = y is the probability on (F, ) that associates with an event A € £ the following:

P(X € A;Y =vy)

PIX €AY =y) = =5

(2.1)

This depends on the fixed value y.
If X is a discrete variable, it is characterized by its conditional distribution that associates to
x € E the probability P(X = z|Y =y). We have
PX =z;Y =y) PX =z =y)

PX=alY =y) =—F5 ) ~ s PX=2Y =y)

24 24 / 77



CHAPTER 2. RANDOM VECTORS 5. CONDITIONING

5.1.3 Continuous conditioning (with density)

In this case, the variable Y also has a density, and for all y € R, P(Y = y) = 0. Similarly, for
every event A € B(R) and every y € R, P(X € A;Y = y) = 0. Thus, the expression (??) is an
indeterminate form of the type "0/0". To define the conditional probability, we must use a limit,
and define P(X € A|Y = y) as the limit as € approaches 0 of P(X € A|Y € [y—¢;y+¢€]). If f(z,y)
denotes the density of (X,Y"), then we have

Joca flay) da

PX €AY =y) = S
]R

Thus, the conditional density of X given Y = y is given by the expression

f(w Y)

fX|Y:y( ) f]R T y d:E

5.2 Conditional expectation

Let X be a random variable or a random vector and Y be a real random variable. We seek to
define the conditional expectation of Y given X as a mean of Y with X fixed. Here is the general
definition.

Definition 5.2 Suppose that E(]Y|) < +oo. The conditional expectation of Y given X, denoted
E(Y|X), is an integrable random variable Z such that

1. there exists a measurable function n such that Z = n(X),

2. for any bounded measurable function (,
E[Y ((X)] = E[Z{(X)].

Proposition 5.3 Two random variables Z1 and Zo that satisfy the two conditions above are equal
almost surely. The function n is unique (up to almost everywhere) on the support of the distribution
of X. We then denote n(z) by E(Y|X = z).

Note that, quite often, P(X = z) = 0 and thus E(Y|X = z) = % is not well-defined.

This formula is valid if the distribution of X is discrete (see the proposition below).
If A is an event, then P(A|X) is the conditional expectation of Y = 14 given X, i.e.,

P(AIX) = B(14X) ps

The definition above is not intuitive. However, if we assume that Y is in L?, we obtain a clearer
characterization of E(Y|X).

Proposition 5.4 Characterization in the L? case. If E(Y?) < oo, then E(Y|X) is the best
approximation of Y by a function of X in the least squares sense. In other words, for any square-
integrable random variable Z' = n'(X),

E(Y —E(Y|X))*<E(Y —7/(X))*.

Proposition 5.5 Calculation in the case where X is discrete. Assume that the set {x;,i € I}
of values taken by X is finite or countable. Then,

E(Y|X) =) E(Y|X = ;) Ix—,,
el
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where E(Y|X = z;) is given by

E(YIx_.,)

BYIX =) = prp s

Proposition 5.6 Calculation in the case where (X,Y) has a density. Assume that the couple
(X,Y) has a density f(z,y) on R2. Let g be the density of the marginal distribution of X, that is,

g(z) = /f(x,y) dy for all x.

Then, for any x,

B(v(x) - [ yf;é;i’) dy

This can be rewritten as:

f(z,y)
g()

Theorem 5.7 (Desintegration). Let Y be a random variable independent of X, and let T be a
random variable that is a function of X. If ¢(T,Y) is integrable, then

EY|X =zx)= /y dy = /ny|X=z(y) dy.

E[B(T,Y)|X] = (T) p.s.

where, for all t,
®(t) = Elo(t,Y)].

Proposition 5.8 Properties of the conditional expectation of Y given X. Whenever the
random variables within the conditional expectations are integrable, we have:

1. E[E(Y|X)] = E(Y)

2. If Y > 0 almost surely, then E(Y|X) > 0 almost surely; if Y1 < Ya almost surely, then
E(Y1|X) < E(Y2|X) almost surely.

3. If a and 8 are two constants, then E(aY) + fY2|X) = aE(Y1|X) + BE(Y2|X) almost surely.
4. If X and 'Y are independent, then E(Y|X) = E(Y) almost surely.

5. (Conditional Jensen’s inequality) If ¢ is a convex function such that ¢(Y') is integrable, then
H(E(Y|X)) < E[p(Y)|X] almost surely.

6. If T is a function of X, then E(TY|X) =TE(Y|X) almost surely.

7. (Conditional Beppo-Levi) If (Y,) is a non-decreasing sequence of positive random variables,
and if Yoo = limy, 00 Yy, then limy, o0 E(Y,|X) = E(Yoo|X) almost surely.

8. (Conditional Fatou’s lemma) If (Y,) is a sequence of positive random variables, then

E [lim inf Yn\X} <liminf E(Y,|X) almost surely.
n—oo n—oo

9. (Conditional Lebesgue’s dominated convergence) If (Yy,) is a sequence of random variables that

converges almost surely to Yoo and if there exists an integrable random variable Z such that
foralln, |Y,| < Z, then

E[Y,—Yx| | X]—0 almost surely.
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5.3 The case of Gaussian random vectors

Proposition 5.9 Let X and Y be two random vectors (of dimensions n and d respectively) such
that (X,Y) is a Gaussian vector of dimension n + d, with mean vector (mx,my)T and covariance

matric
r— <FXX 11)(1/)
I'yx TIyy)’

We assume that I'x x is positive definite. The conditional distribution of the vector Y given X 1is
the distribution of a Gaussian vector with mean

my +Tyx(Txx) " (X —mx)

and covariance matrizc
-1
I'yy —T'yx(Txx) Txy.

In particular, E(Y|X) = my + Ty x(Txx) YX — mx) is an affine transformation of X.

6 Asymptotic results about empirical mean

The two theorems in this section provide information about the behavior of empirical means as
n approaches infinity. Therefore, they are at the heart of statistical theory in the context of large
sample limits.

Throughout the rest of the chapter, we consider a sequence of independent and identically
distributed random vectors (X, )n>1 (abbreviated as "i.i.d." for "independent and identically dis-
tributed"), taking values in RY.

We assume that E(||X1||) < 400 and denote m as the mean vector: m = E(X;). When
E(|| X1]]?) < 400, we can also define the covariance matrix ' of X;.

We set

= 1
Sp=X1+---+X,eR?  and X, := E(X1+---+Xn):—eRd7
where the latter is called "the empirical mean" of Xj.

Proposition 6.1 Mean and covariance matriz of the empirical mean.
1. If B(]| X1])) < +o0, then E(X,,) = m.
2. If B(|| X1|?) < +o0, the covariance matriz Ty, of X, is equal to % In particular,
E [HXn - m‘ﬂ = Trace(T,) = % Trace(T"),

and

Thus, the empirical average converges in quadratic mean (mean square) to the theoretical mean.
This last result can be significantly improved:

6.1 Strong Law of large numbers (SLLN)
Theorem 6.2 Let E(||X1]|) < +oo. Then,

> D.S.
X, —>m asn — +oo.
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Thus, outside a set of probability zero, a realization of the empirical average (i.e., the computation
of the empirical average from a sample) converges to the theoretical mean.

Remark 6.3 There also exists the weak version of this law, where the convergence is not an almost
sure convergence. This is a convergence in probability. However, the almost sure consistency ensures
the convergence in probability, which explains why we often work with the SLLN.

6.2 Central Limit Theorem (CLT)

The following result specifies how fast the convergence of the empirical average to the theoretical
mean occurs and what the statistical distribution of the fluctuations of the empirical average around
the theoretical mean is. It thus allows for the construction of confidence intervals for the theoretical
mean.

Theorem 6.4 Central Limit Theorem.
Assume that E(|| X1||?) < +o0. Then,

V(X —m) % Z ~NO,T) asn— +oc.

The central limit theorem generalizes to sufficiently smooth functions of the empirical average
(thanks to the Delta method):

Corollary 6.1 Let f be a function from R? to R of class C*. Then,
d

Vi(f(Xn) = f(m)) = Z ~ N(0,(V f(m), LV f(m))).

7 Exercices

Exercise 1
What is the density of the pair (X,Y’) whose joint cumulative distribution function is given by:

0 if z <0,
(1—e7") (5 + Zarctan(y)) if x> 0.

F(l‘,y)—{

Exercise 2

For the two functions F' defined below, which one (or both) is a valid cumulative distribution
function for a pair (X,Y)?

I l—e ™ —ze ¥ if0< 2z <y,
1—e™Y ifx,y>0, B e
F(x,y) = _ and F(zr,y)=<1—eY —ye ifo<y<u,
0 otherwise. ]
0 otherwise.

If the answer is yes, what are the two marginal cumulative distribution functions?

Exercise 3

Let (X, Y, Z) be the real-valued random triplet whose density function is defined, when non-zero,
by
flay,2) = (y —2)? exp (—(1 + 2)(y — @),
f0<z<1,y>x, and z > 0.
Let U=X,V =(Y - X),and W = Z(Y — X). What is the distribution of (U, V,W)?
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Exercise 4

Let a >0 and 0 < p < 1. Let X be a random variable following the Poisson distribution P(a).
Let Y be a random variable with integer values such that, for all integers 0 < k < n,

n n—
P(Y =k X =n) = (k)pk<1 et
Define Z = X — Y. What is the distribution of the pair (Y, Z)?

Exercise 5

Two dice, one red and one blue, are rolled, and their respective outcomes are recorded. Let the
events be:

e A: "The red die shows an even number."
e B: "The blue die shows an even number."
e (C: "The sum of the numbers is even."

Compute the probabilities of A, B, and C. Verify that A, B, and C' are pairwise independent but
not mutually independent.
Exercise 6

Let A and B be two incompatible events. Show that A and B are independent if and only if
P(A) or P(B) is zero.
Exercise 7

Independent trials with a constant probability of success p, where 0 < p < 1, are conducted
until a fixed number m of successes is obtained. Let X denote the number of trials required.

1. Compute the probability distribution of X.

-1
2. Show that E KH] = p and that E [%} # p (assume m > 1).

Exercise 8

Let X1, X9, X3, X4 be independent random variables following the Bernoulli distribution B(p).

Consider the matrix
(X X
=5 %)
and let D be its determinant. Compute E[D].

Exercise 9

Two numbers are drawn at random from the set {—2,—1,0,1,2}, and their product is denoted
by X. Compute E[X]:

1. when the draw is with replacement;

2. when the draw is without replacement.
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Exercise 10

Let X1 and X5 be two independent Bernoulli random variables with respective parameters p;
and po. Let Y; =2X; — 1 for i =1,2. Are Y7 and Y5 independent? Are Y7 and Y7Y5 independent?

Exercise 11

Let X be a random variable uniformly distributed on the interval [—2,1]. Define Y = |X| and
Z = max(X,0). Find the cumulative distribution functions of ¥ and Z. Are Y and Z random
variables with densities? Are Y and Z independent?

Exercise 12

Let (X,Y) be a pair of random variables taking values in {—2,0,1} x {—3,0,1}. The table
below gives the values of P[X = z,Y = y] for the different values of z and y.

y/x| -2 0 1

-1/2 [ 1/10  a 0
0 |3/10 0 3/10
1 |1/10 1/10 0

1. What is the value of a?
2. What is the distribution of Y7

3. Is X independent from Y?

Exercise 13

Let (X,Y) be a pair of random variables with the density function:

foxy) (@, y) = exp(—y) - Lo<a<y-
1. Verify that f(x y) is indeed a density function.
2. Are the variables X and Y independent?
3. Are the variables X and Y — X independent?

4. What is the distribution of the pair (Y — X, X/Y)?

Exercise 14

1. If X ~ B(ni1,p) and Y ~ B(ng,p) are two independent variables, what is the distribution of
X+Y?

2. If X ~ P(\) and Y ~ P(u) are two independent variables, what is the distribution of X +Y?

Exercise 15

Two independent telephone exchanges receive daily call volumes X and Y, which follow Poisson
distributions with parameters A and p, respectively.

1. What is the probability that the total number of calls received by both exchanges is at most
3, given A = 2 and p = 47

2. What is the probability that X = k given that X + Y = n, for two integers k£ and n? What
is the distribution in this case?
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3. Assuming A = 2 and p = 4, and knowing that the total number of calls received by both
exchanges is 8, what is the probability that the first exchange received k calls? For which
value of k is this conditional probability maximized?

Exercise 16

Let (X,Y) be a pair of random variables. The table below gives the values of P[X = z,Y = y]
for the different values of z and y.

X/Y[ 0o 1 2

/
0 [1/9 2/9 0
1
2

0 1/9 2/9
2/9 0 1/9

1. Show that cov(X,Y) =0, but X and Y are not independent.

2. Determine the moment-generating functions Gx, Gy, Gx1y of X, Y, and X + Y, and verify
that GxGy = Gx+y.

3. Calculate E(X | Y).

Exercise 17

Let X be a real-valued random variable with a symmetric distribution (i.e., X and —X have the
same distribution). Let € be an independent random variable such that P(e =1) =p=1— P(e =
—1), where p € (0,1).

1. Find the distribution of € X.

2. Under what condition on p is the covariance between X and X equal to zero? In this case,
are X and X independent?

3. Let Y = 1x>0— 1x<o. Find the distribution of Y and XY . Calculate the covariance between
|X| and Y. Are these two variables independent?

Exercise 18

Let X be a 3-dimensional random vector following a N (0, ) distribution, where

1

OO

Y=1|-1 3
0 0

Find a vector of the form a(X), where a is a linear map from R? to R3, such that the components
are independent.

Exercise 19

Let X ~ N (0,1), and let € be an independent random variable with P(e = 1) = P(e = —1) = 3.
1. Find the distribution of ¥ = eX.

2. Is the pair (X,Y) jointly Gaussian?

3. Calculate cov(X,Y).

31 31/ 7?7?



7. EXERCICES CHAPTER 2. RANDOM VECTORS

Exercise 20

1. Show that the matrix

is a covariance matrix if and only if p € [—1,1].

In what follows, we assume that this condition is fulfilled, and we consider (X,Y") a centered
Gaussian vector with covariance matrix .

2. Find the value ag of a that minimizes E[(Y — aX)?].

3. What are the distributions of X, Y — apX, and (X,Y — apX)? Show that X and Y — apX
are independent.

4. Calculate E(Y | X).

Exercise 21
Let ¥ = (0;) be a 3 x 3 symmetric matrix defined by o;; = 1, and 0;; = a for i # j.
1. For which values of a is ¥ a covariance matrix?

2. Assume that ¥ is a covariance matrix, and let (X,Y, Z) be a centered Gaussian vector with
covariance matrix ¥. Calculate E(Z | (X,Y)) and E(Z | X +Y).

3. Calculate E[X2Y?] and E[X2Y*].

Exercise 22

Let M and X be two random variables. Assume M follows a Gaussian distribution, and for all
teR,

itx , o*t?
E [e"* | M] = exp th—T .

1. Show that (X, M) is a Gaussian vector.

2. Calculate E(X | M).

Exercise 23

The number Y of breakdowns of a machine during a year is related to the age X (in years)
of the machine. For a fixed age x, the distribution of Y is a Poisson distribution with parameter
py (z) =1+ In(z):

k
PlY =k| X =a] = “Y]if) exp(—py (z)), VkeN.

x |1 2 3 4
px(z) | 0.1 02 03 04
1. What does the parameter py (z) represent? Comment on its expression as a function of z.
2. What is the joint distribution of the pair (X,Y)?
3. I decide to buy this second-hand machine from a dealer who cannot specify its age. What is
the distribution of the annual number of breakdowns?

For this type of machine, the distribution of ages is given by:
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Exercise 24

The height X (in meters) of a species of trees found in a given forest depends on the age Y
(in years) of the tree. For a given age y, the height follows a normal distribution, where the mean
px(y) and the variance 0% (y) depend on the age. For trees with ages y ranging from 20 to 150
years, we have:

px(y) =40 (1 —exp(~y/50)), ox(y) = pux(y)/10.

It is assumed that the distribution of ages follows an exponential distribution with parameter 0.02:
Y ~ Exp(0.02).

1. Comment on the assumptions made (choice of distributions, choice of parameters, etc.).

2. What is the proportion of trees with ages between 20 and 150 years?

3. What is the distribution of the height of trees aged between 20 and 150 years?

4. Suppose we have a tree with a measured height of x meters and know its age is between 20
and 150 years. What can we infer about its age?

5. This exercise is actually a statistics problem. What is the parameter of interest in the last
question? Show that this exercise can be framed as a Bayesian model. What is the prior distribution,
the statistical model, and the posterior distribution in this case?

Exercise 25

Let X1,...,X1000 be random variables following the uniform distribution on the interval [0, 1].
Let M be the number of these variables that lie between 1/4 and 3/4. Use a normal approximation
to determine P(|M — 500| > 20).

Exercise 26

Suppose we have tossed a fair coin 10,000 times.

1. Find a symmetric interval around 5000 that contains the number of heads with a probability
greater than (0.99.

2. Compare the result with the one obtained using Chebyshev’s inequality.

Exercise 27

— X2
Let X ~P(\) and Y = T

1. Show that Y converges in distribution as A — oo, and determine its limiting distribution.

2. Derive this result as a consequence of the Central Limit Theorem, assuming A\ — oo within

N.

3. Show that e™™ >} %If — 1 asn — oc.
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Chapter 3

Inferential Statistics

1 Introduction

1.1 Forewords

Statistics can be divided into three types of studies: descriptive statistics, inferential statistics,
and Bayesian statistics.

Descriptive statistics aim to describe data. They summarize the information contained within
the data through simple statistical indicators (such as mean, dispersion, quantiles, etc.) and graph-
ical representations like histograms or bar charts.

The goal of inferential statistics is to enable decision-making and forecasting based on ob-
served data. There are two main categories of techniques for achieving this:

e Parameter estimation,
e Statistical tests.

Estimation can be either point-based or set-based, encompassing two primary methods: estimation
by the method of moments and estimation by the method of maximum likelihood. Hypothesis tests,
on the other hand, are used for decision-making.

Finally, bayesian statistics aim to incorporate the experience of observed data to update prior
knowledge. This prior knowledge, or expert opinion, is represented by a probability distribution
that models uncertainty about the parameter of the probability law governing the phenomenon of
interest.

1.2 Parametric versus nonparametric

In general, parametric statistics is distinguished from non-parametric statistics. Parametric
statistics assumes the existence of a known model with an unknown parameter that one seeks to
find, whereas non-parametric statistics does not rely on the existence of a specified (or known class
of) model. A typical example of parametric statistics is assuming a given probability distribution
to model some observed random phenomenon, whereas a typical example of nonparametric sta-
tistical model is Machine Learning. Of course, pros and cons are associated to parametric and
nonparametric statistical models. In general,

e statisticians have developed a lot of theory underlying parametric statistics, with asymptotic
results that guarantee good properties of the obtained results;

e it is often less important to have a large dataset when using parametric statistical models
than when using nonparametric ones;
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e however, nonparametric models allow for more flexibility, since there is no specific constraint
that "shapes" the behaviour of the random phenomenon. They are usually called "data-
driven" models;

e nonparametric statistical models also rely on tuning parameters which are sometimes not easy
to deal with;

e the necessary trade-off between fit-to-data (adequacy) and predictive performance leads to
choices in the complexity of models (number of parameters for parametric models, estimator
size in nonparametric ones): these choices are often easier to make in the parametric setup.

One of the problems with parametric statistics is the error resulting from a poor model choice.
The advantage of non-parametric statistics is that it is not subject to this risk. However, if the
observations indeed come from a specific model, the statistical methods that utilize this model are
more efficient than those that do not.

In terms of notation, a parametric model is one where it is assumed that the type of distribution
of X is known but depends on an unknown parameter 6 of dimension greater than or equal to 1.
The family of possible probability distributions for X can then be expressed as follows:

P ={Py; 0 € ©cRY.

In this context, when we aim to make statistical inference through estimation and testing on 6, we
say that we are performing parametric statistics. For the whole course, we will focus hereafter on
parametric statistical models.

In contrast, a non-parametric model is one where P cannot be expressed in this form. In this
framework, P may include, for example, the set of continuous probability distributions on R, or
the set of symmetric probability distributions around the origin. The objects on which estimation
and testing procedures are based on are no longer parameters of a probability distribution. We
may want to estimate quantities such as the mean and variance using empirical estimators. For
instance, conducting a test on the value of a mean, or the goodness-of-fit to a distribution, falls
under non-parametric statistics.

1.3 Statistical model

The link between statistics and probability theory is established through the statistical model.
A statistical model is a mathematical object associated with the observation of data resulting from
a random phenomenon. A statistical experiment collects an observation z of a random variable X
with values in a space X', where the exact probability distribution P of X is unknown. It is then
assumed that P belongs to a family of possible probability distributions P.

Definition 1.1 The statistical model associated with this experiment is the triplet (X, A, P), where
e X is the observation space (the set of all possible observations),
o A is the set (0-algebra) of observable events associated with it, and

e P is a family of possible probability distributions defined on A.

The model is discrete if X’ is finite or countable; in this case, the o-algebra A represents all the
(sub)sets of X: A = P(X). This occurs when the random variable X follows a discrete probability
distribution.

The model is continuous when X C RP, and for each P belonging to the set of admissible
distributions P, there exists a density with respect to the Lebesgue measure on RP. Here, A is the
Borel o-algebra on X’ (open intervals on R): A = B(X).
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It may happen that the observation of the random variable X includes both discrete and con-
tinuous elements. In this case, X and A are more complex.

Most often, the observed random elements consist of independent random variables, and random
variables that have the same distribution are said to be independent and identically distributed
(ii.d.). We denote these as (Xi,...,X,). This refers to a sample. In this case, denoting by
(X, A, P) the statistical model of a sample of size 1, (X, A, P)" corresponds to a sample of size n.

Example 1.1 Consider lifetimes of mechanical parts in automobile. We collect the lifetimes of these
parts, assumed to be independent and identically distributed according to an exponential distribution.
Thus, we have a statistical model of the following form: (RT, B(R™), {exp()\),\ € RT})".

Example 1.2 Now, considering the quality of certain automobile parts, we are interested in the
proportion of defective parts. The observation is denoted as x = (x1, ..., Ty,), where x is the realization
of the i.i.d. sample X = (X1,..., Xy), where X; = 0 if the part functions properly and X; = 1 if it is
defective. Thus, we obtain the following statistical model: ({0;1},P({0;1}), {Bern(p),p € [0,1]})".

2 Point-based estimation

2.1 Introduction

In this section, we will assume that we are performing parametric statistics in a unidimensional
framework (d = 1). We will assume that the data x1, ..., z,, are independent realizations of the same
random variables Xi, ..., X,;. Thus, we are in a sample, and it is equivalent to assume that the
observations x1, ..., x, are realizations of independent and identically distributed random variables
X1, X,

Descriptive statistics allow us to make hypotheses about the type of probability distribution
of X;. More sophisticated techniques, such as goodness-of-fit tests, enable us to validate or reject
these hypotheses.

Here, we assume that these techniques have allowed us to select a specific family of probability
distributions for the distribution of X;, with an unknown parameter 8. We will aim to estimate
this parameter. Based on the observations x, ..., x,, we would like to provide the closest possible
approximation to the true unknown value. This approximation can be made in the form of a single
value, known as a point estimate, or a set of plausible values, known as a confidence region.

In the following, let F'(x;6) be the cumulative distribution function of X;. In the discrete case,
we denote P(X = z;0) as the elementary probabilities. In the continuous case, we denote f(z;0)
as the probability density function.

Example 2.1 For instance, if X ~ E(X), then

Flz:))=1—-e ) 1ge(z) and f(z;0) = Ae M 1p+(z).

2.2 Methods

Several estimation techniques exist for a parameter 6. For example, we can mention probability
plots or the fact that a probability can be estimated by a proportion. Here, we present the two most
well-known estimation methods: the method of moments and the maximum likelihood method.

2.2.1 What is an estimator?

We observe the data 1, ..., x,. To estimate 6, we only have this information. This means that
an estimator of # will necessarily be a function of these observations.
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Definition 2.1 A statistic t is a function of the observations x1, ..., Xp:
t:R" - R™
(T1y .y Tpn) = t(x1, .oy Tp)
We now give some examples:
e the observed empirical mean z, = (1/n) ), x; is a statistic.
e 17 (the lowest observation, once the sample sorted) is a statistic.

We have already seen that xi,...,z, are realizations of Xj,..., X,,. Therefore, t(z1,...,2,) is
a realization of t(X1,...,X,). For example, X,, = (1/n)>, X; has a realization Z,. In terms of
notations, we often simplify and denote ¢,, = t(x1, ..., z,,) the realized value of T, = t(X1, ..., X,,).

Definition 2.2 An estimator of 0 is a statistic Ty, which is a random variable taking values in the
set of possible values of 0. Being an estimate of 0 means that it is a realization t,, of the estimator
T,.

When the sample z changes, the estimate ¢, also changes. However, the expression of the
estimator T}, remains the same.

2.2.2 Moment estimation

The basic idea of the method of moments is to estimate a mathematical expectation by an
empirical mean, or a variance by an empirical variance. We then proceed by identification after
establishing the link between the parameter of the chosen distribution and these quantities.

For example, if the parameter to be estimated is the expectation of the distribution of X;, such
as in a Poisson distribution, we can estimate it using the empirical mean of the sample. More
formally, if # equals the expectation of X;, then the estimator using the method of moments is:

0, = X,

More generally, for 6, if the expectation of X; is equal to ¢(6), where ¢ is an invertible function,
then the estimator of # using the method of moments is:

0, = ¢ 1(Xy).

If the distribution of X; has two parameters 6; and 6o, such as in the case of the Gaussian
distribution, we then use the first two moments in this way:

(élny é2n) = ¢_1(Xn7 ‘9721)7
where S2 = (1/n) Y_,(X; — X,,)? is an estimator of the variance of X.

Example 2.2 Let us try some examples where you have to provide the estimator by the method of
moments:

e Bernoulli distribution, X; i B(p): recall that E[X;] = p.

e Exponential distribution, X; b E(N): recall that B[ X;] = 1/\.

e Gaussian distribution, X; Z‘ri\(»j/\/'(,u,JQ): recall that E[X;] = p and Var(X;) = o2.

e Gamma distribution, X; i G(a, \): recall that E[X;] = /X and Var(X;) = a/\2.
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2.2.3 Maximum likelihood estimation

The likelihood function, as its name suggests, is used to assess how plausible a particular model
is given the data.

Definition 2.3 When the observations are all discrete or all continuous, the likelihood function, or
likelihood for the sample x = (x1, ..., 2y ), is the function of the parameter 0:

L(O: 21,y ) = { P(Xy = x1,..., X2 = x9;0) in the discrete case

- fx1,x)(Z1, s 203 0) in the continuous case.

Using the assumption of independent and identically distributed observations and underlying
random variables, the likelihood can also be expressed as follows

L(0; 21, ooy ) = { [[,P(X; = 24;0) in the discrete case

N IL fx,(zi;60)  in the continuous case.

We have moved from a multivariate distribution to a product of univariate distributions. The likeli-
hood function is therefore considered a function of the parameter 8, and depends on the observations
Llyeeey Ly-

To provide intuition, let’s start with an example.

Example 2.3 Considering a single observation, let’s assume that X1 follows a Binomial distribu-
tion with parameter p, where p is unknown. We have X1 ~ Binom(15,p). We observe x1 =5, and
want to estimate p. Theoretically, the likelihhod is given by

L(p;5) = P(X1 = 5;p) = CPpp° (1 — p) 7>

This is the probability to observe 5 when the parameter equals p.
Let’s vary p to determine for which value this probability is mazrimized.

p | o1 02 03 04 05 06 07 08 0,9
L(p;5) | 0,00 0,1 021 0,19 0,09 0,02 0,003 10°% 2x1077

For example, we observe that the probability of observing 5 successes when p = 0.8 is 1/10,000.
This probability is maximized at p = 0.3 in this grid. This result makes sense, given that there are
15 Bernoulli trials. It is therefore much more likely that p = 0.3. We thus look for the value that
mazimizes this likelihood function among all possible values of p.

For optimization, and more specifically for maximizing a function in the search for better pa-
rameters by maximizing the likelihood, this is done by finding the value that nullifies the derivative
of the likelihood. Furthermore, since the likelihood is defined as a product, it is easier to maximize
a sum than a product. Therefore, we will maximize the log-likelihood (denoted [ further) in the
example above. It is given by:

In L(p;z1) = l(p; 1) =InCy2 + 21 Inp + (15 — 1) In(1 — p).
The derivative of this function thus equals

gl(pw)_ﬂ_(lf)*%)_!ﬂl*lf)p
op "V T p 1-p  p(l-p)

We easily see that the derivative equals 0 when p = (1/3). The maximum likelihood estimate
of p is therefore one-third, with the associated maximum likelihood value L(1/3;5) = 0.214.

Definition 2.4 The mazimum likelihood estimation of 6 is the value 6,, of 6 that mazximizes the
likelihood function. The maximum likelihood estimator of 6 is the corresponding random variable.
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Therefore, we write 6,, as

0, = argmgme(G; Ty ey Ty) = argmgxl(&; X1y eeny Tp)-

When 6 is multidimensional (say with dimension d), and all the partial derivatives exist, the esti-
mator is the solution to a system of equations called the likelihood equations. Hence,

8AL(0;:U1, ey Tp) = 0.

Vi e{l,...,d}, 20,
J

Remark 2.5 A solution to this optimization could a priori be a minimum, but the very nature of
a likelihood function leads to a maximum.

Remark 2.6 When the system does not have an explicit solution, a numerical method is used. The
most well-known and common one is the Newton-Raphson algorithm.

Example 2.4 Consider a sample of size n. Getting back to the previous example, we can give
the mazximum likelihhod estimator for the parameter p of a Bernoulli distribution. Given that the
Bernoulli sample has the following likelihood:

n

L(p; w1,y an) = [ [ 27 (1 = p)' 7% = p2®i(1 — p)~ 2™,

i=1

The log-likelihood is therefore extremely simple and equals to

which gives the derivative

_ 2T M)
P I—p
Thus, the mazimum likelihood estimator (MLE) py, is a random variable, and satisfies
>i Xi _ n—>,X; _

]an 1 _ﬁn

0

0.
This comes up with p, = X,,.

As an exercice, find the mazimum likelihood estimators in the following cases:

e Exponential distribution E(N);

e Gaussian distribution N'(u,0?);

e Gamma distribution G(a, \).
Remark 2.7 Show an illustration of maximum likelihood optimization in the software R.

In general, we obtain two different estimators depending on the method used to estimate the
parameter of the distribution. This raises a natural question: which one is better?
2.3 Quality of estimators

We recall that we are particularly interested here in a one-dimensional parameter €, which
belongs to the set of real numbers. The estimators T}, are therefore real random variables. For
6 € R? with d > 2, all these notions can be generalized, but they become more complex. For
example, the concept of variance is replaced by that of a covariance matrix
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2.3.1 Bias and variance

An estimator T;, of 0 is considered a good estimator if it is close to 6. This requires defining a
measure of the deviation between T, and #. This deviation is known as the risk of the estimator,
which we seek to minimize.

Example 2.5 Evamples of risks: T, — 0, |T,, — 0|, (T, — 0)?, ...

This quantity is random since it depends on random variables. We are actually interested in
the deterministic version of these quantities obtained by taking the expectation. This expectation
is taken with respect to the distribution of X;.

Let us now introduce two important measures for the quality of estimators: the bias and the
variance.

Definition 2.8 The bias of the estimator T,,, denoted by b(T),), equals
b(T,) = E[T, — 0] = E[T,,] — 0.
We say that the estimator underestimates § when the bias is negative, otherwise it overestimates 6.
Definition 2.9 The quadratic risk, also known as the Mean Squarred Error (MSE), equals
MSE(T,) = E[(T,, — 6)%.
Take care, the MSE is not the variance of the estimator!

Definition 2.10 An estimator T, is said to be unbiased if and only if (iff) E[T,] = 0. It is biased
iff [T, #6.

The bias measures a systematic error in the estimation of 6 by T,,.

To understand the components of the mean squared error, we can rewrite it as the sum of two
terms:

MSE(T;,) = E((T,, — 0)?] = E[(T}, — E[T,,] + E[T})] — 6)?]

(Tn — E[T])* + 2(T, — E[T))(E[T] — 0) + (E[T,] — 6)?]

(Tn — E[T))?] + 2E((T,, — E[T,)(E[T,] - 0)] + E[(E[T,,] - 6)*)
=Var(T,) + 0+ (b(T}))?

In other words, the MSE of any estimator is the sum of its variance and its bias to the square!
Therefore, if T;, is an unbiased estimator, then its MSE is just the variance of this estimator.
Finally, it is in our best interest for an estimator to be unbiased and have low variance.

Remark 2.11 Between two unbiased estimators, the best one is the one with the smallest variance.

Remark 2.12 The variance of an estimator measures its variability when confronted with several
similar and independent datasets. An estimator with low variance will produce estimates of 0 that
are close to each other. To estimate 0 accurately, it is important that the estimator’s variance is
not too large.

We expect that as the data size increases, the estimation will improve. Indeed, with more
information, we should be able to estimate 6 with no error in the limit of infinite observations.
Therefore, we expect the estimator’s risk to asymptotically approach 0. In other words, the estimator
T,, converges to 6, in a certain sense.
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Definition 2.13 The estimator T,, converges to 0 in quadratic mean if and only if it MSE tends to
0 when n tends to infinity, i.e.

T,=—=0 < lim E[(T, - 0)?] = 0.

Remark 2.14 The following remarks are important in the light of using estimators in practice.

e The convergence in quadratic mean implies the convergence in probability. This is important
to show that an estimator T,, is consistent, meaning that it converges in probability to 0.

e Disclaimer: nothing guarantees that if T,, is a good estimator of 0, then ¢(T),) would be a good
estimator of ¢(0). Indeed, we often have T, as an unbiased estimator of 0, and ¢(T},) is a
biased estimator of ¢(0)!

e The best estimator among all possible estimators of 0 is an unbiased estimator with minimum
variance. It does not necessarily exist.

e If T, is unbiased, then T, Q—M> 0 < Var(T,) — 0.

n—oo

e Some notions that will be detailed further, like sufficient statistics, sometimes allows to deter-
mine an unbiased estimator with minimal variance.

e To show that an estimator is unbiased with minimal variance, another useful tool is the Fisher
information (see coming sections).
2.3.2 Efficiency

The quantity of information (Fisher information) is a valuable tool for assessing the quality of
an estimator. It is defined only under certain regularity conditions. These conditions are linked to
the density function f(x;6) (and thus the likelihood) of the observations:

e The support of f(z;6) does not depend on 6,

e The partial derivative of f(x;6) with respect to 6 exists almost everywhere (it can fail to exist
on a null set, as long as this set does not depend on 0);

e The integral of f(x;6) can be differentiated under the integral sign with respect to 6.

Definition 2.15 For 6 € R, if the distribution of the observations fulfills some regularity con-
straints, then it is possible to define the quantity of information (Fisher information) on 0 given by
the observation © = (x1,...,Zp):

I,(0) = Var (aae In L(6; X)> .

The variance operator is taken under the distribution of X;, as well as the expectation for the
bias. Knowing that the score U(#; X) is defined as the first derivative of the log-likelihood, the
Fisher information is therefore the variance of the score. It measures how sensitive is the slope
of the likelihood to some changes of the observation sample. The higher the sensitivity, the more
Fisher information. This means that what we observe brings a lot of information to infer 6.

Remark 2.16 There exist two other formulas for the Fisher information:

o As the expectation of the score equals 0 (E [% InL(0; X)| = 0), we have also

(w0 .
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e For the computations, it is sometimes useful to use the next formula which involves the second

derivative: o2
The latter formula is more convenient for distributions involving more than 1 parameter (ex:
Gaussian).

The significance of the quantity of information lies in the fact that it provides a lower bound for
the variance of any unbiased estimator.

Proposition 2.17 (Inequality of Frechet-Darmois-Cramer-Rao) If the regularity conditions men-
tioned at the beginning of this section are satisfied, then for all estimator T, of 0, we have

Var(T,) >

In case of an unbiased estimator, we have %E [T,] = 1, which means that

.o
T L(9)

Var(T,)

The latter bound is called the Cramer-Rao bound. The variance of any unbiased estimator of
is therefore necessarily greater than or equal to this bound.
If this bound is large, it is impossible to estimate accurately 6!

Definition 2.18 The efficiency of an estimator T,, of 0 is the quantity

(BT

PHI = T ovar(n)

The efficiency is such that 0 < Ef f(T,) < 1.

An estimator T, is said to be efficient if Ef f(T},) = 1.
It is asymptotically efficient if lim,, o Eff(T},) = 1.

Remark 2.19 From the definition of the efficiency, several remarks can be formulated:

o If T, is an unbiased estimator, we have

1
ELT) = T gyar @)

e If T, is unbiased and efficient, then the variance of T, equals the Cramer-Rao bound. It is
therefore an unbiased estimator with minimal variance.

e Sometimes there is no efficient estimator existing: in this case, an unbiased estimator with
minimal variance has a variance strictly greater than the Cramer-Rao bound.

e For unbiased estimators, their quality can therefore be studied looking at their efficiency.

Another important thing to notice is that
I,(0) = nI1(0).
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This is easy to demonstrate. Indeed,

I,(0) = Var <8891nL(9;X)> =Var (880 lan(Xﬁ@))

= va <8891nf(Xi;0)>
)

This simplification reveals often very useful for computations.

2.3.3 Sufficient and minimal statistic (exhaustivity)

Let us consider a statistical model (X, A, Py). We aim to obtain as much knowledge as possible
about 6 from observing x € X, knowing that x is a high-dimensional vector (with dimension n).
Specifically, in cases of large dimension n, it can be useful to summarize the data into lower-
dimensional sufficient statistics ¢(x) with dimension less than n.

Naturally, ¢(x) will contain less information about 6 than x does, but a sufficient statistic retains
the entirety of the information about 6.

Definition 2.20 A statistic t is sufficient for 6 if and only if the conditional distribution of X|T =t
is independent from 6.

In terms of interpretation, if the distribution of X conditional on T = ¢ does not depend on
0, it means that the summary statistic ¢(x) alone suffices to estimate 6, as knowing x provides no
additional information about 6. Consequently, we can rely solely on ¢(x) to estimate 6.

Example 2.6 Let ({0;1},P({0;1}),{Bern(p),p € [0,1]})" be our statistical model, for automobile
parts. Intuitively, to know the proportion of detfective part in the sample is sufficient to estimate
p. We thus expect X,, to be a sufficient statistic in this model. Even > Xi would be a sufficient
statistic, as it contains the same quantity of information as X,. Let us check whether that works.
We know that T' =), X; ~ Binom(n,p). Then,

X1 =T, ,Xn = Tn, Zz Xz = t)
]P)(ZiXi = 1)

P
P(X=2/T=t) = P(X1=a1,..Xn=aa| D Xi=1)= (
%

0 Y XAt
= ]P)(Xl :.Ccl,...,Xn:.Tn) . o
P Xi—p) X

Consider the case when ), X; =t:

P(X1=21,.... X = xp) _ [Lr" (1 —p)l_xi
P(T"=1t) Cip'(1 —p)nt
pZi Ti(l— p)”_zz‘ zi _ i
Crpt (1 —pn=t cr

P(X =z|T =t)

Clearly, this distribution does not depend on 0!

This example shows that verifying this property is not always easy. We then use the following
result to characterize sufficiency.
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Theorem 2.21 (Factorization of Fisher-Neyman) t is a sufficient statistic if and only if there exist
2 measurable functions f and g such that: Yz € X,¥0 € ©, L(0;x) = g(t(x);0)h(x).

Considering the previous example, L(p;2) = [[; p™ (1 — p)! =% = pXi®i(1 — p)"~2i%. The two
functions are thus g(t(z); p) = p2=i % (1 —p)" 2% and h(z) = 1. By identification, we can say that
t(X) = >, X; is a sufficient statistic for the estimation of p.

Definition 2.22 A sufficient statistic s(x) is minimal if, for any sufficient statistic t(x), we can
express t as a function of s.

In practice, we obtain a minimal sufficient statistic by examining the likelihood up to a mul-
tiplicative constant. After simplification, identifying which function of the data is necessary and
sufficient to calculate it, we obtain the result.

2.3.4 Additional notions

In the case of dependent data, it is necessary to adapt the likelihood formula to account for this.
Denote by f all the densities of the random variables X;, we would have

n

L(O;z) = f(z;0) = f(x1:0) Hf(:ciw,ml, ey Ti—1).

=2

Moreover, the likelihood is invariant under bijective transformations of the dataset. Indeed, if
z = ¢~ (x) where ¢ is a diffeomorphism, then the densities have the following form:

Fal=:6) = £x(6(:):0) x | 92()

Y

with the last term being the Jacobian matrix (which is clearly a constant term).

We now say a few words about the concept of relative likelihood.

Definition 2.23 When maxL(6') < co, we can define the relative likelihood as
6/
L(9)

maxL(0')
9/

RL(9) =

In the scenario where we cannot seek to estimate 6 through optimization, we can consider all
values of 6 that have a sufficiently large relative likelihood as plausible. Therefore, all the values of
6 such that RL(#) > ¢, with ¢ a given threshold.

2.4 Properties of estimators

The objective here is to state the properties of estimators obtained by the method of moments
and those obtained by the maximum likelihood method.

2.4.1 Moment estimators

We first focus on the empirical mean X,,. We have already seen that when § = E[X], the
estimator 6, by the method of moments is 6, = X,. This result is justified by the law of large
numbers. Therefore, if § = E[X], X,, is a consistent estimator of § as it converges almost surely to
0 (asymptotically).
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Furthermore, we can also observe that X, is a good estimator of §, without using the law of
large numbers, because it is an unbiased estimator with an asymptotic null variance. Indeed,

b(X,) = EX,)-0=E[X;]-0=0
Var(X,) = (1/n)Var(X;) — 0.

X, is therefore an unbiased estimator that converges in quadratic mean to the expectation 6.
When 6 = ¢(E[X;]) with ¢ a continuous function and given that X,, is consistent to estimate
E[X;], then ¢(X,,) is still a consistent estimator of § by continuity.

Now, what about the empirical variance?
Let us consider the natural estimator of Var(Xj;), i.e.

First, we study the bias:

B[S7] =

ZX2 (X,)

— Var(X )+E[ I’ = Var(X,) - B[X,)”
= Var(X;) + E[X;]* — (1/n)Var(X;) — E[X])

— (1 — i) Var(X;) = n; 1Var(X¢).

ZE [X?] — E[X}] = E[X}] - E[X?

It only remains to multiply by the inverse of this coefficient to obtain an unbiased estimator.
Hence,

nol n-1 i=1
is an unbiased estimator of the variance of X
Furthermore,
’ 1 n B
2 2
Var(S,’) Var (n — ;1( ) )

= L , N4 \2
= an=1) ((n = DE[X; = E[X:))] = (n = 3)Var(X;)*) — 0.

The estimator S,2 is thus an unbiased estimator of Var(X;), and converges in quadratic mean
towards Var(X;).

Remark 2.24 Additionally,

e Statistical softwares like R provides the unbiased version of the estimator of the variance, S;ZQ

)

e There is no result on the quality of S, as an estimator of the standard deviation of X; (re-
member that if a function applies to an estimator with properties like unbiasedness, that does
imply the new estimator to keep such properties);

e An estimator obtained by the method of moments is asymptotically unbiased and almost surely
consistent;
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Concerning the correlation between the two last estimators, X,, and S;LQ, it is possible to prove

that it equals -
Cov(Xn, 8,7) = (1/n)E[(X; — B[Xi])%].

This means that these random variables are not independent. However, they are asymptotically
uncorrelated.

Remark 2.25 In the case where X; ~ N (p,0?), these two estimators are independent.

2.4.2 Maximum likelihood estimator

A maximum likelihood estimator én is not necessarily unique. Indeed, there can be multiple
maxima. It is not necessarily unbiased, nor does it have minimal variance or efficiency. However, it
has very nice asymptotic properties, provided that the following assumptions are met.

Assumption 2.1 The data come from i.i.d. replications of (X1, ..., Xp).
Assumption 2.2 O is a compact set, with dimension d.

Assumption 2.3 The real value 0° of the model (X ~ Py ) belongs to the interior of © (useful for
Taylor development). We used the notation 6° to avoid confusion since in this course, 0 refers both
to the underlying true parameter of the distribution of X; (parametric setup) and some variable of
functions (like the likelihood function,).

Assumption 2.4 There is identifiability issues. A model is identifiable if considering two different
parameters leads to two different distributions (models).

Assumption 2.5 There erxists a neighborhood v(6°) € © such that:
e the log-likelihood is C3 on v(0),

e V0 € v(0°), I(0) is a positive definite matriz and

0 0
VT,S, Ins(@) =F [37« lnL(G,X)glnL(G,X) .
1 3
o Vr,s,t, 0 — EE AT In L(G;X)] is uniformly bounded on v(0°).

Under these conditions, we have:

Proposition 2.26 If the X; are independent and identically distributed, depending on the real pa-
rameter 0, with the distribution of X; satisfying the regularity conditions mentioned above, then

A~

e 0, converges almost surely to 0,

o VI (0)(0,—0) 5 N(0,1).

n—oo

The maximum likelihood estimator (MLE) 6, is thus asymptotically unbiased and efficient, as
it reaches the Cramer-Rao bound! The very nice result is about the convergence in distribution,
meaning that we know the behaviour of such an estimator.

In general, the MLE is therefore a better estimator than the estimator by the method of moments,

since Var(6,) < Var(6,). At least asymptotically!
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Remark 2.27 Given that the MLE is asymptotically Gaussian, the Delta method can be used to
know the behaviour of some transformation of 6.,.
If 0,, is the MLE of 0, then ¢(0,,) is also the MLE of ¢(6). Moreover, if there exist a derivative for

¢, we have
; c ¢'(0)*

Remark 2.28 The distribution of the MLE is asymptotically Gaussian. It is centered on 6 (meaning
unbiasedness), with a variance that depends on 0! Therefore, in practice, one cannot use this result to
get an idea about the variance of the MLE! However, using Slutsky’s theorem (since 0,, is consistent
towards 0), we consider that the variance equals (I,(0,))~" instead of (I,(0))L.

3 Confidence intervals

3.1 Framework

In the previous section, we estimated 6 by a single value, which was a point estimate. We might
expect this estimate to be close to 6, but there is little to no chance, especially in the continuous
case, that it is exact. Indeed, if the estimator’s distribution is continuous (as for the MLE), we
know the probability of the estimator being exactly equal to the target point is zero. Therefore, it is
natural to estimate 6 by proposing a set of reasonable and plausible values, close to the estimator.
This is known as a confidence region. We assume from now on that 6 € R, so the region will be an
interval.

Definition 3.1 A confidence interval with a level o € [0,1] for some parameter 0, is a random
interval I such that P(0 € I) =1 — «. We denote this confidence interval by CI_,(0).

Remark 3.2 Notice in this definition a few things:
e « is an error probability, so, if possible, it should be set small.

e the confidence interval has random bounds. Indeed, these bounds depend on some functions of
the X;’s, which are themselves random variables.

When writing P(6 € I), 6 is an unknown parameter that is constant and I = [Z7, Z3] is random
(Z1 and Z3 are the random bounds). We denote by 21 and z9 the realizations of these bounds taking
X = z (remind that X = (Xy,...,X,), and 2 = (x1,...,2,)). This means that we focus on some
particular experience (or simulation). In such a framework, it is wrong to say that 6 has a (1 — «)
probability to lie between z; and z. Actually, it is or it is not, and the probability is thus 1 or 0.
Conversely, it is correct to say that 6 has a (1 — a) probability to lie between Z; and Z,. Indeed, if
we simulate independently 100 times the same experience, each one leading to a different observed
sample x and bounds z; and z9, 6 should lie between the bounds 100 x (1 — &) times approximately.

3.2 Strategy for building a confidence interval

First, it is important to make the difference between an asymptotic versus a non asymptotic
CI. An asymptotic CI relies on using some asymptotic properties (like SLLN, CLT) in its building,
which is not the case for an exact CI.

It seems logical to propose, as a confidence interval, a set of values centered around the maximum
likelihood estimator én, as it is asymptotically efficient. Therefore, the confidence interval would
take the form CT = [0,, — €, 0, + €]. Then, it remains to determine e such that

POeCl)=Pl,—e<0<0,+¢) =P(0,— 0] <e)=1—av
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Sometimes, this approach does not work, because € and o must not depend on 6 for the confidence
interval to be usable. In fact, we can only determine such an e if the probability distribution of
0,, — 0 does not depend on 6.

More generally, the most effective strategy to find a confidence interval is to look for a pivotal
function, or pivot. A pivot is a random variable that depends on # and the observations X;, but
whose distribution does not depend on 6.

In terms of interpretation, if the confidence interval is small, the set of plausible values for 6 is
tightly clustered around the estimator. Otherwise, the opposite is true. Thus, a confidence interval

constructed from an estimator allows us to assess the precision of that estimator.

3.3 Some examples
3.3.1 Gaussian distribution

Remind that if the X; are i.i.d., with X; ~ N (11, 02), we know that
e the unbiased estimator with minimal variance of y is X,,;

e S2 is an estimator of ¢ which is asymptotically unbiased and that converges in quadratic
mean to 02;

e X, and S2 are consistent;

e X, and S? are independent;
e 52 is an unbiased estimator of the variance of X;
e X, is Gaussian-distributed (not asymptotically, but "exactly"), and X,, ~ N (p, 0%/n);

We also need other important intermediate results in statistics concerning the link between some
distributions based on the Gaussian one.

Proposition 3.3 (The Chi-square and the Student distributions) Consider an i.i.d. sample (Y1, ..., Yy)
where Y; ~ N(0,1). Then,

e The random variable Z =Y, Y;Z follows a Chi-square distribution with n degrees of freedom,
denoted by x*(n). The density of Z is given by

1

- = Z/2 (n/2)711 )
2”/2F(n/2)e z r+(2)

fz(2)

e Consider two independent random variables Y and Z, such that Y ~ N(0,1) and Z ~ x?(n).
We call the Student distribution with n degrees of freedom the distribution of the random
variable Y/\/Z/n, and we denote it by St(n).

From these results, it is possible to determine the distribution of the estimator S2 in the case
of a Gaussian sample X. We have

3.3.1.1 CI on the mean parameter First, let us consider the case where the variance
is known. The initial idea is to seek a confidence interval for p of the form [X,, — €, X,, +¢€|. Thus,
the problem reduces to finding e, for a fixed «, such that

P(| X, —pl<e)=1-a.
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Given the previous results, we know that

_Xn_luf

a?
n

U ~ N(0,1).

We thus have found a pivotal function, i.e. a function that depends on the parameter of interest p
and the observations X;, whose distribution is independent from the parameter p. Therefore,

PR, — 1l <) =B(U| < Y2 =1 - B(U| > ) =1 0.

Finally, it leads to consider u,, some quantile of the standard Gaussian distribution, such that
Uy = @e, leading to € = ﬁua. Of course, one must choose appropriately the quantile u, to
obtain the probability (1 — «).

We choose to consider a symmetric error probability since we deal with gaussian distribution,
meaning that we spread the error in two terms, each one being equal to an error of /2. This gives

_ N(@1)
U =Gy g0+

Proposition 3.4 A confidence interval with level o on u is given by

0 N(0,1) b 0 N(0,1)
1

Cl—lfa(,u/) = 7n - ﬁqlia/Q B n + %q 704/2

Remark 3.5 Several interesting remarks can be formulated:

e it is not mandatory to consider symmetric confidence interval, and any interval such that
P(u e CI) =1— « could have been chosen;

e the CI is centered around the empirical mean X, ;

e the confidence bounds are random variables, they depend on Xp;

e this CI is an exact CI (not asymptotic);

e it relies solely on observed or known quantities;

e the higher the variance of X;, the larger the CI (which seems logical);

e the greater the sample size n, the thinner the CI.

Now, let us move to the case when we do not know the variance parameter o2, but
still want to provide a CI for u. Indeed, the previous CI cannot be used because the parameter
o involved in the bounds is unknown. It is thus necessary to look for another pivot! Proposition 77
can help us in such a direction... Indeed, we have:

Xn_u
o

o \/n N(0,1);

J ngi;% ~ x%(n — 1) (known as Fisher’s theorem);

e Up to some coefficient (v/d, where d is the degree of freedom for the x? distribution), the
ratio of a standard Gaussian distribution with the square root of a Chi-square distribution is
Student-distributed.
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Taking into account this, we propose to study

Xn_u

This leads to

Xn_u
S,

n

- Va

Magic! We now have a new pivot, independent from o2. From this pivot, it is easy to propose the
updated confidence interval when the variance of the Gaussian observations is unknown.

Proposition 3.6 A confidence interval with level o on p is given by

N S, Stn-
Chialp) = |Xu— 2050 Kt g0

J/n l1-a/2 \/ﬁqlfa/2 ;

where qlsf(g/;l) is the (1 — §)th-quantile of the Student distribution with (n — 1) degrees of freedom.

Note that the Student distribution also has a symmetric density, which enables us to spread the
error « into two terms, leading to this symmetric CI. The quantile of interest can be found in tables
dedicated to this task.

If we would have targeted a non-symmetric interval, this could have been for instance

_ S Ghin
Cli_o(p) = = n—\/f%qff(a V' 4

The latter CI provides a lower bound for the estimation of p with level a.

3.3.1.2 CI on the variance parameter Given the Fisher’s theorem, there is a natural pivot
for the estimation of ¢2. Indeed, we know that

nS2

o2

Hence, V(a,b) € R? such that 0 < a < b,

nS2
P (a < ? < b> = FXQ(n—l) (b) - FXQ(n—l) (a)
2 2 2
Pla<™n<p) = p(™Mhcp2o™n) g o
o2 b a
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There exist an infinite number of possibilities to choose a and b in order to obtain the probability
(1 — @). Usually, we balance the risk of error, meaning that we choose a and b such that
Q

and Fopmoyy(a) = .

Fx2(n—1)(b) =1- 2

a
2
We finally obtain:

Proposition 3.7 A confidence interval with level o on o? is given by

2 2
o0 nS; nS;
Ch-ale®) = | 560 e-1 |
N—ay/2 9a/2
where qff(nfl) is the a-quantile of the distribution x*(n — 1).

3.3.2 Bernoulli distribution

This concerns determining the confidence interval for a proportion. Specifically, this proportion
is the parameter p of a Bernoulli distribution, given a sample X = (X7, ..., X},) from this distribution.
We have already seen that a consistent estimator with minimal variance for the proportion is given
by pn = X.

Returning to the example of defective items, suppose that among 800 tested items, 420 are
defective. The items are independent, and the probability that a randomly chosen item is defective
is p. We aim to propose a set estimation for p. Take X; ~ B(p): we do not know the details of all
the defective items, but we do know that p, = gg—g = 0.525.

We are interested in a confidence interval with a level of 5% for p; in other words, we are looking
for a confidence interval (CI) such that

PlpeCl)=1—-a=0.95.

In this example, it is not easy to find a pivotal function. Indeed, when considering the sum of
X;, it becomes difficult to manipulate the binomial distribution. However, there exists an exact
confidence interval based on Fisher-Snedecor’s distribution. In practice, the binomial distribution
is more commonly approximated by the normal distribution. Indeed,

> i Xi —np X —p X, —EX)] ¢
= n——m— —= n— ~ N 07 1 .
no? vn o vn Var(X;) n—o 1)
Hence, we get
I Y N(0,1).
. . . T —np
We now have a pivotal function. Denoting by 7' = ). X;, we have P ﬁ <uy | ®1—c.
np\lt—p
: T —np L
We thus try to write | ——=| < uq as Z1 < p < Z5. In this spirit, we have
np(l —p)
T —mnp (T — np)? 2 2 2 2 77
T | <uy, & P <2 s pPh+dd)—pRT+4u2)+ — <.
' np(l _p) « np(l _p) « ( a) ( a) n

This trinomial in p is always positive, except between its roots. Therefore, these two roots are
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the bounds of the sought interval. We obtain thus

T ﬁ . u2 T(n—T) T ﬁ u2 T(n—T)
n + n Yo\l 1,2 + n3 . n + 2n + Ua 4n? + n3
2 ) 2
Ya U
1+ = 1+ -

We can simplify a little bit this expression. Remind that p, = (T'/n), and consider that u? is
negligible compared to n (which is true for usual values of o and n), we obtain an asymptotic CI.

Proposition 3.8 An asymptotic CI on p with level o is given by

An 1_ An ~ An 1_ An
Cli_a(p) = [ﬁn—ua\/p(np) ; pn‘i'ua\/p(np)]>

where uq, = qﬁ(g’/lz) .

Returning to the example of defective items, we obtain an asymptotic confidence interval
Clygs(p) = [0.49,0.56]. For example, we can observe that it is possible for the proportion to
be less than 50%, in which case the number of defective items is not a majority.

Remark 3.9 Through the study of these confidence intervals, we observe that we can widen or
narrow the interval primarily by adjusting two factors: the sample size n and the error level .

4 Link between maximum likelihood and statistical tests

Here, we take advantage of the properties of the maximum likelihood method to present two
types of test statistics. The first family of these tests, the Wald tests, is commonly used for testing
the significance of regression coefficients in a (generalized) linear model. The second type of test,
the likelihood ratio test, is typically used to compare models with each other, thus facilitating model
selection.

4.1 The family of Wald tests

We have here 6,, an asymptotically normal estimator of §. Hence,

=0 £, no,1),

O, n—oo

7 —

where &, is an estimator of the standard deviation of 6.
Assume that we want to test

Hy: 0 <6 versus Hy: 0> 0,
with 6y a fixed constant.
We could consider a decision rule of the form:

o if é"&;eo >t (with ¢ > 0), then we reject Ho;

n

e otherwise we do not reject Hy.

This makes sense since we consider that once the normalized distance between én and 6y becomes
too large, there is little chance that  is in fact lower than 6y. To choose the threshold ¢, one could
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study
6, — 6
a = Ppy,(reject Hy) = sup Py ( n 0> t)
0<6g On
0,—60 0—40 6—0
= sup[P’(;(nA + — 0>t):supP9<Z+ - 0>t).
0<6o On On 0<6o On

The function 6 — Py (Z + % > t) is increasing, meaning that the supremum is reached in
0. Basically, we thus have
a~P(Z>1t),

and t is therefore the (1 — a)-quantile of the standard Gaussian distribution.

4.2 Likelihood ratio test (LRT)

Recall that d is the dimension of the parameter 6. If the regularity constraints for the existence of
the maximum likelihood estimator are fulfilled, then we can define the likelihood ratio test statistic
for all 6 (based on the relative likelihood concept, seen previously), denoted by W (0):

W(0; X) = —2In RL(#; X) = 2[In L(0,; X) — In L(6; X)].

The question now is to understand the behaviour of this test statistic, that compares the value
of the likelihood taken in some point # to the maximum likelihood reachable. To this aim, we
use a Taylor development of the log-likelihood. Consider that the MLE is unique, and that the

A~

log-likelihood function is twice differentiable with continuous derivatives, then V8 € v(6,,),

LX) = L0 X) + (6~ 00) (0 L0 X)) + 50— 8 (n L(Bs X))+ 0(]1(60 — 6]

Q

~ ~ 1 A N "
I L (0 X) + (0 = 0n) x 0+ (0 = 0,)*(In L(0,; X))

= I L(6y; X) 4+ =(0 — 6,)*(In L(0,; X))".

1
2
We thus obtain

In L(0: X) — In L(f; X) = %(Q—én)2(lnL(én;X))

"

2
2InRL(A; X) = (.9—én)2< lnL(én;X)”> .

Now, we use the properties of the MLE, in particular that it is asymptotically Gaussian with a
variance equal to the inverse of the Fisher information, where the Fisher information is the opposite
of the second derivative of the log-likelihood.

2
W(0; X) = —2InRL(6; X) = <(én - 0) In(én)1> .

We know the behaviour of the right-hand term: this a standard Gaussian distribution (remember
that the MLE is unbiased, that is to say that # is the target in the latter expression, say 6 = 6q
then), to the square. Hence this is a Chi-square distribution! We thus have that

W(0; X) = 2[In L(0n; X) —In L(0; X))~ x*(d).
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This likelihood ratio test (LRT) statistic is taken in 6y since 6y and én are neighbours, which must
be the case when using the Taylor development!

The LRT makes sense: it compares the likelihood obtained in O, (which is asymptotically a
good estimator of 6) to the one in 6y: if they are similar, W (6y) tends to small values, which implies
that we cannot reject the null hypothesis Hy.

Now we have found a pivot. Indeed,
2
Po,(W(00: X) < W) ~ 1-a.

This way,

L(énﬁ-() x*(d) ) — 1 x2@)
; = [ (0- X < : ; > n 51— .
W(@;X)=21In ( (0: X) > g & 0ecO©: InL(H; X)>1InL(0,;X) 2q1 o

The latter expression is called a confidence region with asymptotic level (1 — «).

Generalizing to the framework of statistical tests, Assume that we want to test
Hy: €6 Versus Hi: 0e€06q,

with ©® = ©g U B0 and ©gNO; = & (partition).
It seems logical to reject Hy if having observed X is much more likely to occur when 6 varies

across ©1, which gives

sup L(6; X) >> sup L(0; X).
0O, 96@0

We then use the test statistic

T(x) = 21n 220z LOX) )
SUPgeo, L(07 X)

The statistic T'(X) depends on the observations X, but not on the parameter §. A rejection

region that is natural is given by
R={X:T(X)>t},

with the threshold ¢ to be chosen depending on the test level a. To choose an appropriate t, we
have to know the distribution of T'(X) under Hy (or it asymptotic/limiting distribution).

5 Exercices

See the correction on the manuscript pages.

Exercise 1

Calculate the likelihood and log-likelihood in the cases below. Specify what the parameter space
is and whether the classical assumptions are satisfied.

1. Poisson Distribution: x is a single observation, modeled by a Poisson distribution with
parameter 6.

2. Exponential Distribution: z is a sample of size n, x = (z1,...,x,), and each observation
is modeled by an exponential distribution with mean 6.
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3. Centered Cauchy Distribution: x is a sample of size n, and each coordinate is modeled
by the centered Cauchy distribution with parameter 6.

4. Geometric Distribution: x is a sample modeled by a geometric distrib. with param. .

Exercise 2

Using a software tool, plot the log-likelihood for exponential distributions or Cauchy distribu-
tions for the sample 225,171,198, 189, 189, 135,162, 135,117, 162, which represents the means (in
thousands of load cycles) of several groups of springs before they wear out.

Depending on the value of ¢, what is the shape of the set of plausible values for the parameter,
given by {0 :1(0) > c}?

Exercise 3

Calculate the maximum likelihood estimator for 6 for a sample of size n, where each observation
is modeled by the distribution below.

1. f(#]0) = 62~ 1 o< yc1y, where 6 >0,
2. f(x|0) = 92:E6_6x1{$>0}, where 6 > 0,

3. f(z|f) = (0+ 1)x_9_21{x>1}, where 6 > 0.

Exercise 4

Calculate the Fisher information for a sample of size n:

1. From a Bernoulli distribution B(7),

2. From a normal distribution N(p,o?).

Exercise 5

Consider a sample x = (1, ..., x,), where each coordinate is modeled by a Bernoulli distribution
with parameter 7. Show that S = X7 4+ --- + X, is an exhaustive statistic. Is it minimal?

Repeat the same question when each coordinate is modeled by a Gaussian distribution centered
at 0 with variance 1.

Repeat the same question when each coordinate is modeled by a Poisson distribution with
parameter 6.

Exercise 6

Let X = (X1,...,Xy) be a sample of size n from a uniform distribution on [0,6]. Let 0, =
max(X1,...,X,), and 6, = 2X,,.

1. Show that 6, is an unbiased and consistent estimator of #, and that n(én — 0) converges in
distribution to N(0,62/3).

2. Construct an asymptotic confidence interval of security level 1 — «, based on 0,,.
3. Show that 6,,/0 is a pivot for the estimation of .
4. Construct a confidence interval for 6 of security level 1 — «, based on O,

5. Compare the two intervals.
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Exercise 7

Let 6 €]0,1[ be an unknown parameter, and let X be a random variable with a distribution

defined by
Py(X = k)= (k+1)(1—6)%0*, forall kcN.

It is given that

20 20
= m, and Varg[X] = m

We aim to estimate 6 from a sample X7, ..., X,, drawn from the same distribution as X.

Ey[X]

1. Provide an estimator 6,, of 6 using the method of moments.
2. Is the maximum likelihood estimator 0~n of 6 well-defined?

3. Study the consistency of 0,, and determine its limiting distribution.

Exercise 8

A sample of size 25 from a normal population with variance o2 = 81 gave an empirical mean of
81.2. Find a confidence interval with a security level of 0.95 for the mean u.

Exercise 9

Let X, be the empirical mean of a sample of size n from the distribution N(u, o = 4). Find the
minimum value of n such that [X,, — 1, X,, + 1] is a confidence interval for u with a security level
of 90%.
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Chapter 4

Statistical Tests

1 Framework

1.1 Example

Imagine that we observe a 10-sample (X1, ..., X19) from the N'(u, 02) distribution, and we want
to know whether u < 99 kg or u > 99 kg. To decide between these two hypotheses, we can base our
decision on the estimator fi, = X9 of p. For example, we can adopt the following decision rule:

o if fi, > 99, we decide that u > 99;
o if fi,, <99, we decide that u < 99.
Let’s calculate the probabilities of making an error if we adopt this rule. One way to make an

error is to decide that p > 99 when this is not actually the case. The associated error probability,
in the worst-case scenario, is:

- P = 99— p
ar = sup P, (fin>99) = sup P,< > >
(1<99,0>0 pr (fin ) p<99.050 T\ a/vn T a/yn

Let F denote the cumulative distribution function of A/(0,1). Since fi, ~ N (u, %2), we obtain

99 — u
a1 = sup 1—F<>:sup1—F:B:1—F0:0.5
! 1<99,0>0 a/\/n >0 (@) ©

We thus have, in the worst-case scenario (which corresponds to p = 99), a 50% chance of
making an error by deciding that p > 99 if we adopt this decision strategy. The other possible error
is deciding that p < 99 when this is not the case:

ay = sup  Puo (fin <99) = sup PW,(
©1>99,0>0 ©1>99,0>0

99 — ,u)
= su F|——
u>99,13>0 <0’/\/ﬁ
= supF(z) =F(0)=0.5
<0

fin — 99—u>
o/vn = o/yn

In the worst case, we also have a 50% chance of making an error by deciding that u < 99.
Thus, with the decision rule we have chosen, we have a 50% chance of being wrong regardless of the
conclusion we reach. We might as well flip a coin! How can we improve our decision rule? Instead
of comparing i, to 99, we could compare it to another value ¢, attempting to adjust ¢ in order to
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reduce the previous error probabilities. If we revisit the previous expressions, we now have:

a; = sup P, (fin > t) and az = sup P, (fin <t)
1<99,0>0 ©n>99,0>0

It is clear from these expressions that as ¢ increases, o becomes smaller. Conversely, as t
increases, ao becomes larger. In general, both errors cannot be small at the same time.
The method used is then:

e to choose among the two types of possible errors the error that one wants to control absolutely
(because, for example, it has more costly consequences than the other);

e to assign it a small level a;
e to choose t accordingly.

For example, one might want to avoid concluding that the new process is better (1 > 99) when
it is not. The error that we want to control is therefore

a; = sup Puo(fin >t).
1<99,0>0

In practice, this means prioritizing one hypothesis over the other.
We will test Hy : p < 99 kg against Hy : p > 99 kg. By the definition of Hy (and thus Hjy), the
error we are controlling is
a = Py, (reject(Hy)) .

« is called the significance level of the test or the type-I error. In the chosen example, to find a
decision rule of level o, we will need to change the statistic used. Indeed, for all ¢t € R,

N t—p . t—p
sup P, >t) = sup 1—F< )zl— inf F( )
1<99,0>0 o (fn ) $1<99,0>0 a/v/n 1<99,0>0 o/vn

t—99
= 1—inf F >1—-F(0)=0.
>0 (J/\/ﬁ>_ (0) =05

taking o2 — oo.
However, considering the case 0 — +0o0 is not necessarily relevant, since we have an estimate of
o given by S/, where S,2 is the unbiased estimator of the variance. Therefore, we will instead use

the following test statistic:
i — 99

Sp/vn

The decision rule will be as follows:

o If % > t, we reject Hy;

o If % < t, we do not reject Hy.

The value of ¢ is chosen such that

—99
. — 99 Z + g
a=5%= sup P7g(m;>t>: sup P,, #>t ,
11<99,0>0 Sh/\vn 11<99,5>0 Y/(n—1)

where Z = g’/’:/% andY = ("j# It can be shown that Z and Y are independent, with Z ~ N(0, 1)
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and Y ~ x%(n — 1). Therefore, the supremum in yx is reached at u = 99, and we have:

A A
a=5%= sup Puo|—=>t|=P|—=—=>t| =PV >0,
1<99,0>0 Y Y

n—1 n—1
where we have already seen that V follows a Student distribution, i.e. V' ~ St(n —1).
Thus, ¢ is the 95% quantile of the St(n — 1) distribution:
_ St(n—1)
t=dpo5 -
Once the significance level « is set, t is fixed, the decision rule is established, and we have no
way to control the second type of error, namely

type-1I error = Py, (accepter Hy).

In the previous example, this error is given by the function

A 7+ ©—99
(1, 0) €]99; +o0[xRT — P, , fin — 99 < qgg(ngl) =P, (cf/\/ﬁ < qSt(nfl) .

5 — = 90.95
Vn Y/(n—1)

This function is decreasing in y, and as p — 99, the value of this error approaches

Z n
Pl —2—— < gy = 95%.
Y/(n—1)

Thus, the type II error can be high depending on the values of the parameter. This should not
be surprising! The closer u is to 99 kg (from above), the harder it is to determine from a sample
whether p is greater than or less than 99.

The lack of control over the type II error has the following consequence: the conclusion of a test

only holds value as evidence when that conclusion is the rejection of Hy.
Indeed, if at the end of the test we conclude to reject Hy, we know there is a probability a of
being wrong. On the other hand, if we conclude to accept Hy, we may have a high chance of being
incorrect. Thus, it is more appropriate to view the acceptance of Hy as a failure to reject Hy. The
approach here is very empirical: based on my experience, nothing suggests that Hy is not true.

As stated in Wasserman’s book (All of Statistics: a concise course in Statistical Inference,
Springer texts in statistics): "Hypothesis testing is like a legal trial. We assume someone is innocent
unless the evidence strongly suggests that he is guilty. Similarly, we retain Hy unless there is strong
evidence to reject Hy."

1.2 Definition

More generally, we can formulate the following definitions.

Definition 1.1 Let Ty U Ty be a partition of the parameter space T. A test of level a for the
hypothesis Hg : 0 € Ty against the hypothesis H1 : 0 € Ty is the specification of a subset R of the
observation set X (where R does not depend on the parameter 0) such that

sup Pp(X € R) < a. (4.1)
0€To

In this definition,

e R is called the rejection region of Hy.
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Hy is called the null hypothesis. It is the hypothesis favored by the tester, in the sense that
they do not want to make an error by rejecting it. H; is the alternative hypothesis.

The decision rule associated with a test with rejection region R consists of deciding that
0 ¢ To (rejecting the null hypothesis Hp) whenever X € R (the observation is in the rejection
region). In other words, denoting 1 as the decision to reject Hp and 0 as the contrary decision,
the decision rule is the function d : X — {0,1} given by:

1 fXeR
0 otherwise

ax) = {

The size of the test is given by supyer Py(X eR)= SUPgeTs Py(d(X) =1).

When this maximum is achieved at a single value 0* in T, this value corresponds to the most
difficult case. It is the value of 8 for which it is most challenging to make a decision based on
the data.

The power function of the test is the function : 0 € Ty — Pyp(X € R) = Pp(d(X) = 1) (the
probability of correctly rejecting Hp).

The second type of error of the test is given by the function 6 € T; — 1 — 3(0).

Typically, the supremum of the probability is taken in unilateral (one-sided) tests: the null
hypothesis is a whole set of potential values for the parameter to test, and we consider the
worst-case scenario. In the classical bilateral test, a single value has to be tested and there is
no supremum.

Remark 1.2 If we have the choice between several tests of the same level, we will obviously choose
the one with the highest power function, assuming that these functions can be compared.

Remark 1.3 When the level o changes, the rejection region, as well as the decision rule, change.
When studying a whole collection of tests with different levels c, it is common to index the confidence
region R, as well as the decision rule dy,.

1.3

How to build such a test

The construction of a test follows the following steps:

1.

6.

Choice of the preferred hypothesis Hy. Hy should be chosen based on the error that one wants
to control, a = P, (reject Hy).

. Choice of the level a (small). The traditional value is oo = 5%.

Choice of a test statistic. One chooses a statistic T = ¢(X) whose behavior is as different as
possible between Hy and H;. For example, an estimator 6, (X) of the parameter 6.

Determination of the rejection region R based on the behavior of the statistic 7" when @ is far
from 7o: R={z € X :t(z) ...}

Determination of the bounds of the rejection region at level «, based on the distribution of
the statistic under Hy, so that equation (??) is satisfied.

Study of the power function (or equivalently the second type error) of the constructed test.

If multiple tests are available (with same level), a final step is to choose, among these different tests,
the one with the highest power function (if one exists).
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Remark 1.4 We must therefore know the distribution of the test statistic under Hqy in order to
construct the rejection region. This constraint often imposes the choice of the hypothesis H.

Remark 1.5 The notions of confidence region and rejection zone are dual. We will show in an
exercise that for any confidence region CI(X) with a security coefficient 1 — o, one can define a
test of level o for Hy : 6 = 0y against Hy : 0 # 0y by choosing the rejection region as R = {x €
X such that 0y ¢ CI(x)}.

1.4 The notion of p-value

We are given a family of decision rules d,, : X — {0;1} for every level « in [0, 1]. We denote by
Ro ={x € X : d,(x) = 1} the associated rejection zones. We make the following assumptions:

Assumption 1.1

Ve, sup Pp(X € Ry) = «. (4.2)
0€To

Assumption 1.2 Pour tout 0 < a <o’ <1, ona Ry C Ry
Remark 1.6 Hypothesis 2 is equivalent to saying that, for all x € X, — do(x) is increasing.

Definition 1.7 The p-value is the smallest value of o for which we reject Hy based on the observed
data. Formally, for all x € X,
p(z) = inf{a: xz € Ry}

The p-value is a statistic. It is a function of the data set that can be calculated without knowing
the unknown parameter 8. The p-value is not the probability of the alternative hypothesis! It is
the value of « for which the decision changes based on the data.

Proposition 1.8 Suppose that the supremum in equation (?7?) is attained at a unique Oy that does
not depend on o. If X ~ Py, then the p-value statistic p(X) follows a continuous uniform distri-
bution on the interval [0, 1].

2 Gaussian sample

2.1 Preliminary results

The useful results were given in Section 7?7 of Chapter 3. Coming back to this section and how
to build a confidence interval, it is then easy to deduce the statistical tests below. For instance, we
have

o X, ~N(u,0%/n),
S2
o o~ x*(n—1).
Our framework is the observation of an i.i.d. sample X = (X1, ..., X;,), where X; ~ N (u, 0?).
We remind that we had found the confidence intervals for the mean parameter as well as the variance
parameter.

For the mean p when the variance o is known, we had obtained:

— 0 N(0,1 S 0  N(0,1
CII_Q(M) = n — ﬁqlf(a/g ) Xn + ﬁqlf(a/Q) )

(0,1)

where qév denotes the a-quantile of the standard Gaussian distribution.
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When the variance parameter is unknown, we had obtained the following;:

= S, St(n-1) S, SO0
Chi-o(p) = Xn — %ql—a/Q , Xn +T l—a/2 |7

where ¢ t(n/ Y is the (1 — §)th-quantile of the Student distribution with (n — 1) degrees of freedom.

For the variance parameter, we had obtained:

2 2
o0 nS; nS;
Ch-olo’) = 1565 » en |
N—a/2 90/2
x2(n—1) . . L. . 2
where ga is the a-quantile of the distribution x*(n — 1).

2.2 Test on the mean parameter

Say that we are interested in the following bilateral statistical test:
Hy: p=pup against Hy: p# .

2.2.1 With known variance

Proposition 2.1 (Bilateral test on pu with o unknown) The set

|Xn_N0’ N(0,1)
= n POL S ’
K { ofyn = e

is the rejection region with level o for this test.

Proof: exercice. Start by the definition of «, the first type error...

2.2.2 With unknown variance
Proposition 2.2 (Bilateral test on p with o unknown) The set
| X0 — po] - sttn-1)
R = { S/ /\f Zq 9 a/2
is the rejection region with level a for this test.
Proof: exercice.
Remark 2.3 [t is also possible to set up unilateral tests. For instance, one could consider the

following hypotheses:
Ho: p < po against — Hy: p> po,

If we want to perform such a unilateral test, we would use the following result:

Proposition 2.4 (unilateral test on p with o unknown) The set

) S,
ko= {X > o+ 1)\/5}

is the rejection region with level o for this test.

Proof: exercice.
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2.3 Test on the variance parameter

Say that we are interested in the following unilateral statistical test:
Hy: o® >0} against Hy: 0% < ag.
Then, we have

Proposition 2.5 (unilateral test on 02) The set

2
R = {ns;”éqf(””}

90
is the rejection region with level o for this test.

Proof: exercice.

3 Back to LRT tests

We assume that we want to test
Hy:0€7, against Hy:0¢eT7,

where 7o U 7Ty is a partition of T .
It is reasonable to reject Hy if the observed value X is much more probable when the parameter
0 varies in 77 than when it varies in Ty, i.e., if

sup L(0; X) >> sup L(0; X).
0eTh 0€To

Thus, the likelihood ratio test should rely on the statistic

SUPpe; L(G,X)>
supger, L(0, X) ’

T(X) = 2ln<

(where T depends only on X and not on the parameter #). A reasonable rejection region is therefore
given by
R = {X such that T(X) > t},

where t is to be chosen based on the level of the test.
To choose t, we must therefore know the distribution of T'(X') under Hy, or at least its asymptotic
distribution as n approaches infinity.
When testing Hy : 0 = 0y against Hy : 0 # 0y, we can note that as long as L(6, X) is continuous in
97
sup L(0, X) = L(6y, X),
6€To

and
sup L(0, X) = sup L(#, X) = sup L(0, X) = L(6,; X),
0T 00, 0T
with én the MLE. We therefore consider
T(X) = 2[U(0n; X) — 1(60; X)),

where [ is the log-likelihood.
At the end of Chapter 3, we found the distribution of this test statistic.
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Proposition 3.1
2 (100, X) — 16, X)) 5 (),

Thus, under Hy : 6 = 6y, T(X) converges in distribution to the x?(d) distribution. We can
therefore complete the construction of the test and determine the value of ¢:

o = Pp, (reject Hy) = Py, (T(X) >t)~ P(Z >t), where Z ~ x?(d).
t is thus the (1 — a)-quantile of the x?(d) distribution, and we now have the rejection region.

Remark 3.2 If we test Hy : 8 = 6y against Hy : 0 = 01, where 0y and 01 are two different fixed
values of 6, we have
T(X) = 2 (log(L(61, X)) — log(L(bo, X))) -

Assume that there exists a unique ko such that Py (T(X) > ko) = «, hence the region
Ry ={X;T(X) > ka}
is the rejection region of the LRT with level a. We then have the following seminal lemma:

Lemma 3.3 (Lemma by Neyman-Pearson) Let R be the rejection region of the statistical test with
level a, such that
Hy: 06 =09 against Hi: 0 =0

Then, Py, (Ro) > Py, (R). In other words, the LRT is the most powerful test among all tests with
level .

4 Exercices

Exercise 1

Recall that a confidence region I,(«) with confidence level 1 — « is defined by:
Ppel(a)>1—-a, Vue®.

Show that for any confidence region I, (), there exists a test for Hy : u = p against Hy : u # po,
such that:

I, () = {po | [we accept Ho(po)|(cx)}.

Exercise 2

Let X be a sample of size n from the distribution N (p,1). Assume that p € © = {uo, p1},
where pg < pu1. We want to test Hy : u = po against Hy : pu = py.
Consider the test with the rejection region:

R(X) = {%, = 071y,

Compute the level of the test. Let a denote the level, which value of n do you consider to
guarantee a test with level a?
Give the power of the test.
Exercise 3

Let X be a sample of size n from the Poisson distribution with parameter p, where p € © =

{1,2}.
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We consider the test for Hy : u = 1 against Hy : 4 = 2, with the rejection region
R(X)={X, > 3}.

If we want a test with level a = 0.05, which value of n should we consider? Compute the power
of the test with this value of n.

Exercise 4

Let X = (X1,...,X,) be a sample of size n from the uniform distribution on [0, u]. Define
fn = max(Xy,...,X,).

1. Show that “7" is a pivotal quantity for estimating pu.

2. Construct a test for Hy : 4 = 1 against Hy : p # 1 with level a.
3. Determine the power curve of this test.

4. Is the constructed test the likelihood ratio test?

5. Construct the Wald test based on fi,.

Exercise 5

A product sold is presented in boxes with the label: "Contents 500 grams." One may wonder
what this means, as the quantity contained in a randomly chosen box is a random variable (denoted
by X) with a probability density. Let x be the mean of the variable X. The information gathered
from the manufacturer asserts that the value of u is supposed to be equal to 500 grams.

1. Provide a 95% confidence interval for pu.
2. Test whether the manufacturer’s specification is met.

Given data (in grams): 490; 490; 490; 492; 492; 495; 497; 497; 502; 505.

Exercise 6

A factory manufactures cables whose breaking strength follows a normal distribution N (uq,o?)
with pg = 99 kg. To test a new manufacturing process for the cables, the breaking strengths of ten
cables were observed with the following values (in kilograms): 101; 102; 100; 104; 105; 99; 103; 100;
101; 105.

Is the new manufacturing process better than the previous one? Given that the standard
deviation for the old manufacturing process was o = 1 kg, is the new process more precise than the
old one?

Exercise 7

Consider an i.i.d. sample (X;)1<i<n, where X has the probability density function:

fo(x) = 0 exp(—0z)Ljo 4 oof(2),
where 6 > 0 is the unknown parameter.
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1. Estimation of § using Y, =n/ > "  X;
(a) Show that the random variable Y, is well-defined.
(b) Explain why it makes sense to choose Y,, as an estimator for 6.

)
(c) Determine the limiting distribution of v/n(Y;, — 0).
)

(d) Find the distribution of Y"1 | X;. From this, deduce the value of E[(Y;, — 0)?].

n—1

2. Estimation of § using 7, = Y,

n

(a) Does Z, satisfy similar convergence properties as Y;,?

(b) Which estimator would you choose, Y, or Z,, for estimating 67

3. Confidence Interval

Provide a two-sided asymptotic confidence interval of level 1 — « for 6.

4. Hypothesis Test for 0

Let a €]0,1[. Propose an asymptotic test at level « for testing Hy : 6 > 1 against Hy : 0 < 1.

5. Hypothesis Test for 6

Propose an asymptotic test at level « for testing Hy : = 1 against Hy : 6 # 1.
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Chapter 5

Bayesian Statistics

1 Introduction to bayesian concepts

One the seminal books on bayesian statistics is : C.P. Robert, The Bayesian choice: a decision-
theoretic motivation. Springer.

We consider a parametric statistical model (X, A,{FPy : 6§ € O}), where frequentist statistics
assume the existence of a true parameter 6y that generates the data, i.e. (Xi,---,X,) ~ g(.;60)
where ¢ is the probability density function (pdf) here.

Then we look for an estimator 6,, of 6y with nice properties, like the MLE:

b, L N(OB,I,'0)).

n—o0

The estimator provides us with a point estimate for the parameter, which can be complemented
by an interval estimate using its asymptotic results. For instance,

Ch-a(6) = 6 - qfi(%’l)&n O+ qfi(%’l)&n],

with &, an estimator of the standard deviation de én

In summary, the estimator 6,, is a random variable for which we often only know the asymptotic
distribution. In the basic framework of bayesian statistics, the parameter @ is no longer considered
as deterministic and unknown. Instead, this parameter is itself considered a random variable.

2 Milestones in bayesian statistics

In Bayesian statistics, we also model the certainty we have about the parameter through a
probability distribution on this parameter. We use the accumulated experience from collected
observations x1, ..., £, to update this uncertainty.

2.1 a priori distribution

It is the probability distribution chosen to model the uncertainty about the parameter ; this prior
distribution allows us to incorporate, for example, expert opinion to encode our prior knowledge
and ignorance about the true parameter 6y before observing data.

Let us denote it by II, meaning that

0 ~ 1L

Example 2.1 In a Gaussian model, i.e. X; ~ N (0) where 0 = (u,0?), we could for instance choose
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as an a priori distribution:
I(6) = () x (0®)  ~ Ao, ) x ZG(a, B).

We thus consider that the a priori distributions of u and o are independent.

Definition 2.1 The parameters of the prior distribution are called hyperparameters. These hyper-
parameters have values set by the statistician or expert. They are not estimated.

In the previous example, the hyperparameters are (g, ', o, 3).

Definition 2.2 A Bayesian model provides, for a random variable or a sequence of random vari-
ables, a conditional distribution and a prior distribution.

X|0=0 ~ f(z[0)
0 ~ 7(a)

where f is the pdf of X, and the hyperparameter o as to be given by the user.

2.2 Joint and a posteriori distributions

Given that the parameter 6 has a prior distribution, we can estimate the joint distribution for
a given statistical model, namely

mx.o(x,0) = f(x|0)m(0).

In practice, the joint distribution has little interest in Bayesian statistics; we are more concerned
with the posterior distribution, usually denoted by 7 (6| X = z).

Definition 2.3 One can differentiate four different cases to give the expression of the a posteriori
distribution:

e X and O have discrete distributions:

P(@z@i,X:x)i P(X:$|@:92)7T(@:91)
P(XZ%‘) _ZkP(X:$|@:0k)7T<@:9k)

7O =6]X =1) =

e X has a discrete distribution and © has a continuous one:

P(X = z|0)7(0)
qu@ P(X = z|u)m(u)du

(0| X =2) =

e X has a continuous distribution and © has a discrete one:

ol — [(x|© = 0;)7(6 = 6;)
(O = bilx) Yo f(2]0 = 0k)7 (0 = O)

e X and © have continuous distributions:

[ (]0)m(6)

m(0lz) = Toco f@lu)m(u)du

We often use the last case as a general expression to give the posterior distribution of the
parameter 6.
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Remark 2.4 e The denominator corresponds to the marginal distribution of X, which is often
denoted as m(x). This denominator also serves as a normalization constant for the posterior
distribution. This constant ensures that we obtain a valid probability density. Therefore, this
denominator is independent of the parameter 6.

e To determine the behavior of the posterior distribution, we often work up to this constant, i.e.

f(z]0)7(6)
qu@ f(z|u)m(u)du

The distribution of the right-hand side term is equivalent to that of the posterior distribution
up to a constant.

7 () = oo f (z]0)7(8).

o If we seek the mazimum of the posterior distribution with respect to 0, it is unnecessary to
calculate the marginal distribution. Indeed, the marginal distribution of X does not depend on
0, so the denominator is irrelevant.

In practice, x is the vector of observed values that allows us to incorporate experience and
update the prior distribution, which then becomes the posterior distribution. We refer to Bayesian
statistics because the connection with Bayes’ theorem is evident.

Example 2.2 Let P € (0,1) be the probability of heads for a biased coin, and let Xi,..., X,
represent the outcomes of n tosses of this coin. If we have no prior information about P, we may
choose the prior distribution Uniform(0,1), with the PDF fp(p) =1 for allp € (0,1). Given P = p,
we model X1, ..., X, ~ Bernoulli(p). Then the joint distribution of P, X1,..., X, is given by

n

fX’P(IL’l, Ceey {L‘n,p) = fX|P(£L‘1, e ,$n|p)fp(p) = prﬁz(]_ — p)l_zi X 1= pZ?:l 337,(1 —p)n_zznzl 1'7;.
i=1

Let s = x1 + -+ + x,. The marginal distribution of Xi,...,X, is obtained by integrating
fx,p(1,...,Tn,p) over p:

1
fx(x1,...,2p) —/ p’(1—p)" *dp=B(s+1,n—s+1),
0

where B(x,y) is the Beta function defined as B(x,y) = 11525_%)

Thus, the posterior distribution of P given X1 = x1,..., X, = x, has PDF

fxp(1,. .. Tn, D) 1 —
e, XTp) = . 5(1 n—s
fP'X(p’w:L? 7$ ) f ( 17'..71_”) B(S 17 s 1)p ( p)

This is the PDF of the Beta(s+1,n— s+ 1) distribution, so the posterior distribution of P given
X1 =x1,...,Xy, =z, is Beta(s + 1,n — s+ 1), where s =x1 + -+ + xp.

3 Digging into the a priori distribution

3.1 Choice of this distribution

This is often the step criticized in Bayesian statistics.
However, it is a fundamental step and represents the most significant difference from frequentist
statistics. In general, this choice can be motivated by several types of considerations:

e based on similar past experiences,

e expert opinion or intuition,
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e computational feasibility,

e or the desire not to introduce new information that could bias the estimation.

Computational feasibility is a point to be nuanced, as today, Monte Carlo Markov Chain methods
enable to recover the a posteriori distribution thanks to simulations.

3.2 Conjugate prior

Definition 3.1 A family F of probability distributions on © is said a conjugate prior to the sta-
tistical model {f(x|0) : © € X,0 € ©} if, for all prior II € F, the a posteriori distribution
w(0|x) oo f(x|0)m(0) also belongs to the family F.

There are basically two reasons why models with conjugate priors are popular:
1. they usually allow us to derive a closed-form expression for the posterior distribution;

2. they are easy to interpret, as we can easily see how the parameters of the prior change after
the Bayesian update.

Example 3.1 Here are several famous conjugate priors to classical statistical models:

o with discrete likelihood:

— the Poisson-Gamma bayesian model, i.e. X|© =60 ~P(0), O ~ G(a,N);
— the Normal-Normal bayesian model,

— the Multinomial-Dirichlet bayesian model,

— the Bernoulli-Beta model,

— the Binomial-Beta model,

— the Geometric-Beta model...
o with continuous likelihood:

— the Normal-Normal model,
— the Normal-Gamma model,
— the Uniform-Pareto model,
— the Pareto-Gamma model,
— the Exponential-Gamma model,

— the Gamma-Gamma model...
The list is obviously not exhaustive!

Remark 3.2 A conjugate prior can be determined simply looking at the likelihood and choosing a
prior distribution with the same form. This is easily seen for instance in the Poisson-Gamma model,
where the Poisson likelihood looks like something similar to the Gamma density. Indeed,

L(O]z) = Heee

z;

and -
0" e P B

w(0) = 7“@)

We see immediately that some terms will simplify when considering the product of these two!

Finally, the impact of the prior distribution diminishes as the number of observations tends to
infinity. This is logical since that means that we do not pay much attention to the expert opinion
once we have enough information.
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3.3 Non informative a priori distribution

In cases where we have little or no information about the parameter 8, we aim to let the data
"speak for themselves" as much as possible and avoid influencing the posterior distribution. Non-
informative prior distributions are often used in such cases, as they minimize any prior bias about
0.

Two common types of non-informative priors in this context are:

e Laplace’s prior: This prior is based on the idea of assigning a uniform probability to all
possible values of 6, thereby reflecting an absence of specific information. In the case of a
parameter within a continuous interval, the uniform distribution is a natural choice that does
not favor any particular value of 6.

e Jeffreys’ prior: This is a more sophisticated approach that incorporates the structure of the
statistical model through Fisher information. Jeffreys’ prior is defined to be invariant under
transformation, meaning it is minimally affected by changes in scale or reparameterization of
the problem. Jeffreys’ prior is especially useful in cases where a uniform prior might introduce
bias due to the nature of the metric in the parameter space.

Using non-informative priors thus allows for constructing a posterior distribution that is pri-

marily shaped by the data, ideally minimizing the influence of non-empirical information.

3.3.1 Laplace prior

Definition 3.3 The Laplace distribution as a prior consists in considering

m(#) oo lpeco.

The symbol co means up to some proportional coefficient, thus with same behaviour (distribu-
tion).

The Laplace prior is thus the Uniform distribution (discrete or continuous, depending on ©). It
can also be the Lebesgue measure in case of an improper distribution.

However, this prior has some drawbacks, as it can lead to an improper prior distribution and is
not invariant under reparameterization.

Example 3.2 Consider the exponential model, i.e. the a priori distribution follows an exponential
distribution with parameter X, with X\ > 0. Consider now the reparameterization such that

A=¢, HeRr.
e Without reparameterization, we have m1(\)oolyso;

o With reparameterization, we have

1 1
7T2(9) o0 19€R = XWQ(ID()\))l)&O o0 Xl)\>0.

We can see that the distribution is very informative in the second case.

3.3.2 Jeffreys prior

We have seen that a good notion of a non-informative prior law is one that is invariant under
reparameterization. This is not necessarily the case for a uniform law depending on the parameter-
ization of the problem. Jeffreys’ prior is based on Fisher’s information.
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Definition 3.4 The Jeffreys’ prior is given by
n(6) oo |1(0)]2,
where |A| stands for the determinant of A.

Remark 3.5 A few interesting remarks can be formulated in this case:

o This distribution is invariant by reparametrization.
e That can also lead to an improper distribution.
e [t is not recommended to use this prior when dim(0) > 1.

e [(0) indicates the quantity of information brought by the statistical model f(x|0): it is therefore
intuitive to overweight a priori the values of 6 with higher information 1(6).

About the reparameterization: let ¢ = h(f) where h is a C'-diffeomorphism. Denoting by 7 the
prior distribution on 6, then ¢ has distribution 7 such that

’

7(¢) = m(P)|(h~1) (¢)]-

Moreover, we have I(¢) = I(¢)|(h~) (¢)[2. Thus we get

(@) oo \I(9).

This shows why we consider a square-root in the definition.

4 Bayesian inference

The result of the bayesian analysis leads to the posterior distribution 7(6|z), where z is the
observed sample. The latter distribution embeds much more information on 8 than in the frequentist
framework, and we are used to summarizing it with much simpler indicators such as:

e the maximum a posteriori (MAP),
e the median a posteriori,
e the posterior mean (or mean a posteriori),

e a posterior quantile of interest.

4.1 Bayesian estimator
Definition 4.1 Let d() be a given loss function. The bayesian risk of the estimator 6 = t(X) of
the parameter 6 for the loss d is given by

RP(0) = Eo,x)[d(9,0)] = E(o x)[d(t(X),0)].

Note that this definition can be generalized to some transformation ¢(#), if we have an estimator
of ¥(0). A crucial difference with the classical frequentist risk is that we consider the expectation
of the loss under the joint distribution (©, X).

Proposition 4.2 The bayesian risk is the mean of the frequentist risk considering the prior distri-
bution ™ on 0. Hence,

RB(8) = Eo[R(, 0)] = / R0, 0)7(0)d0,
(S

where R(é, 0) is the classical frequentist risk of the estimator 0.

74 74/ 77



CHAPTER 5. BAYESIAN STATISTICS 4. BAYESIAN INFERENCE

We now study what would be an optimal estimator in the bayesian risk framework.

Definition 4.3 Given some loss function d(), the bayesian estimate is defined for all x € X by

tB(z) = arg mtinE[d(t, 0)| X = z].

The bayesian estimator is thus given by 68 = tB(X).
Theorem 4.4 The bayesian estimator is the estimator minimizing the bayesian risk.

Proposition 4.5 The bayesian estimator associated to the quadratic risk (quadratic loss function)
is given by the expectation a posteriori:

0% = Eo[O]X].
Remark 4.6 In this bayesian framework,

o Minimizing a least square criterion still leads to the expectation as the best estimate.

e If the loss function would have been the L'—risk (i.e. the loss function is the difference in
absolute value), the bayesian estimator would have been the median of the posterior distribution
0|X.

e All these results can also be generalized to any function ¥(0), replacing 0 by 1(6) everywhere.

4.2 Extension of confidence interval to the bayesian framework

Confidence intervals in the bayesian framework are also called credibility intervals. The concept
is similar to that of a confidence interval but is different. In frequentist statistics, it is recalled
that a confidence interval has random bounds. The level a of this interval corresponds to the
proportion (1 — «) of n realizations of this confidence interval that will contain the true parameter
as n approaches infinity.

4.2.1 «a-credible region

Definition 4.7 For a given prior w, a set Cy C Theta is a a-credible set if
P(0eCrlx)>1—a.

For the interpretation, one can write the latter definition with another formula:

Pa(0 € Cy | 2) = E[lpec, | 2] = /@ Lpeo 7(0 | 2)d0.

We thus consider the posterior distribution, integrating the information of the past experience x
into the definition of this interval.
4.2.2 Credibility interval

Let us simplify the notion of credible region by considering that 6 is a scalar. In this context,
dim(6) = 1, and we can talk about credibility intervals.

Definition 4.8 For a given prior w, an interval CI, C R is a credibility interval with security
coefficient (1 — «) if
Pr(0eCylx)=1-aq.
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We often use symmetric credibility intervals, i.e.

no) = [ (3) 0 (1-3.9)]

where
¢r (p,x) =inf{fueR: Pr(0 <ulz)>1-a}l.
The main differences between a credibility interval and a confidence interval lie in that:

e a confidence interval CI has random bounds, whereas the parameter 6 itself is random in
credibility intervals;

e 0y has a probability (1 —a) to belong to the realization of CI, whereas we have the same result
but given x observed in the bayesian framework.

5 Posterior predictive distribution

Consider that = (1, ..., x,) has been observed. The goal is to make an efficient prediction of
the next observation x,41.

In a classical (frequentist) framework, we would use the predictor given by the expectation E(X),
with an estimated distribution such that X ~ f(.,0) and 0 an estimator of 6. We therefore do not
take into account the uncertainty underlying the estimation of # ! In the bayesian framework, we
update our belief on # with our experience, and use the posterior distribution.

Definition 5.1 The predictive distribution is the distribution with density
M(onst |2 = @1, )) = [ S [6) (0] ) do,

where f(z,+1]0) is the density of the statistical model considered and x,41 is a single point § (and
not the vector z = (21, ..., ,)).

Once calculated the posterior predictive density, one proceeds in the same way as in the fre-
quentist framework, taking the expectation. The bayesian predictor thus follows

Tpy1 = /xn+1 T(Tpy1 | = (T1, .0y ) dTpy.

6 Simulations

Finally, to conclude this chapter, it is essential to mention that efficient simulation methods exist,
though they are computationally expensive. These methods make it possible to approximate the
posterior distribution of the parameter theta (7(6 | x)) in a general framework that is less restrictive
than the framework of conjugate prior distributions.

These techniques are out of the scope of this class, but the interested reader can go beyond the
notions already seen and have a look to:

e the methods based on Monte Carlo simulations,
e the algorithms around the Monte Carlo Markov Chain (MCMC) technique such as:

— the Gibbs sampler (when known univariate conditional distributions),

— the Metropolis-Hastings algorithm in a more general setting,

e the hierarchical bayesian models.
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7 Exercices

Exercise 1

Let a,, 8 > 0. The Beta distribution with parameters («, 3), denoted Beta(c, ), is the distribu-
tion on [0, 1] with density

g, 00— 0) !
B, )
where the normalization constant is given by B(a, ) = FF(EXOE-I;-(ﬁﬂ)) Its expectation is E[O] = Of“Tﬁ,
and its variance is 5
Var(0) = a

(a+B)2(a+B+1)

In particular, Beta(1, 1) is the uniform distribution on [0, 1].
We consider a Bernoulli sample Xi.,, ~ B(6)®", and we are interested in the parameter 6 € [0, 1].
Define S,, = X1 + -+ + X,,.
Sn

1. Using a Gaussian approximation of the distribution of én = =n statistics textbooks propose

an approximate (1 — «) confidence interval for # with the formulas:

where q;_q /5 is the (1 — a/2) quantile of the standard normal distribution.

What do you think of this approximate confidence interval when zq,s = (1,1,...,1) of size
n? And when z,s = (0,0,...,0,1)?

2. What is the posterior distribution of ® when the prior distribution is Beta(a, 8)?
3. What are the expectation and variance of this posterior distribution?
4. Is the posterior expectation, viewed as a function of X, a consistent estimator of 67

5. Do credibility intervals for 6, when x,ps is the same as in Question 1, have the same flaws as
the asymptotic confidence intervals provided in the answer to that question?

Exercise 2 (Geometric Distribution)

We consider X, a sample X1, |0 = 6 ~ G(0)®", and the parameter 6 of this distribution.
Assume a prior distribution © ~ Beta(a, 3).

1. Compute the posterior distribution of © and the posterior expectation.

2. Is the posterior expectation, viewed as a function of X, a consistent estimator of the parameter
of interest?

Exercise 3 (Gaussian Model with Fixed Variance)

We consider the Gaussian model for a sample X = X1, ~ AN (u,0%)®", where the variance
o? is assumed known. The parameter of interest is § = wu. Let z1., = (x1,...,2,) denote the

observations.

1. Compute the bias and the mean squared error (MSE) of the two estimators X; and X,, =
(X1 + -+ X,) of p. Which has the lower error?
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2. Assume prior information that yu ~ A'(m,72). Compute the posterior distribution.

3. Compute the Bayes estimator under the quadratic loss. What is its risk?

Exercise 4

We consider the Bayesian model where the prior distribution is a standard Gaussian and the
statistical model follows

X|0=0 ~ N(,1).
Let us introduce the cost function

A A 362

d(6,0) = (0 — )%= .

Show that the bayesian estimator associated to this cost function equals s(X) = 2X.

Exercise 5
Let p, A > 0. We consider the following Bayesian framework:
O~ =T(p,N), X=(X1,...,Xn) |0~ PO
1. What is the posterior distribution of 6 given X7
2. Provide a Bayes estimator under the quadratic loss. Denote it by 7*(X).
3. Show that for any 6 > 0, the risk is given by:

L nb+ 220 - 2)?
RO, T7) = (n+\)2

4. Show that the Bayes risk for IT is:

Rp(IT) = ﬁ.

5. Show that a Bayes estimator for the loss function (0, T) = 63e=2(9 — T)? is:

nXp,+p+3
T.(X)= —"— -+ %
(X) A+n+2

Exercise 6

An insurance portfolio contains 35% of "good" drivers, 40% of "standard" drivers" and 25%
of "bad" drivers. The actuary estimated that good drivers have approximately in average one
accident every 10 years, standard ones two accidents and bad ones six accidents on the same period.
Moreover, she assumes that the claim frequency N follows a Poisson distribution. To simplify,
consider that each time a claim occurs, the cost S; is 1 euro.

1. Give the Bayesian model corresponding to this framework, with © representing the driver’s
behaviour (risk profile).

2. Considering a policyholder at random in the portfolio, what is the probability that she expe-
riences an accident?

3. What is the risk premium for each type of drivers, knowing that the risk premium is defined
by E[S|© = 6] (where S is the total claim cost and 6 is the risk profile)?
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4. Give the collective premium, which is the premium that would be paid if no distinction were
made on risk profiles.

5. Compute the bayesian premium for the sixth year of some individual contract, with the
following claim history in the first five years of experience: 1,0,1,1,0.
Exercise 7

The amounts of claims collected on some given insurance contract for the 4 first insured years
are:

S1=7,5=13, S3=1, Sq4=4.

The experts from your company tell you that you could consider the following bayesian model for
the severity: the prior distribution has density

u(f) = 504 6° (1 — 0)3,

with 6 € (0,1), and
P(S=z|0=0)=Ci_,0°(1—-0),

with z =0,1, ...
Give the bayesian premium related to the next year, i.e. the fifth year.
Exercise 8
We consider the parameter 6 of a sample Xi., ~ B(0)®". Using different prior distributions,
propose a family of admissible estimators for . What are their mean squared risks?
Exercise 9

We partition the parameter space into two disjoint subsets: 7" =Ty U T, with Ty N1y = 0. We
are interested in W(0) € {0,1} defined as W(0) = 1yger,y. The loss function is d(¢,v) = Ligzoy

(thus we aim to maximize Eg[d(¢), 1)]).

1. Compute the risk of an estimator s(X) taking values in {0, 1}.

2. Given a prior distribution on 7', what is the Bayesian estimator associated with this cost?

Exercise 10

We consider the case where T is a finite set and aim to estimate 6 € T from an observation z
taking values in a finite set X'. Given a prior distribution, we introduce the cost d(f,60) = 1 (020}

Show that the Bayes estimator is the maximum a posteriori (MAP) estimator:

s(X) = argmea)(ﬂ(ﬁ | X),

where 7(0 | x) is the posterior mass function, i.e., P(© = 0| X = z).
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