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Organisation

Le cours se répartit comme suit :

10h de cours magistral ;

10h de travaux dirigés en salle machine ;

Une évaluation (examen écrit et/ou projet).

L’objectif est de connaitre les techniques statistiques utiles au
provisionnement et leurs limites.

Le livre français de référence est [Partrat et al., 2007].
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Objectif du cours

Aujourd’hui, Solvabilité 2 redéfinit le cadre prudentiel et promeut

la mise en place d’un bilan économique,

le calcul de mesures de risque sophistiquées.

Les provisions sont le socle même d’une évaluation prudentielle.

Nous désirons dans ce cours :
1 présenter les outils statistiques fondateurs des derniers

développements sur les méthodes de provisionnement,
2 poser les hypothèses requises par chaque technique et en

acquérir un regard critique.
3 évaluer leurs principales ,.
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Résultats d’intérêt pour le praticien
Traitement de phénomène parasite
Prise en compte de réassurance
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“RESERVING IS AN ART”
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Utilité et visibilité du perfectionnement des méthodes

Suite la survenance d’un sinistre, l’assureur a une dette envers
son assuré. Pour couvrir cet éventuel événement, cette dette
figure au passif par la constitution d’une provision.

Toutes les techniques récentes visent à améliorer la fiabilité des
calculs de provisionnement, utiles pour

la certification du best estimate,

la justification de la suffisance du provisionnement,

auprès des commissaires contrôleurs, auditeurs externes...
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Contexte : bilan assureur ds Solva 2 - risque de réserve

Interactions actif-passif (PB, comportements, ...)⇒ BEL varie !
Le SCR provision s’estime à la fin, sur la base de ce bilan.
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SCR/BEL et structure modulaire - Solvency II

Formule stand. : matrice de corrél. agrège SCRk ⇒ SCR global.
SCR prov. s’estime sur BEL⇒ après décompos. des BEL/risque.
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Problématique

La problématique du reserving est très ancienne (+sieurs siècles).
Il existe maintenant

une grande variété de méthodes (micro-level VS agregated),

des outils de gestion toujours plus réactifs et perfectionnés,
beaucoup d’approximations pour le calcul de , marges :

marge de précaution, marge pour risque croissant,
marge pour dépréciation (des actifs)...

→ La prise en compte du caractère aléatoire de ces montants
devient plus que nécessaire. Notamment sous la pression...

...des forces de marché,

...à cause de l’aversion au risque des administrations.
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Décomposition de la charge d’un sinistre

Éric GETTLER – Mémoire d’actuariat                              14 

Ces provisions se répartissent de la manière suivante : 
 
- Provisions dossier/dossier (D/D, ou F/F en anglais pour File/File ou encore RBNS : 

Reported But Not Settled). Ces provisions sont estimées au cas par cas par l’équipe de 
gestionnaires des sinistres qui est spécialisée par branche d’activité et qui est experte en 
ce qui concerne les différents cas de figure qui peuvent survenir au cours du cycle de vie 
du sinistre. 

- Provisions IBNR (Incurred But Not Reported) : elles-mêmes subdivisées en : 
� Provisions IBNeR (Incurred But Not enough Reported) : provisions visant à 

compléter (positivement ou négativement) les provisions dossier/dossier, 
� Provisions IBNyR (Incurred But Not yet Reported) : provisions servant à couvrir 

les sinistres survenus mais non encore déclarés à l’assureur. 
 

On appelle généralement PSAP, pour Provisions pour Sinistres À Payer, la somme des 
toutes ces provisions techniques. 

 
 
 

 

Fig. 3 : Décomposition de la charge ultime d’un sinistre 

 

1.3) Triangles de charge 

 

Un grand nombre de méthodes actuarielles d’estimation des provisions de sinistres se basent 
sur des triangles agrégés de montants cumulés de sinistres. Ils sont bien souvent le point de 
départ, la première étape indispensable, pour pouvoir appliquer ces méthodes. On comprend 
ainsi aisément qu’il est primordial de pouvoir constituer ces triangles de données sensibles en 
s’assurant d’une certaine qualité, d’un certain contrôle, en maîtrisant entre autres, leur origine et 
la manière dont ils sont constitués. 

 

Méthodes de provisionnement les + utilisées→ rapport ASTIN.
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Importance du calcul des PSAP - Faillites
des assureurs dommages US (RC et accidents)

Arthur CHARPENTIER - Provisionnement en assurance non-vie

Le calcul des PSAP, motivation(s)

5
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Données type : triangle de liquidation

Au 31/12/I, les données sont répertoriés comme suit :

Année de Années de développement
survenance 0 1 . . . j . . . J − i . . . J − 1 J

0 x0,0 x0,1 . . . x0,j . . . . . . . . . x0,J−1 x0,J

1 x1,0 x1,1 . . . x1,j x1,J−1
...

...
... . . .

... . . .
. . .

i . . . . . . . . . xi,j . . . xi,J−i
...

...
...

...

I − j . . . . . . . . . xI−j,j
...

I − 1 xI−1,0 xI−1,1

I xI,0
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Contexte général des études

L’hypothèse fondamentale de tous ces dvp est que les triangles de
liquidation sont fiables : données déjà traitées en amont !

Considérations fondamentales à ne pas oublier :

traitement de l’inflation (vision “as if”),

traitement de données extrêmes (dans un souci de stabilité,
séparation sinistres attritionnels/graves/CAT),

traitement de données incomplètes : doit-on s’en servir ?

Méthodologies classiques pour évaluer les PSAP :
1 dossier-dossier (case estimate) par le gestionnaire sinistre.
2 et IBNR ou “tardifs”.
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Comparaison et performance des méthodes

Depuis 1991 en assurance, on peut utiliser des méthodes stats
pour évaluer les sinistres survenus au cours 2 derniers exercices.

La convergence de ces méthodes avec l’estimation
dossier-dossier permet de vérifier leur fiabilité.

Une divergence doit prévenir l’instabilité des données.

Différence : évaluation “historique” dossier par dossier =
prospectif , évaluation par méthodes stats = données historiques.

Ces méthodes sont d’autant plus performantes que

passé régulier, présent/futur structurellement peu , du passé,

branche peu volatile, données nombreuses et fiables.
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Nécessité d’une réflexion préalable

La qualité de l’estimation de la provision repose sur la qualité et la
stabilité des données : comment ont-elles été générées? quels
sont les facteurs de risque d’un éventuel changement?

1 Les facteurs internes :
évolution du portefeuille,
politique de souscription, tarification et réassurance,
politique de gestion des sinistres (cadence de réglement).

2 Les facteurs externes :
pratiques de marché,
cycles économiques, inflation des montants de sinistres,
évolution de la sinistralité (fréquence, sévérité),
modifications réglementaires et comptables.
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Flexibilité des méthodes sur triangles

Outre la sinistralité historique, on peut intégrer des informations
exogènes à l’estimation de la provision : indicateurs d’exposition
(volume de prime, nb de contrats), plan de réassurance...

On peut utiliser les triangles de liquidation sur des quantités de
nature très , :

montants, montants moyens,

primes, nombres de sinistres

loss-ratios (sinistres / primes)...

→ Quantités ramenées à des périodes (année, semestre, ...).
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Origine et développement

Les données sont rattachées à des périodes d’origine, soit

une période de survenance (critère classique),

une période de souscription,

une période de déclaration.

Remarque : souvent maille annuelle pour éviter saisonnalité.

Notations : dans toute la suite,

i : année d’origine (survenance)

j : délai réglement (année de développement/déroulement)

xi,j : mesure de sinistralité à l’année d’origine i et au délai j.

Exemple de mesure de sinistralité : montants de sinistres.
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Données type : triangle des montants non cumulés

Au 31/12/I, les paiements sont répertoriés comme suit :

Année de Années de développement
survenance 0 1 . . . j . . . J − i . . . J − 1 J

0 x0,0 x0,1 . . . x0,j . . . . . . . . . x0,J−1 x0,J

1 x1,0 x1,1 . . . x1,j x1,J−1
...

...
... . . .

... . . .
. . .

i . . . . . . . . . xi,j . . . xi,J−i
...

...
...

...

I − j . . . . . . . . . xI−j,j
...

I − 1 xI−1,0 xI−1,1

I xI,0

Pour simplifier, on prendra ici I = J = n (I > J possible) : on
observe donc les données dans T =

{
xij : i + j ≤ n

}
.

La somme des indices des termes diagonaux vaut n (ou I, J).
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Réglements calendaires

Les diagonales correspondent à des réglements calendaires.
L’année calendaire n a donné lieu au paiement total (ttes années
d’origine confondues)

n∑
i=0

xi,I−i .

Remarque sur le nb de données : suite arithmétique de raison 1,

1 + 2 + .. + n =
n(n + 1)

2

Ex : n = 6→ 21 obs. (short tail), n = 16→ 136 obs (long tail)...
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Construction du triangle des montants cumulés

Année de Années de déroulement
survenance 0 . . . j . . . J − i . . . J − 1 J

0 C0,0 . . . C0,j . . . . . . . . . C0,J−1 C0,J

1 C1,0 . . . C1,j C1,J−1
...

... . . .
... . . .

. . .

i . . . . . . Ci,j . . . Ci,J−i
...

...
...

I − j . . . . . . CI−j,j
...

I − 1 CI−1,0 CI−1,1

I CI,0

Cij : montant cumulé pour l’année d’origine i jusqu’au délai j :

Ci,j =
∑j

h=0 xi,h ou xi,j = Ci,j − Ci,j−1 (j ≥ 1).
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Trois différentes approches

But : compléter la partie inférieure du triangle de liquidation.

1 Techniques de coût moyen : souvent utilisées en réassurance
(gros risques)

Charges ultimes = nb ultime sinistres × coût moyen sinistres.

2 Techniques basées sur les loss-ratio (LR) :

Charges ultimes = Primes × Loss ratio ultime.

3 Méthodes liquidatives :

Raisonnement à partir des facteurs de développement.
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Données pour la suite (stables)

Données d’aggrégation de montants de dommages matériels en
auto pour +sieurs compagnies au 31/12/1993 (source : FFSA).

Année de Années de déroulement
survenance 0 1 2 3 4 5

1988 3209 1163 39 17 7 21
1989 3367 1292 37 24 10
1990 3871 1474 53 22
1991 4239 1678 103
1992 4929 1865
1993 5217

Hyp. : développement futur complet des sinistres sur 6 ans.
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Quantités cibles

A partir de ces données, on cherche à obtenir au 31/12/n :

une estimation de la charge sinistres pr année d’origine :

Si = Ci,n (i = 0, ..., I).

la provision à constituer pour chaque année d’origine :

Ri = Ci,J − Ci,J−i (i = 0, ..., I)

la provision totale : R =
∑n

i=1 Ri .

⇒ Détermination du résultat technique de la branche.
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Evaluation comptable réglementaire

Selon les normes IFRS, on évalue un portefeuille par somme des
cash-flows futurs actualisés. Pour simplifier,

1 on néglige l’actualisation ici,
2 on obtient les cash-flows de l’année (n + k) au titre des

années d’origine 0 à n avec l’expression

CFn+k =
∑

i+j=n+k

xij .

⇒ On s’intéresse à la diagonale des triangles...
⇒ Cela correspond aux diagonales du triangle inférieur à estimer.
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Cadence de règlement

Notion intimement liée aux facteurs de développement :

on conduit les calculs avec les facteurs de développement,

on interprète les résultats en cadences cumulées (lag factor).

Pr l’année d’origine i et son dvp en paiements cumulés au 31/12/n,

0 . . . J − i . . . j j + 1 . . . J
i Ci,0 . . . Ci,J−i . . . Ci,j Ci,j+1 . . . Ci,J

je facteur de développement : fij =
Ci,j+1
Ci,j

(j = 0, ..., J − 1) ;

je cadence cumulée de règlement : pcij =
Ci,j
Ci,J

(j = 0, ..., J).
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Application à l’exemple slide 20

Ici, seule la 1e année est complètement déroulée.
Pr l’année 1988, il ressort du triangle cumuls :

les facteurs de développement :

j 0 1 2 3 4
(0-1) (1-2) (2-3) (3-4) (4-5)

fj 1.3624 1.0089 1.0039 1.0016 1.0047

les cadences de règlement cumulés (en %) :

j 0 1 2 3 4 5
pcj 72.0 98.1 99.0 99.4 99.5 100
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Généralisation

On obtient, en généralisant, les formules suivantes :
pour les facteurs de développement : fj = pcj+1/pcj ,
et pour les cadences cumulées : pcj = (fj fj+1...fJ−1)−1.
Logiquement,

Ri = Ci,J − Ci,J−i =
1 − pcJ−i

pcJ−i
Ci,J−i = (fJ−i . . . fJ−1 − 1)Ci,J−i .

Impact de fj : visualisation aisée de l’impact sur la provision.
Ex : augmentation des paiements la 2eme année : soit β > 1,

f
′

0 = βf0 ⇒ pc
′

0 =
1

f ′0 f2 . . . fJ−1
=

pc0

β
.

30 / 243



1 Projection de triangles de liquidation : introduction
Généralités
Données de travail
Résultats d’intérêt pour le praticien
Traitement de phénomène parasite
Prise en compte de réassurance

31 / 243



Prise en compte de l’inflation

Idée : les règlements de sinistres sont “pollués” par l’inflation.

Cela peut considérablement
1 biaiser l’analyse d’un triangle de paiements,
2 biaiser la méthode de provisionnement (propagation erreur).

⇒ Il faudrait normalement une étape d’actualisation des paiements
qui tienne compte de cette inflation !

On aimerait produire le calcul de la provision exacte, en
considérant une inflation constante dans un premier temps...

32 / 243



⇒ Cette propriété est requise à tte bonne méthode de provision.,
ce qui caractérise un triangle “régulier”, défini par

1 un vecteur (S(0)
0 ,S(0)

1 , . . . ,S(0)
I ) de charges sinistres ultimes,

en euros constants de l’année d’origine 0 ;

2 un vecteur (p0, . . . , pJ−1) de cadences de règlement
(non-cumulées) tel que

∑J−1
j=0 pj = 1, avec pj ≥ 0 ;

3 un taux d’inflation τ annuel (ou autre unité de temps) constant.

On peut tjs exprimer les paiements non cumulés, ∀i, j = 0, . . . , n :

en euros constants (de l’année 0) : x(0)
ij = pjS

(0)
i ;

ou en euros courants : xij = pjS
(0)
i (1 + τ)i+j .
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On en déduit les paiements cumulés en euros courants...

Cij =

j∑
k=0

xik = S(0)
i (1 + τ)i

j∑
k=0

pk (1 + τ)k

︸             ︷︷             ︸
Bj

.

...et les charges sinistres : Si = Ci,J = Ci,n = S(0)
i (1 + τ)iBJ ,

conduisant aux provisions par année d’origine : ∀i = 1, ..., I

Ri = Ci,J − Ci,J−i

= S(0)
i (1 + τ)i(BJ − BJ−i)

= S(0)
i (1 + τ)i

J∑
k=J−i

pk (1 + τ)k

Et donc à la provision globale R =
∑I

i=1 Ri .
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Intégrer un programme de réassurance

Réassurance proportionnelle, principe :
le quote part est facilement traitable et n’améliore pas la
qualité de l’estimation du montant de réserves.
l’excèdent de plein permet d’améliorer la base statistique
nette de réassurance car données + homogènes.

Réassurance non proportionnelle :
la réassurance non proportionnelle dont la priorité P est basse
permet d’écrêter plusieurs sinistres et ainsi de rendre la
triangulation sinistres + homogènes et l’estimation + précise.
avec P haute, permet par l’étude particulière des sinistres
importants d’homogénéiser le triangle sinistre (+ de données).
Approche frequence - cout moyen très utile dans ce contexte.

Globalement, les données doivent ê brutes d’autres effets, ces
effets étant susceptibles de varier dans le temps...
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2 Approches déterministes du provisionnement
Méthode de Chain Ladder
Autres approches autorégressives
Méthodes basées sur des ratios
Modèles factoriels
Ajustement de courbes et lissages
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Préambule

Les méthodes déterministes doivent impérativement être
appliquées avant de recourir à des méthodes stochastiques.

Elles ont l’avantage d’être simples et robustes.
En fonction de la méthode choisie, elles s’appliquent à des
triangles de toute nature :

paiements cumulés,
charges, ...

Elles nécessitent moins d’hypothèses que les méthodes
stochastiques.
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Méthode Chain Ladder (CL) standard

Soient les délais j et (j + 1) d’1 triangle de paiements cumulés :

Année d’ Années de développement
origine 0 . . . j j + 1 . . . . . . J

0 . . . . . . C0,j C0,j+1 . . . . . .
...

...
...

i . . . . . . Ci,j Ci,j+1
...

...
...

I − j − 1 . . . . . . CI−j−1,j CI−j−1,j+1

I − j . . . . . . CI−j,j
...

I

Hypothèse fondamentale : ∀j = 0, ..., J − 1, les facteurs de
développement individuels Ci,j+1/Ci,j sont ⊥⊥ de l’année d’origine i.
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Ainsi,
C0,j+1

C0,j
=

C1,j+1

C1,j
= . . . =

Ci,j+1

Ci,j
,

et nous pouvons donc déduire une valeur commune M de ces
rapports en moyennant les facteurs de développement :

M =

∑I−j−1
i=0 Ci,j+1∑I−j−1

i=0 Ci,j

.

Dans la pratique, l’hypothèse n’est qu’approximativement vérifiée.
On choisit pourtant ce facteur commun comme facteur de
développement (0 ≤ j ≤ J − 1)

fj =

∑I−j−1
i=0 Ci,j+1∑I−j−1

i=0 Ci,j

41 / 243



!"#$%&'"()*+,-. / 01)*23&2$4#2)5667
829)$+&:";29)9&"<:%9&'=>29);2)3#"?'9'"((2$2(&)2&)'(<2#&'&>;2)9>#)@A29&'$%&'"();29)3#"?'9'"(9

11

B-CDEF-GH)BI),-8GF.JD)!-H.HE-DC

D9&'$%&'"();29)3#"?'9'"(9)3%#)@2)$";K@2)E:%'(/8%;;2#

Fig. Estimation des facteurs de développement
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Puis on en déduit les charges ultimes (rappel : Ci,n−i est le terme
diagonal)

Si = Ci,J = Ci,n = Ci,n−i fn−i ...fn−1 = Ci,n−i

n−1∏
k=n−i

fk ,

qui conduisent aux provisions par exercice (i = 1, ..., I) :

Ri = Si − Ci,n−i ⇒ R =
I∑

i=1

Ri .

Si nécessaire, on peut retrouver le rectangle complet de liquidation
avec les facteurs de développement

Ci,j = Ci,n−i fn−i ...fj−1 = Ci,n−i

j−1∏
k=n−i

fk .
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Exemple : données pédagogiques cumulées

Année de Années de développement
survenance 0 1 2 3 4 5

1988 3209 4372 4411 4428 4435 4456
1989 3367 4659 4696 4720 4730
1990 3871 5345 5398 5420
1991 4239 5917 6020
1992 4929 6794
1993 5217

Ce qui donne les facteurs de développement

j 0 1 2 3 4
(0-1) (1-2) (2-3) (3-4) (4-5)

fj 1.38 1.01 1.0043 1.0018 1.0047
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Evolution des facteurs de développement

On trace l’allure des facteurs de dév. pr chaque année d’origine :

1 2 3 4 5

1.
0

1.
1

1.
2

1.
3

1:5

fa
ct

.d
ev

[1
, ]
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Et les cadences cumulées de règlement :

j 0 1 2 3 4 5
pcj 70.8 97.8 98.9 99.3 99.5 100

On en déduit le triangle inférieur de liquidation et les provisions

Exercice i 0 1 2 3 4 5 Provisions
1988 0 4456 0
1989 1 4730 4752 22
1990 2 5420 5430 5456 36
1991 3 6020 6046 6057 6086 66
1992 4 6794 6872 6902 6914 6947 153
1993 5 5217 7204 7287 7318 7332 7367 2150

Total 2427

La provision du dernier exercice représente 89% de la
provision globale (caractéristique des branches short-tail).
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Représentation des règlements cumulés estimés

On voit une tendance en fonction de l’année d’origine...inflation?
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Fig. Représentation des règlements passés et futurs par année de survenance
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Validation de l’hypothèse : les C-C plot

Validation empirique car le modèle n’est pas stochastique.

Si pour j fixé, il existe fj tel que Ci,j+1 = fjCi,j ,
⇒ les couples (Ci,j ,Ci,j+1)i=0,...,I−j−1 alignés sur 1 droite à l’origine.
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La validation essentielle repose sur le triangle de dév., appelé
d-triangle. Il permet d’effectuer des choix alternatifs car

on y détecte les tendances (trend) et les saisonnalités,

il ressort les valeurs extrêmes...
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Exercice i 0 1 2 3 4
1988 0 1.36242 1.00892 1.00385 1.00158 1.00474
1989 1 1.38372 1.00794 1.00511 1.00212
1990 2 1.38078 1.00992 1.00408
1991 3 1.39585 1.01741
1992 4 1.37837

Moyenne 1.38023 1.01105 1.00435 1.00185
Ecart-type 0.01074 0.00374 0.00055 0.00027

Coeff. variation 0.008 0.004 0.001 0.000

⇒ Hyp. CL acceptable si fij “constants” à j fixé.

On y constate pour nos données de l’exemple “pédagogique” :

très faible volatilité, décroissante avec le délai j.

visualisation de la variation de ces facteurs :
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aucune structure non-aléatoire évidente pour j = 1, 2, ... ;

mais peut-être un trend pour j = 0.
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Chain Ladder pondéré : variante + flexible

CL standard⇒ choix d’un même facteur de développement ∀i.
On pourrait choisir ce facteur comme une fonction des facteurs
individuels f0,j , f1,j , ..., fI−j−1,j de la colonne j.

La fonction la plus simple est celle de la moyenne pondérée,

fj =

∑I−j−1
i=0 wi,j fi,j∑I−j−1

i=0 wi,j

,

avec des pondérations (wi,j)i=0,...,I−j−1 choisies en fonction de

l’allure des facteurs individuels, leur fiabilité, leur volatilité,

considérations externes : prudentielles, ...
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Exemples de pondérations

La moyenne : fj = 1
I−j

∑I−j−1
i=0 fi,j .

La moyenne des k derniers : par exemple pour k = 3,

fj =
1
3

I−j−1∑
i=I−j−3

fi,j si j = 1, ..., I − 3;

fj =
1
2

(f0,j + f1,j) si j = 1, ..., I − 2;

fj = f0,j si j = I − 1.

Rq : si l’on prend wi,j = Ci,j, on retombe sur le CL standard.
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Pondération par année calendaire

Le but est d’accorder plus d’importance aux données récentes
qu’aux anciennes. Avec la pondération wi,j = i + j + 1, on obtient

I−j−1∑
i=0

wi,j =

n−j−1∑
i=0

i + (n − j)(j + 1) =
(n − j)(n + j + 3)

2
.

Accentuer cet effet en prenant par ex. wi,j = (i + j + 1)2.

Rq : si l’on a détecté un trend dans le d-triangle, il peut être utile
de le modéliser par un modèle de régression.
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Bilan

La méthode de Chain Ladder pondérée est une méthode qui
satisfait de bonnes propriétés.

Prop. : CL donne la provision exacte avec un triangle régulier.

Elle est simple à mettre en oeuvre, universelle et robuste ;
mais n’est pas très flexible ;

Elle peut être utilisée avec des incréments négatifs, donc
aussi adaptée aux recours.

Les versions stochastiques des modèles pondérés
nécessitent de développer de nouvelles formules pour la
volatilité.

Elle est donc particulièrement adaptée à des triangles de charges
(intégrant des recours) ou des triangles de paiement...
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2 Approches déterministes du provisionnement
Méthode de Chain Ladder
Autres approches autorégressives
Méthodes basées sur des ratios
Modèles factoriels
Ajustement de courbes et lissages
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Alternatives

Les méthodes Chain Ladder supposent l’existence pour j fixé
(j = 0, ..., J − 1) d’un facteur fj tel que

Ci,j+1 = fjCi,j , pour i = 1, ..., I − j.

→ (Ci,j ,Ci,j+1) alignés sur une droite passant par l’origine : parfois,
cette hypothèse est remise en cause.

→ Une alternative serait alors de supposer que Ci,j+1 est une
fonction affine de Ci,j .
⇒ On ajoute un effet constant (ordonnée à l’origine)...
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Modélisation par London Chain
[Benjamin and Eagles, 1986]

Méthode peu utilisée car risque de surparamétrisation.

Suppose l’existence, pour j fixé, de paramètres (fj , aj) tels que

Ci,j+1 = fjCi,j + aj ∀i = 0, ..., I − j − 1

Encore une fois, les points devraient être sensiblement alignés.
Par analogie avec la régression linéaire, on a

(̂fj , âj) = arg min
(fj ,aj)

I−j−1∑
i=0

(Ci,j+1 − aj − fjCi,j)
2.
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On annule les dérivées partielles, et en notant C̄j la moyenne de la
colonne j donnée par

C̄j =
1

I − j

I−j−1∑
i=0

Ci,j

on obtient les estimateurs classiques :

fLC
j =

1
I−j

∑n−j−1
i=0 Ci,jCi,j+1 − C̄jC̄j+1

1
I−j

∑n−j−1
i=0 C2

i,j − C̄2
j

et
aLC

j = C̄j+1 − fLC
j C̄j .
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On remarque qu’il s’agit presque du coefficient de corrélation
linéaire de Pearson entre les colonnes j et (j + 1) :

fLC
j =

Cov(col j, col j+1)
Var(col j)

.

On obtient finalement le montant cumulé de la colonne (j + 1) par

Ci,j+1 = fLC
j Ci,j + aLC

j pour i ≥ I − j.

Rq : si l’on applique les MCO à CL classique Ci,j+1 = fjCi,j , cela

conduit à un facteur

∑I−j−1
i=0 Ci,jCi,j+1∑I−j−1

i=0 C2
i,j

, , de fj de CL.
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Reprise de l’exemple pédagogique

En appliquant le modèle affine aux mêmes données, on obtient

j 0 1 2 3 4
fLC
j 1.404 1.0405 1.0036 1.0103 1.0047

aLC
j -90.311 -147.27 3.742 -38.493 0

Exercice i 0 1 2 3 4 5 Provisions
1988 0 4456 0
1989 1 4730 4752 22
1990 2 5420 5437 5463 43
1991 3 6020 6045 6069 6098 78
1992 4 6794 6922 6950 6983 7016 222
1993 5 5217 7234 7380 7410 7447 7483 2266

Total 2631
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Prop. le London Chain fournit la provision exacte d’un triangle
régulier : les charges SLC

i coincident avec les charges exactes Si .

Cette méthode n’implique aucune difficulté de mise en oeuvre
puisqu’il s’agit d’une simple régression.

Problème : on estime 2(n − 1) paramètres à partir de n(n+1)
2

données, d’où un risque de surparamétrisation...
→ Un indicateur permettant de quantifier cet effet est donné par le
ratio du nb de paramètres sur le nombre de données

4(n − 1)

n(n + 1)
(environ 1/2 pour n = 5)
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Méthode du London pivot
[Straub, 1988]

Objectif : réduire le paramétrage de la modélisation London Chain.

Modèle intermédiaire entre Chain Ladder et London Chain.

Suppose l’∃ d’un param. a tel que (j = 0, ..., J − 1)

Ci,j+1 + a = fj (Ci,j + a) ∀i = 1, ..., I − j

Ainsi, a est indépendant de j...⇒ si l’hyp. est validée, les points
(Ci,j+1,Ci,j) devraient être alignés sur des droites concourantes.

Leur point d’intersection se trouve en (−a,−a), le fameux point
pivot (dans la méthode CL, (−a,−a) = (0, 0)).
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On estime les (J + 1) paramètres par MCO, en minimisant

(̂fj , â) = arg min
(fj ,a)

J−1∑
j=0

I−j∑
i=0

[(Ci,j+1 + a) − fj(Ci,j + a)]2 .

→ Mais ce problème n’a pas de solution analytique, d’où un
algorithme itératif qui provoque une utilisation peu courante...

Prop. Dans le cas régulier, cette méthode fournit la provision
exacte.
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2 Approches déterministes du provisionnement
Méthode de Chain Ladder
Autres approches autorégressives
Méthodes basées sur des ratios
Modèles factoriels
Ajustement de courbes et lissages
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Méthodes de ratios : contexte d’utilisation

Intégre 1 info. suppl. par rapport au triangle des paiements.
Sous la forme d’1 indicateur d’exposition au risque Ei par
rapport à la sinistralité pour tte année d’origine i (i = 0, ..., I) :

un montant de primes, un nombre de contrats,...
un nombre de sinistres déclarés ou réglés (si la définition d’un
sinistre est constante au cours des années),

On utilisera ici les notations suivantes :

Li,j = Ci,j/Ei (i, j = 0, ..., n) pour les ratio individuels,

Li = Ci,n/Ei = Si/Ei (i, j = 0, ..., n) pour le ratio ultime.
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Exemple illustratif

Si l’indicateur d’exposition est une prime Pi , alors Li,I−i est la part
de prime de l’année d’origine i consommée au 31/12/I.
→ On parle de loss ratio (LR) pour Li , ratio technique très utilisé.

Dans notre ex., les données d’expo. sont les primes acquises (CL
appliqué ici donne pour le triangle inf. les primes manquantes) :

Exercice i 0 1 2 3 4 5
1988 0 4563 4589 4590 4591 4591 4591
1989 1 4718 4674 4671 4672 4672 4672
1990 2 4836 4861 4861 4863 4863 4863
1991 3 5140 5168 5173 5175 5175 5175
1992 4 5633 5668 5671 5673 5673 5673
1993 5 6389 6425 6428 6431 6431 6431

Remarquez que les primes sont + vite collectées que le paiement
des sinistres, les facteurs de dev. sont vite égaux à 1...
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Exercice i Si Pi Loss ratio ultime (%)
1988 0 4456 4591 97.1
1989 1 4752 4672 101.7
1990 2 5456 4863 112.2
1991 3 6086 5175 117.6
1992 4 6947 5673 122.5
1993 5 7367 6431 114.6

Naturellement, le d-triangle des facteurs individuels (fi,j)i+j≤n

associé à celui des paiements cumulés (Ci,j)i+j≤n est le même que
celui du triangle des ratios (Li,j)i+j≤n, car

fL
i,j =

Li,j+1

Li,j
=

Ci,j+1/Ei

Ci,j/Ei
= fi,j .

⇒ Ainsi la provision déduite du triangle (Li,j)i+j≤n par Chain Ladder
coincide avec celle provenant du triangle (Ci,j)i+j≤n.
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Méthodes basées sur des ratios

Le Loss Ratio simple : supposer constant les LR de toutes les
années d’origine, et poser Li = L0 avec L0 connu.

on cristallise le dernier LR connu : on déduit Si = Ei × L0.
Ri = Si − Ci,n−i : très simple mais résultats aberrants si la
branche étudiée n’est pas hyper stable.

Le Loss Ratio complémentaire : supposer les LR constants =
à 1 param. L à estimer pr ttes années d’orig. (L ∼ Ci,n/Ei ,∀i).

Par ex.,
∑I

i=0 Ci,J/
∑I

i=0 Ei ∼ L .
Ou bien pour estimer L , on peut tenter de détecter une
tendance en déterminant L (j) =

∑I−j
i=0 Ci,j /

∑I−j
i=0 Ei .

Puis l’analyse de la suite des L (j) (CV) conduit par extrap. au
LR commun final (par rég. lin. par ex.).
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Méthode de Bornhuetter-Ferguson
[Bornhuetter and Ferguson, 1972]

Principe : méthode toujours basée sur des ratios, ici les LR.

Très utilisée en entreprise en complément de la méthode CL.

Particulièrement adaptée au provisionnement des années
récentes dans les triangles instables.

Si = Ci,n−i + (1 − pcn−i)LiPi .

On substitue au LR inconnu Li un LR “attendu” Φi → Φi déterminé
par des considérations exogènes, par ex. un benchmark marché.
Rq : existe aussi en version stochastique.

⇒ Approche crédibilisée : a priori (via Li) et expérience (via pcn−i).
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Reprise de l’exemple fil rouge

La réserve s’exprime donc comme suit :

Ri = Si − Ci,n−i = (1 − pcn−i)PiΦi

Mise oeuvre toujours sur le même exemple :

Exercice i (1 − pcn−i) (%) Pi Φi Ri

1988 0 0 4591 97.1 0
1989 1 0.47 4672 100 22
1990 2 0.66 4863 105 34
1991 3 1.09 5175 110 62
1992 4 2.20 5673 120 150
1993 5 29.18 6431 125 2346

Total 2614
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Méthode Cape Cod (Bühlmann-Stanard)

Basée sur une segmentation a priori de l’ensemble des
années d’origine en groupes d’années “semblables”.

On attribue à chacun de ces groupes un Loss Ratio et un
vecteur de cadences de règlement.

En reprenant la notion de cadence cumulée :

pcn−i =
Ci,n−i

Ci,n
⇒ Si = Ci,J = Ci,n = Ci,n−i + (1 − pcn−i)Ci,n.

D’où en utilisant le LR de la ieme année d’origine Li = Ci,n/Pi :

Si = Ci,n−i + (1 − pcn−i)LiPi .

⇒ Mélange entre a priori (via Li) et historique (via pcn−i).
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Notons pc = (pc0, ..., pcn−1) le vecteur des cadences cumulées
provenant par ex. d’une méthode CL avec pour l’exercice k ,

pcn−k =
Ck ,n−k

Ck ,n
, et le loss ratio Lk =

Ck ,n

Pk
=

Ck ,n−k

pcn−k Pk
.

On obtient ensuite naturellement le loss-ratio LA , associé à un
groupe A ⊂ {0, 2, ..., n} d’années d’origine semblables,

LA =
∑
k∈A

Ck ,n−k /
∑
k∈A

pcn−k Pk .

La provision d’une année d’origine i de groupe Ai vaut

Ri = Si − Ci,n−i = (1 − pcn−i)PiLAi .
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Cas particuliers :

si Ai = {i} alors LAi =
Ci,n−i

pcn−iPi
.

si à l’opposé Ai = {0, 1, 2, ..., n} alors LAi =

∑n
k=0 Ck ,n−k∑n

k=0 pcn−k Pk
.

Reprise de l’exemple fil rouge : en utilisant les cadences du CL
et avec Ai = {0, 2, ..., I}, on obtient LAi = 1.1141 (111,41%) et :

Exercice i (1 − pcn−i) (%) Pi Ri

1988 0 0 4591 0
1989 1 0.47 4672 24
1990 2 0.66 4863 36
1991 3 1.09 5175 63
1992 4 2.20 5673 139
1993 5 29.18 6431 2091

Total 2353
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Cette méthode, extension des méthodes Chain Ladder, est
évidemment sensible au choix des années d’origine semblables...

Ce choix peut résulter :

d’informations exogènes au triangle,

de l’expérience du praticien,

s’appuyer sur des graphiques de développement des LR.

Cette méthode fournit des provisions toujours positives, comme
la méthode de Bornhuetter-Ferguson que nous avons présenté.

78 / 243



2 Approches déterministes du provisionnement
Méthode de Chain Ladder
Autres approches autorégressives
Méthodes basées sur des ratios
Modèles factoriels
Ajustement de courbes et lissages
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Les modèles factoriels : principales caractéristiques

Ces techniques s’appliquent

aux montants non-cumulés xij (ou aux LR correspondants) ;

sous la forme d’un produit de param. correspondant chacun à
une direction du triangle de liquidation (0 ≤ i, j ≤ n) :

xi,j = xi yj λi+j

où

xi est le paramètre de l’année d’origine,

yj est lié au délai de règlement,

λi+j correspond à l’année calendaire (pour l’inflation par ex.).
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→ Approche privilégiée par la plupart des modèles stochastiques.
→ 3n paramètres : inférieur au nb d’obs. à partir de n > 4 !

Problème : sous cette forme, le modèle n’est pas identifiable :

[(xi), (yj), (λk )] et [(a xi), (
yj

a
), (λk )] donnent les mêmes xij ...

⇒ Il faut donc imposer des contraintes qui

rendent l’effet des facteurs identifiables,

conservent l’interprétabilité des paramètres.

C’est l’objet du modèle de De Vylder que nous allons étudier
maintenant...
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Les moindres carrés de Vylder
[De Vylder, 1982]

On se place dans un cadre où l’on suppose que l’inflation
annuelle est constante dans le triangle, car

le triangle a été préalablement déflaté, ou

la branche considérée a connu une inflation spécifique cste.

Alors on peut retenir la modélisation qui intègre directement cette
inflation (avec 0 ≤ i, j ≤ n)

xi,j = xiyj

Contrainte supp. :
∑n

j=0 yj = 1 pour rendre le modèle identifiable.

Les paramètres (xi) et (yj) sont toujours interprétables :
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∑n
j=0 xi,j = xi

∑n
j=0 yj = xi : charge sinistres de l’année i ;

yj =
xij
xi

est la cadence (non-cumulée) de règlement en je

année de développement.

Ainsi,

xij = xiyj ⇒ Ci,j =

j∑
k=0

xi,k = xi

j∑
k=0

yk ⇒
Ci,j+1

Ci,j
=

�xi
∑j+1

k=0 yk

�xi
∑j

k=0 yk

.

Les facteurs de développement sont donc indépendants de i,
comme dans le modèle Chain Ladder !
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Par contre, ces facteurs ne sont plus des facteurs individuels
pondérés... On estime les 2n param. (xi) et (yj) par MCO
minimisant

∆ =
n∑

i=0

n−i∑
j=0

wi,j (xi,j − xiyj)
2 .

Cela revient à résoudre le système (en dérivant)
xi =

∑n−i
j=0 wi,jxi,jyj∑n−i

j=0 wi,jy2
j

(i = 0, ..., n)

yj =

∑n−i
j=0 wi,jxi,jxi∑n−i

j=0 wi,jx2
i

(j = 0, ..., n)

Qui peut se reécrire

xi = fi(y0, ..., yn),

yj = gj(x0, ..., xn).
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On peut déduire les réserves estimées Ri des valeurs x̂i,j prévues
par le modèle :

R̂i =
n∑

k=n−i+1

x̂i,k ⇒ R̂ =
n∑

i=1

R̂i .

Une méthode de validation intuitive consiste à comparer les
valeurs prévues x̂i,j avec les valeurs observées xi,j du triangle
supérieur.

Prop. Dans le cas régulier, la méthode des moindres carrés de De
Vylder produit la provision exacte.
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Retour à notre exemple fil-rouge

Estimations par moindres carrés de De Vylder :

Estimation des facteurs :

k 0 1 2 3 4 5
x̂k 4505.5 4761.0 5468.5 6019.3 6957.8 7372.1
ŷk 0.70767 0.27 0.01564 0.00427 0.00184 0.00466

Estimation des provisions :

k 0 1 2 3 4 5 Total
R̂i 0 22 36 45 156 2155 2434
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Comparaisons avec valeurs observées :

Exercice i 0 1 2 3 4 5
1988 0 3209 1163 39 17 7 21

3188 1217 52 19 8 21
1989 1 3367 1292 37 24 10

3369 1286 55 20 9 22
1990 2 3871 1474 53 22

3870 1477 63 23 10 26
1991 3 4239 1678 103

4260 1625 70 26 11 28
1992 4 4929 1865

4924 1879 81 30 13 32
1993 5 5217

5217 1990 85 32 14 34
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2 Approches déterministes du provisionnement
Méthode de Chain Ladder
Autres approches autorégressives
Méthodes basées sur des ratios
Modèles factoriels
Ajustement de courbes et lissages
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Les méthodes d’ajustement de courbe

L’intérêt de ces méthodes est qu’elles permettent

de prendre en compte paramétriquement l’évolution des
cadences de règlement au cours des années d’origine,

d’effectuer des projections de celles-ci (problématique du
facteur de queue, “tail factor”),

inconvénient : parfois la mise en oeuvre (minimisation en
moindres carrés non-linéaires).

Champ d’application : le plus souvent à des loss ratios cumulés
(ou non-cumulés), mais aussi à des règlements (cumulés ou non).
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Exemple 1 : les courbes de Hoerl

Objectif : ajuster une fonction paramétrée par année d’origine sur
les développements des paiements non-cumulés xi,j .

Méthode proposée en 1989 par Y. Kahane.

On calibre une densité Gamma car allure proche des
développements observés :

xi,j = αi(1 + j)βi e−γi(1+j).

αi est le paramètre d’échelle,

βi et γi influent sur la forme et la longueur du déroulement de
l’année d’origine i.
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→ En pratique, βi , γi peuvent ne pas dépendre de i.

→ Minimisation des moindres carrés pondérés non-linéaires
sur les données du triangle supérieur :

∆ =
∑

i+j≤n

wi,j

[
xi,j − αi(1 + j)βi e−γi(1+j)

]2
.
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Estimation des paramètres

Pour simplifier, on se ramène à une minimisation linéaire par
une transformation :

log xi,j = log αi + βi log(1 + j) − γi(1 + j).

On cherche donc à minimiser

∆
′

=
∑

i+j≤n

wi,j [log xi,j − log αi + βi log(1 + j) − γi(1 + j)]2 .

Pb : 2 minimisations ne donnent pas exact. les mêmes solutions...
Astuce : on peut initialiser les paramètres pour la première
minimisation en se servant de l’estimation de ceux de la seconde.
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Exemple 2 : la méthode de Craighead

S’applique sur les paiements ou loss ratios (LR) cumulés de
chaque année d’origine.

Ajuste une exponentielle décroissante semblable à la fonction
de répartition d’une loi de Weibull à 2 paramètres :

Li,j = Li

(
1 − exp

[
−

(
j + 1
αi

)τi
])

j ≥ 0.

Li le ratio ultime de l’année i, inconnu ;

αi ∼ longueur du déroulement, τi ∼ forme de la courbe.

peuvent ne pas dépendre de i (cf graph des dév. de Li,j).
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Estimation des paramètres

On détermine donc les triplets (Li , αi , τi)i≥0 par minimisation de

∆ =
n∑

i=0

n−i∑
j=0

wi,j

[
Li,j − Li

(
1 − exp

[
−

(
j + 1
αi

)τi
])]2

.

Les pondérations permettent de moduler

l’importance des années d’origine,

la prépondérance des délais de règlement.

On déduit la charge ultime par Si = EiLi .

Rq : méthode connue pour estimer des provisions avec une forte
volatilité, en particulier pour les origines encore peu développées...
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Lissage, interpolation, extrapolation

Recours aux méthodes de lissage dans les méthodes CL, pour
atténuer les irrégularités des facteurs de dév. bruts (fj)0=1,...,J−1.

Très souvent, et surtout dans les branches short-tail, la suite
(fj)j=1,...,J−1 est décroissante dès l’origine :

1 2 3 4 5

1.
0

1.
1

1.
2

1.
3

Index

m
oy
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Le lissage de ces facteurs empiriques consiste à ajuster sur ces
points une fonction y = f(t), régulière et vérifiant f(t) ≥ 1.
Les plus utilisées sont :

la puissance inverse :
à 2 paramètres : f(t) = 1 + a(1 + t)−b , a, b ≥ 0,
à 3 paramètres : f(t) = 1 + a(c + t)−b , a, b ≥ 0,

l’exponentielle négative : f(t) = 1 + ae−bt , b ≥ 0,

la fonction de type Weibull (cf courbes de Hoerl) :

f(t) = 1 + a(1 + t)be−ct , a, b , c ≥ 0.

Intégration d’un tail factor : parfois, il manque des données dans
la chronique des règlements pour certaines années d’origine
(dissymétrie : délai règlement > nb d’années d’origine).
⇒ Le lissage permet de projeter les facteurs de développement.
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3 Approches stochastiques de provisionnement
Introduction
Le modèle de Mack
Munich Chain Ladder
Approches factorielles et extension par GLM
Incertitude d’estimation sur la provision

97 / 243



Objectif dans l’idéal : la loi de probabilité de la provision. Sinon
1 ...estime la volatilité des provisions (fiabilité de l’estim.).
2 ...détermine certaines mesures de risque.
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Modélisation stochastique du rectangle de liquidation

Les paramètres sont estimés à partir des données du triangle
supérieur T .
→ Données supposées être des v.a.r., observées au 31/12/I.

Les méthodes stochastiques s’appuient sur les déterministes, et

permettent d’expliciter/valider les hyp. (analyse des résidus),

de détecter des irrégularités potentielles dans le triangle,

d’évaluer la variabilité des estimations de ceux-ci,

donc d’en construire des intervalles de confiance,

de simuler (Monte Carlo) la sinistralité d’exercices futurs.
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Avantage : on peut, avec une hyp. de loi sur les données d’entrée,
remonter à l’estimation de la loi de proba. de la provision totale R...

Cela implique beaucoup de calculs utiles en gestion des risques :

Value-at-Risk,

probabilité d’insuffisance...

ATTENTION au problème de mauvaise spécification du modèle !

→ Etant donné l’importance pratique de la méthode CL, on a
d’abord cherché une méthode stochastique visant à reproduire les
évaluations de CL : notamment le best estimate de la provision.
Ainsi ont été développés :

le modèle récursif de Mack,

le modèle log-Poisson de Renshaw et Verrall.

100 / 243



Pour ces 2 modèles qui reproduisent exactement les provisions CL
en espérance, voici quelques caractéristiques importantes :

Le modèle de Mack :
basé sur les montants cumulés ;
Extension : le modèle “Munich chain ladder”.
→ Permet de faire CV les provisions chain ladder obtenues sur
le triangle de charges et celui des paiements dans une même
branche.

Le modèle Log-Poisson :
est basé sur les incréments (montants non cumulés) ;
se trouve dans la lignée des modèles factoriels ;
type de modèle très largement développé depuis dans le
cadre de l’application du bootstrap aux modèles GLM.
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Notations en environnement stochastique

Les v.a.r. d’incréments Xij , celles de montants cumulés Cij ;

Parmi les n2 variables du rectangle de liquidation, celles du
triangle supérieurs sont observées et notées (xi,j)i+j≤n ;

La provision pour la ieme année d’origine (i = 1, ..., I) s’écrit

Ri = Ci,J − Ci,J−i , ou alors Ri =
J∑

j=J−i+1

Xi,j.

La provision globale : R =
∑n

i=1 Ri et FR sa FdR,

MR(s) = E[esR ] : fonction génératrice des moments (FGM).
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Quantités d’intérêt de la loi de R

L’espérance notée E[R],

La variance V[R] et l’écart-type σ(R) : σ(R) =
√
V[R],

Le coefficient d’asymétrie ou skewness, noté γ1(R) :

γ1(R) =
µ3(R)

σ3(R)
avec µ3(R) = E

[
(R − E[R])3

]
.

Pour les moments d’ordre supérieur, on utilisera la FGM;

Quantile d’ordre (1 − η) de R (déterminer capital éco.) :

VaRη(R) = q1−η(R) = F−1
R (1 − η).

C’est la provision suffisante dans 100(1 − η)% des cas.
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Incertitude d’un estimateur

Il y a plusieurs sources d’erreur dans l’estimation d’un
phénomène...

On décompose l’erreur globale en 3 termes. Supposons que le
vrai modèle sous-jacent aux observations est donné par

Xij = u(i, i; θ) + εij .

On estime de notre côté le modèle

Xij = v(i, i; φ) + εij ,

qui donne les prévisions X̂ij = v(i, i; φ̂).
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L’erreur de prévision du modèle (résidu) vaut Xij − X̂ij , qui se
décompose en

Xij − X̂ij = [v(i, i; φ) − v(i, i; φ̂)] + εij + [u(i, i; θ) − v(i, i; φ)].

On parle de :

1er terme : parameter error→ incertitude sur l’estimation du
paramètre sachant le modèle bien spécifié ;

2ème : process error→ aléa des futures réalisations
(variance), même si modèle bien spécifié et param. bien
estimés ;

3ème : erreur de modèle (mis-specification error)→
difficilement quantifiable, mais à ne pas négliger !
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Solvency 2 standards says : Undertakings are not required to
quantify the degree of model error in quantitative terms, or to
re-calculate the value of the capital requirement using a more
accurate method in order to demonstrate that the difference
between the result of the chosen method and the result of a more
accurate method is immaterial. Instead, it is sufficient if there is
reasonable assurance that the model error included in
simplification is immaterial.
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Le modèle de Mack
[Mack, 1993], [Mack, 1994b], [Mack, 1994a], [Mack, 2000]

→ Ce modèle “stochastise” le modèle Chain Ladder standard,
→ en y ajoutant des indicateurs de risque de prédiction déduits
d’une hypothèse de volatilité au sein du triangle. Il est :

non-paramétrique et conditionnel :
aucune hyp. de loi faite sur les composantes du triangle,
conditionnel car les espérances sont prises connaissant les
réalisations fournies par le triangle supérieur T,

s’applique à des quantités cumulés :
montants, nombres de sinistres, paiements, charges ;
cette caractéristique le distingue des méthodes factorielles.
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Hypothèses fondamentales

Le modèle de Mack sous-entend les hypothèses suivantes :
1 H1 : indépendance des exercices d’origine :

(Ci1,j)j=1,...,J ⊥⊥ (Ci2,j)j=1,...,J pour i1 , i2.

2 H2 (Markov ou AR(1)) : ∃ fj t.q. pr i = 0, ..., I ; j = 0, ..., J − 1 :

E[Ci,j+1|Ci,1, ...,Ci,j] = E[Ci,j+1|Ci,j] = fjCi,j .

→ H1 non réaliste si changements dans la gestion des sinistres,
inflation (affecte par effet calendaire +sieurs exercices d’origine).
→ H2 implique l’absence de corrél. entre facteurs successifs.
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Interprétations :

pour chaque survenance i, le même facteur f̂j quantifie l’↗ du
montant de l’année j à l’année j + 1 (comme CL) ;

ce facteur est , des facteurs individuels fi,j ;

la base du modèle de Mack est de supposer que les facteurs
individuels de développement sont des réalisations d’une v.a.
d’espérance inconnue fj .

Lien direct avec la méthode Chain Ladder :

Cette espérance est estimée par l’estimateur f̂j de CL.
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Une remarque sur H2

En reécrivant l’hypothèse H2 de Mack,

E

[
Ci,j+1

Ci,j
| Ci,1, ...,Ci,j

]
= fj ,

l’espérance de Ci,j+1
Ci,j

ne dépend pas de l’information passée.
En particulier, elle ne dépend pas de Ci,j /Ci,j−1.

⇒ On ne peut donc pas utiliser Mack dans 1 branche où l’on sait
que Ci,j+1

Ci,j
sera − élevé si Ci,j

Ci,j−1
est + élevé que pr les autres années

de survenance (et inversement). Pas de compensation donc.
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Propriétés importantes

Sous H1 et H2 et conditionnellement au triangle

T =
{
Ci,j : i + j ≤ I et i ≤ I

}
des v.a. observables, on a un certain nb de résultats intéressants.

Propriété 1 : pour i ≥ 1, E[Ci,J | T ] = (fJ−1...fI−i) Ci,I−i .

L’hypothèse H2 donne même plus généralement :

E[Ci,j+1 |Ci,1, ...,Ci,n−i] = fjCi,j .
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On montre que les facteurs CL f̂j =
∑I−j−1

i=0 Ci,j+1/
∑I−j−1

i=0 Ci,j sont
des estimateurs sans biais des param. fj , non corrélés (cf articles).
L’absence de biais se transmet aux valeurs calculées de
montants à l’aide des facteurs chain-ladder standards :

Ĉi,n = Ĉi,J = Ci,I−i f̂I−i ...̂fJ−1

Plus généralement : Ĉi,j = Ci,I−i f̂I−i ...̂fj−1.
Du coup on a

R̂i = Ĉi,J − Ci,I−i

et

R̂ =
n∑

i=1

R̂i

Au final, on estime donc sans biais la provision globale par la
méthode de Mack.
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Incertitude de l’estimateur

→ Pour mesurer l’incertitude de l’estimateur θ̂ d’un PARAMETRE
θ, on utilise l’erreur quadratique moyenne (Mean Squared Error) :

MSE(θ̂) = E[(θ̂ − θ)2].

Ici, on s’intéresse à la MSEP (Mean Square Error of Prediction) de
la provision :

MSEP(R̂i) = E[(R̂i − Ri)
2],

Dans notre contexte (conditionnel à T ), on considère

MSEP(Ĉi,J) = E
[
(Ĉi,J − Ci,J)2 | T

]
.
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Seul Ci,J est aléatoire grâce au conditionnement (Ĉi,J étant
estimé à partir des f̂j estimés sans biais et des obs.), donc

MSEP(Ĉi,J) = V [Ci,J |T ] +
[
E [Ci,J |T ] − Ĉi,J

]2
.

On appelle le 1er terme la process variance (process error), alors
que le 2e est l’erreur d’estimation (parameter error).

⇒ Pour estimer la MSEP d’une provision individuelle, on a donc
besoin de spécifier la forme de V [Ci,J |T].

Remarque : Ri − R̂i = Ci,J − Ĉi,J ⇒ MSEP(R̂i) = MSEP(Ĉi,J).
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Estimateur de la volatilité

Pour estimer cette MSEP, Mack introduit donc une hypothèse de
plus sur la variabilité au sein du triangle :

H3 : pour j = 0, ..., J − 1 ; il existe un paramètre σ2
j tel que :

V [Ci,j+1 |Ci,1, ...,Ci,j] = σ2
j Cij (i = 0, ..., I)

Peut aussi être transcrit sur les facteurs individuels de dév. :

V [fi,j |Ci,1, ...,Ci,j] =
σ2

j

Cij
(i = 0, ..., I).

Interprétation : + montants sont grands, + variance des fij diminue.
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Sous H1, H2 et H3 ; et en suivant la même démarche que pour les
résultats sur f̂j , l’estimateur σ̂2

j est un estimateur sans-biais de σ2
j :

σ̂2
j =

1
I − j − 1

I−j−1∑
i=0

Ci,j

(
Ci,j+1

Ci,j
− f̂j

)2

j < J − 1

Cet estimateur compare les facteurs fi,j =
Ci,j+1
Ci,j

du d-triangle

aux facteurs communs f̂j donnés par la méthode CL.

Pour j = J − 1 (un seul terme dc variance impossible), prendre

σ̂2
j = min

(σ̂2
J−2)2

σ̂2
J−3

, min(σ̂2
J−2, σ̂

2
J−3)

 .
σ2 peut être vu comme la somme normalisée de résidus de
Pearson standardisés.

117 / 243



Pour ce qui concerne l’incertitude sur la provision estimée, on a :

Théorème. en posant Ĉi,I−i = Ci,I−i et sous les hypothèses H1 à
H3, MSEP(R̂i) peut être estimée pour i = 1, ...I, par

ˆMSEP(R̂i) = Ĉ2
i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j

 1

Ĉi,j
+

1∑I−j−1
k=0 Ck ,j

.
Rq : 1er terme = Process Risk, 2eme terme = Parameter Risk.

Pour estimer MSEP(R̂), on utilise l’estimateur suivant (qui intègre
de la corrélation entre les estimateurs précédents) :

ˆMSEP(R̂) =
I∑

i=1

 ˆMSEP(R̂i) + Ĉi,J

 I∑
k=i+1,k<I

Ĉk ,J

 J−1∑
j=I−i

2σ̂2
j

f̂2
j
∑I−j−1

h=0 Ch,j

.
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Comment vérifier les hypothèses de Mack?

A t’on des moyens pratiques de vérifier la validité des hypothèses?

H1 : le principal obstacle à l’⊥⊥ entre années d’origine serait
un effet diagonal. On doit donc tester l’existence d’un tel effet.

H2 : test de corrélation sur les rangs des obs. car H2 :

Corr(fi,j−1, fi,j) = 0 ⇔ Corr
(

Ci,j

Ci,j−1
,
Ci,j+1

Ci,j

)
= 0 (i = 0, ..., I).

H3 : forme de la variance et de l’espérance à vérifier :
pr l’espérance : graphe des Ci,j+1 en fonction des Ci,j .
pr la variance : caractère aléatoire des résidus.
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H1 : effet diagonal et ⊥⊥ d’années d’origine

L’⊥⊥ entre années d’origine peut être remise en cause par

changement dans le traitement des données,

évolution de l’inflation...

⇒ affecte plusieurs années de la même façon.
Remarque : souvent, cette hyp. est violée à cause d’une
agrégation trop grande des données... cf ex. commentaire

Notons Dj les éléments de la diagonale j :

Dj = {Cj,0,Cj−1,1, ...,C0,j} 0 ≤ j ≤ J
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Introduisons les facteurs de développement (qui dépendent des
éléments de Dj , ces derniers figurant au dénominateur...) :

Aj =

{
Cj,1

Cj,0
, ...,

C0,j+1

C0,j

}
.

→ Si les éléments de Dj sont + grands que d’habitude, alors les
éléments de Aj seront + petits.

Pour chaque colonne k , on marque les facteurs de développement

d’un G s’ils sont plus grands que la médiane de la colonne,

d’un P s’ils sont plus petits que cette médiane,

on notera une étoile qui correspond à la médiane lorsque
le nombre d’éléments de la colonne est impair.
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Pour chaque diagonale (1 ≤ j ≤ J − 1), on compte alors

Gj le nombre d’éléments G de la diagonale considérée,

Pj le nombre d’éléments P de cette même diagonale.

→ S’il n’y a pas de changement entre année calendaire, le
nombre de Gj et de Pj doit être similaire puisque chaque facteur
de développement a une chance de 50% d’excéder la médiane.
Autrement dit, Zj = min(Pj ,Gj) ' (Gj + Pj)/2.

Pour élaborer un test, on doit déterminer les 2 premiers moments
de Zj . Dans le cas de l’hyp. H0 (non-effet d’une année calendrier),

Pj ∼ B(nj = Gj + Pj , 0.5).

idem pour Gj .
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On peut montrer pour la loi du min que E[Zj] =
nj

2
Cnj−1

mj

nj

2nj
, et

Var[Zj] =
nj(nj − 1)

4
− Cnj−1

mj

nj(nj − 1)

2nj
+ E[Zj] − (E[Zj])

2

où mj est la partie entière de (nj − 1)/2.

Pour considérer ttes les diag., on introduit Z = Z2 + ... + Zn−1,
avec E[Z ] =

∑
E[Zj] et Var[Z ] =

∑
Var[Zj].

Comme Z est somme de v.a. i.i.d., on applique le T.C.L. et
asymptotiquement Z suit une loi normale.

⇒ On peut construire un IC : nous ne rejetons pas l’hyp. d’effet
non significatif (au seuil 5%) d’une année calendaire dès lors que

E[Z ] − 2
√
Var[Z ] ≤ Z ≤ E[Z ] + 2

√
Var[Z ].
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H2 : non-corrélation des coef. de dév. successifs

Un test de corrélation est nécessaire pour valider cette hypothèse :
en l’occurrence ce sera le test de Spearman.

En effet, on veut valider le fait que le ratio Ci,k+1
Ci,k

soit le même

quelque soit la valeur précédente Ci,k
Ci,k−1

, qui peut être plus grande
ou plus petite que “d’habitude”.

Pour cela, pour chaque colonne k ,
1 on calcule le rang rik de chaque facteur individuel de

développement,
2 on retire ensuite le dernier coefficient de la colonne (en bas),

et on retrie en notant sik le nouveau rang des facteurs de
développement restants ;
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3 on définit alors la statistique (rho de Spearman) :

Tk = 1 − 6
n−k∑
i=1

(rik − sik )2

(n − k)3 − n + k
(2 ≤ k ≤ n − 2)

On peut alors montrer que

−1 ≤ Tk ≤ 1,

sous l’hypothèse de non-corrélation :

E[Tk ] = 0 Var[Tk ] =
1

n − k − 1
.
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On veut tester l’hypothèse sur l’ensemble du triangle et non pas
par paires de colonnes d’où l’utilisation de la statistique globale :

T =
n−2∑
k=2

n − k − 1∑n−2
k=2 n − k − 1

Tk =
n−2∑
k=2

n − k − 1
(n − 2)(n − 3)/2

Tk

C’est une moyenne pondérée des Tk , par des poids
inversement proportionnels à la variance !

Ainsi E[T ] = 0 et Var[T ] =
2

(n − 2)(n − 3)
.

Si n − k ≥ 10, la distribution de Tk est approx. gaussienne.
Or, T est la somme de variables i.i.d. Tk .
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Par le T.C.L., T est donc aussi asymptotiquement normale !

Etant donné que le test n’est qu’approximatif et qu’on veut détecter
des corrélations dans le triangle entier, on ne considère pas un IC
à 95%⇒ celui-ci n’aurait que peu de chance de rejeter l’hyp. de
non-corrélation.

On choisit donc un intervalle à 50%, ce qui signifie qu’on ne
rejettera pas l’hypothèse de non-corrélation dès lors que

−0.67√
(n − 2)(n − 3)/2

≤ T ≤
0.67√

(n − 2)(n − 3)/2
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Construction d’intervalles de confiance

H1-H3 ne permettent pas de déterminer la description complète de
la distribution R des provisions.
Mais on a des IC en supposant une loi pour la provision R, dont
espérance/variance seront fixés = aux estimations des moments :

si R ∼ N(µ, σ) (IC au seuil 5%) :

IC95%(R) =
[
R̂ − 1.96 SEP(R̂); R̂i + 1.96 SEP(R̂)

]
.

si R ∼ LN(µ, σ) (µ = ln R̂ − σ2

2 , σ
2 = ln(1 + ˆMSEP(R̂)/R̂2)) :

IC95%(R) = [exp(µ − 1.96σ); exp(µ + 1.96σ)],
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Amélioration : le Munich Chain Ladder
[Quarg and Mack, 2008]

La méthode de Munich Chain Ladder est relativement récente,
puisqu’elle a vu le jour en 2003 dans un colloque ASTIN.

Particularité : permet le traitement du problème crucial de
non-convergence

des provisions CL issues du triangle des paiements d’un côté,

et de celui des charges d’autre part.

On ne la présente pas ici, mais il faut savoir que cela ∃...
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Modèles factoriels stochastiques

Ces modèles sont basés sur les paiements non-cumulés.

Données stockées ds le vecteur X des incréments (Xij)i,j=0,...,n, qui
satisfont une hypothèse fondamentale d’indépendance :

H : ∀i, j = 0, ..., n, les Xij sont ⊥⊥ .

Ceci implique que

la compensation (recours) de règlements de sinistres d’un
délai au suivant pour une même année d’origine est exclu ;

cette ⊥⊥ est invalidée par des variations annuelles d’inflation
des montants, introduisant des corrélations entre Xij .

En contrepartie,
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on a des tests statistiques qui jugent du caractère réaliste de
l’hypothèse d’⊥⊥ sachant les réalisations du triangle sup. T

on peut parfois estimer toutes les caractéristiques de la loi de
R, y compris sa distribution, avec ce type de modèle.

→ Ces modèles sont majoritairement paramétriques : on définit
une loi de proba. pour les v.a.r. Xij .

→ Tous les Xij sont munis du même type de loi (mais auront un
paramètre , évidemment, noté θ : paramètre de tendance)..

→ Certains modèles font parfois intervenir un paramètre
additionnel (dit de dispersion), φ.

Avantage : on peut intégrer une variable exogène adaptée à la
problématique en pratique (car modèle de régression).
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→ Modèles explicatifs très proches de modèles de tarif. IARD.

Notations :

µij = E[Xij] = E[Xij | i, j] : espérance de Xij . Des facteurs de
risque (covariables) influent cette moyenne (cf plus loin).

f(µij , φ) est la densité de la loi des Xij : Xij ∼ f(µij , φ).

On rappelle le calcul des provisions (la provision du premier
exercice (i=0) est nulle puisqu’on a tout observé !) :

Ri =
J∑

j=J−i+1

Xij R =
I∑

i=1

Ri

Rq : théoriquement, on pourrait trouver la loi de R par convolution
des lois des Xij , car sous (H) c’est une somme de v.a.r. ⊥⊥.
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En pratique, la convolution de n(n+1)
2 variables est complexe. On

peut passer par la FGM de R car

MR(s) = E[es(
∑n

i=1 Ri)] =
n∏

i=1

MRi (s) =
n∏

i=1

∏
i+j>n

MXi,j (s).

La FGM nous permet de générer les moments, avec

E[R] =
n∑

i=1

∑
i+j>n

E[Xi,j] Var[R] =
n∑

i=1

∑
i+j>n

Var[Xi,j]

et ainsi de suite pour les moments d’ordre supérieur...
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Modélisation des Xij : l’usage des GLM
[McCullagh and Nelder, 1989]

On a recours aux modèles GLM, très populaire en actuariat...

Ces modèles économétriques permettent de

modéliser des réponses de , domaines de déf. : R, R+, N ;

intégrer toute type d’information exogène influant sur réponse,

quantifier l’impact des facteurs de risque.

Nécessite d’introduire 2 hypothèses fondamentales :

individus (ici les incréments Xi,j) ⊥⊥ entre eux ;

variables explicatives (survenances et délais ici) ⊥⊥ 2 à 2.
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Composants d’un GLM

1 La loi de la réponse aléatoire Xij : par hyp. elle ∈ à une

distribution de la famille exponentielle.
2 Le prédicteur θij est linéaire et déterministe : par ex.

θij = µ + α21i=2 + ... + αn1i=n + β21j=2 + ... + βn1j=n

3 La fonction de lien g : monotone, dérivable, inversible t.q.

g(E[Xij | i, j]) = g(µij) = θij .

Modèle linéaire : g = Id θij = µ + αi + βj Xij ∼ N(θij , φ = σ2).
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Les variables explicatives

L’effet période (année d’origine) : considéré comme
catégoriel (ordinale ou non), à n modalités (1,...,n).

Une des modalités sert de référence (ex. 1),
les autres sont représentées par les indicatrices
d’appartenance à une modalité, d’où (n − 1) param. α2, ..., αn.

L’effet ancienneté (ou délai) : naturellement quantitatif, mais
considéré ici comme qualitatif/catégoriel. On a le choix entre

un facteur à n modalités (β1 = 0, modalité de réf. par ex.) ;
une variable quantitative à valeurs entières : effet sur les Xi,j

modélisé par fonctions paramétrées de j (βj, β ln(j + 1), ...)

L’effet année calendaire (diagonal) : mobiliserait 2(n − 1)
paramètres µi+j .

Pr un triangle à inflation cste, paramétrage se limite : µi+j = µ.
Inexistant en pratique dans les modélisations.
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Caractérisation d’un GLM par sa fonction variance

Parfois, on caractérise un GLM par sa fonction variance plutôt que
par sa distribution. La fonction variance V(.) est définie par

Var(Xij) = φ V(µij),

où µij = E[Xij].

Voici quelques fonctions variance pour des modèles classiques :

V(µij) = 1 pour le modèle gaussien,

V(µij) = µij pour le modèle log-Poisson,

V(µij) = µ2
ij pour le modèle Gamma.
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Exemples de GLM utilisés en provisionnement

Gaussienne : Xij ∼ N(θij , φ), µij = θij , φ = σ2, V(µij) = 1
si lien multiplicatif : θij = xi yj ⇒ moindres carrés de De Vylder
si lien additif et application aux log-incréments⇒ extension
vers le modèle lognormal.

Loi Gamma pour Xij : E[Xi,j] = µij , φ = 1, V(µij) = µ2
ij ;

on retombe sur le premier modèle de Mack (1991) ;
donne des résultats similaires à CL.

Loi de Poisson pour Xij : E[Xi,j] = µij , φ = 1, V(µij) = µij ;
avec un lien log → modèle log-Poisson (cf [Verrall, 1991]),
les provisions estimées coincident avec celles de CL.
résultat similaire avec le log-Poisson surdispersé (φ > 1), sauf
que V(µij) = µij(1 + φµij).
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Exemple de la régression Lognormale

Dans cet esprit des modèles factoriels, la régression lognormale
est l’un des modèles pionniers.

Tout premier modèle stochastique, né de Kremer en 1982.

Introduit pr l’analyse de provisions de sinistres (Xij positif).

On y utilise le modèle linéaire gaussien suite à une transfo.

On suppose que
Xij ∼ LN(θij , σ

2),

où σ2 est un paramètre de dispersion.

→ Par définition, on sait que Yi,j = ln(Xi,j) ∼ N(mij , σ
2) avec

E[Yi,j] = mij = µ + αi + βj .
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(De manière équivalente, Yi,j = µ + αi + βj + εij , εij ∼ N(0, σ2))

En utilisant la transformée de Laplace, on obtientθij = E[Xi,j] = emij+σ
2/2 = eµ+αi+βj+σ

2/2,

Var[Xi,j] = E[Xi,j]
2 (eσ

2
− 1) = e2 mij+σ

2
(eσ

2
− 1).
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Le modèle de Mack vu comme un GLM

Il s’agit en fait de supposer une distribution gaussienne pour les
montants cumulés...
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Le modèle de Poisson surdispersé

Il s’agit de considérer une variable aléatoire surdispersée.
Pour un modèle de Poisson classique,

X ∼ P(λ) ⇒ E[X ] = V(ar(X) = λ.

Ici, il s’agit de considérer le modèle

X ∼ Psurd(λ, φ) ⇔
X
φ
∼ P(

λ

φ
)

et donc
E[X ] = λ et Var(X) = φλ = φE[X ].
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Estimation de la réserve globale

Dans ce type de modèle, on a donc

Ê[R] =
I∑

i=1

J∑
j=J−i+1

Ê[Xi,j] =
n∑

i=1

n∑
j=n−i+1

µ̂ij

C’est le best estimate de la provision.

On estime par max. de vraisemblance sur les observations du
triangle supérieur, en notant dans la suite

L [θ; (xij)] la vraisemblance de l’échantillon ;

θ = (δ, (αi)i=1,...,n, (βj)j=1,...,n) le vecteur des paramètres à
estimer (qui intègre éventuellement φ).
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On note θ̂ = (δ̂, (α̂i)i=1,...,n, (β̂j)i=1,...,n) l’EMV (avec toutes ses
propriétés asymptotiques classiques).

Par invariance fonctionnelle de la technique du max. de
vraisemblance, on en déduit les EMV de µij = E[Xij] :

µ̂ij = g−1(δ̂, α̂i , β̂j).

Ainsi, l’EMV de E[Ri] est donné par Ê[Ri] =
∑J

j=J−i+1 µ̂ij ;

et celui de E[R] vaut Ê[R] =
∑I

i=1
∑J

j=J−i+1 µ̂ij .
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Risque d’estimation - évaluation

Voir l’article de [?].
Lorsqu’on veut estimer l’incertitude sur l’estimation de R, on a
besoin de connaitre les covariances entre les différents µij car

Var
[
Ê[Ri]

]
= Var

[∑n
j=n−i+1 µ̂ij

]
=

∑
j Var[µ̂ij] +

∑
j1
∑

j2 Cov[µ̂ij1 , µ̂ij2 ].

Var
[
Ê[R]

]
= Var

[∑n
i=1 Ê[Ri]

]
=

∑n
i=1

∑n
j=n−i+1Var[µ̂ij]

+
∑

i1
∑

i2
∑n

j1=n−i1+1
∑n

j2=n−i2+1 Cov[µ̂i1j1 , µ̂i2j2 ].
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Pb : le calcul exact de ces valeurs est svt problématique...

→ On pourra alors approcher ces quantités par , méthodes.
1 Techniques de reéchantillonnage :

bootstrap,
...

2 Expressions analytiques asymptotiques :
basées sur la méthode Delta,
nécessite suffisamment de données.

→ La méthode Delta ne fait intervenir que des produits matriciels,
d’où sa facilité d’utilisation...

→ Ces deux méthodes donnent de plus des intervalles de
confiance pour la provision globale E[R] !
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1ère approche : la méthode Delta

Par définition, θ̂ =
(
µ̂, (α̂i), (β̂j)

)
est solution du système qui annule

les dérivées partielles d’ordre 1 de la log-vraisemblance :

∂ ln L
∂µ

= 0

∂ ln L
∂αi

= 0 (i = 1, ..., n)

∂ ln L
∂βj

= 0 (j = 1, ..., n).

Ce système se résoud par l’utilisation d’algo. t.q. Newton-Raphson

(inspirée de la formule de Taylor-Lagrange) : θ̂k+1 = θ̂k −
L
′
(θ̂k )

L ′′ (θ̂k )
.
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Objectif : trouver le 0 d’1 fonction...Déplacement dans le sens
opposé du gradient.
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Du coup (cf formule Newton-Raphson), on se retrouve à inverser la
matrice d’information de Fisher (Hessienne en la densité des
obs.) :

I(θ) =

(
∂2 ln L
∂θ2

)
.

L’inversion de cette dernière matrice n’est rien d’autre que la
matrice de covariance asymptotique de l’estimateur θ̂ !

Conséquences :

sur la diag. la variance des estimateurs : V(µ̂), V(α̂i), V(β̂j) ;

les autres termes sont les covariances entre ces estimateurs :

Cov[µ̂α̂i] Cov[µ̂, β̂j] Cov[β̂j , α̂i]
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Sous certaines conditions de régularité de la vraisemblance, on
sait que θ̂ possède de bonnes propriétés :

il est asymptotiquement efficace (sans biais et de variance
minimale),

il est asymptotiquement gaussien.

On déduit de tous ces résultats les variances asymptotiques
des best estimates des provisions...

Pour cela on utilise la méthode Delta, utile lors de l’introduction
d’une fonction appliquée à l’estimateur dont nous disposons.
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Application de la méthode Delta
Exemple du modèle additif

1 Par invariance fonctionnelle de l’EMV : η̂ij = µ̂ + α̂i + β̂j .

2 On définit l’application η : R2n−1 → Rn2
telle que

θ → η(θ) = (ηij).

3 La jacobienne Jη de cette application vaut pour l’indice (i,j)

∂ηij

∂µ
= 1,

∂ηij

∂αk
=

1 si k = i

0 sinon
,

∂ηij

∂βl
=

1 si l = j

0 sinon
.
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4 Par la méthode Delta, on sait que η̂ = (η̂ij) est
asymptotiquement normal, centré en η et de matrice de cov.

Σ(η̂) = Jη I−1(θ) JT
η

où JT
η est la transposée de Jη.

On suppose la fonction de lien g telle que µij = g(ηij) avec :

g dérivable ;

g strictement monotone.

Notons D la jacobienne de la transformation de ηij en µij par g.
Cette matrice est diagonale d’éléments g

′

(ηij).
Par suite, on obtient l’estimateur µ̂ = (µ̂ij), asymptotiquement
gaussien noté µ̂ ∼ N(µ,Σ(µ̂)) avec Σ(µ̂) = D Σ(η̂) DT .
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Puisque

E[Ri] =
n∑

j=n−i+2

µij ,

on déduit que la jacobienne Jµ de cette transformation a en ligne i

∂E[Ri]

∂µkl
=


0 si k , i

0 si k = i, l ≤ n − i

1 si k = i, l > n − i

.

On en déduit que pour tout i = 1, ..., n, les variables aléatoires

Ê[Ri] ∼ N(E[Ri],Σ(Ê[Ri])),

avec Σ(Ê[Ri]) = Jµ Σ(µ̂) JT
µ .
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On procède identiquement pour avoir l’estimateur Ê[R] de E[R] car

E[R] =
n∑

i=1

E[Ri].

De la normalité asymptotique de Ê[R], on déduit un intervalle de
confiance pour E[R] à un certain niveau de confiance 1 − α :

IC1−α =
[
Ê[R] − q1−α/2Σ(Ê[R]); Ê[R] + q1−α/2Σ(Ê[R])

]
.
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Généralités

Comme nous l’avons vu, il ne suffit pas de connaitre les moments
de R. On aimerait connaitre des quantiles de la loi de R.
Il faut donc estimer la loi de R : c’est la distribution prédictive.

On dispose globalement de trois moyens de l’obtenir :
1 la convolution des incréments Xij , supposés ⊥⊥ ;
2 l’approximation par spécification paramétrique d’une loi :

estimer les moments de R pour en déduire une distribution
prédictive approchée basée sur ces moments ;

3 les simulations Monte-Carlo après rééchantillonnage
(bootstrap) des résidus d’une modélisation.
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La technique de convolution : additivité

Il est rare de pouvoir obtenir la loi prédictive de R par
convolution directe si la loi générique des Xi,j est additive.
C’est pourtant le cas avec les modèles suivants : Poisson, Poisson
surdispersée, gaussien.

→ En effet, si les Xi,j ∼ P(µij) alors idem pour R =
∑

i
∑

j Xij :

R ∼ P(µR) avec µR =
n∑

i=1

n∑
j=n−i+1

µij .
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→ On peut aussi utiliser l’approximation normale N(µR , µR)
dans le cas où µR ≥ 50 :

P(R ≤ r) = Φ

(
r − µR
√
µR

)
.

Ainsi, on peut obtenir le quantile d’ordre (1 − η) de R par

q1−η(R) ' q(P)
1−η(R) = µR +

√
µR q1−η,

où q1−η est la quantile de la loi normale centrée réduite.
On déduit des propriétés d’invariance des EMV que

q̂(P)
1−η(R) = µ̂R +

√
µ̂R q1−η.
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→ On peut encore appliquer ce raisonnement à la distribution de
Poisson surdispersée. Ainsi,

Xij ∼ Psurd(µij , φ) ⇒ R ∼ Psurd(µR , φ),

avec µR =
∑n

i=1
∑

i+j>n µij .

Dans ce cas, R
φ ∼ P

(
µR
φ

)
et donc

P(R ≤ r) = Φ

(
r − µR
√
φ µR

)
,

puis

q̂surd
1−η (R) = µ̂R +

√
φ̂ µ̂R q1−η.
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Autre méthode : inversion de la FGM

Rappelons la densité d’une loi ∈ famille exponentielle :

fX (xij; θ, φ) = exp

{
xijθ − b(θ)

a(φ)
+ c(xij , φ)

}
.

Et la FGM correspondante : MX (s) = exp
{
[b(θ + sφ) − b(θ)]/φ

}
.

La fonction génératrice des cumulants (FGC) est définie par

CX (s) = ln MX (s) =
1
φ

[b(θ + sφ) − b(θ)] .

→ Idée : appliquer ces résultats au triangle, sous réserve que la
distribution des Xij admette une FGM et qu’on ait l’hyp. d’⊥⊥.
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En effet, on peut déduire la FGM de R grâce à l’⊥⊥ :

MR(s) =
n∏

i=1

MRi (s) =
n∏

i=1

∏
i+j>n

MXij (s).

En se remémorant que θij = θ(µij) = b
′−1(µij),

MR(s) = exp

1
φ

n∑
i=1

∑
i+j>n

(b[θ(µij) + sφ] − b(θ(µij)))

 .
D’où FGC : CR(s) =

1
φ

∑n
i=1

∑
i+j>n (b[θ(µij) + sφ] − b(θ(µij))).

On a un système à 2 inconnues et 2 équations : FGC et FGM
servent à estimer µ̂ij et φ̂ par maximum de vraisemblance.
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Distributions approchées

Cette technique nécessite le calcul des premiers moments de la
charge sinistres pour approcher la distribution de cette charge.

En actuariat, on utilise souvent une des 4 méthodes suivantes :

approximation Normal-Power,

transformation d’Esscher,

loi Gamma translatée,

loi Gamma Bowers.

Ces techniques sont utilisées pour obtenir des approximations
fermées de la FdR de R. Nous ne les développons pas ici.
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Rappel sur le bootstrap
[Efron and Tibshirani, 1993]

Méthode de rééchantillonnage qui substitue à des calculs stats
complexes l’usage des simu Monte Carlo sur l’échantillon originel

Permet de réduire le biais d’un estimateur,

Et permet d’en estimer sa variance.

Introduit par Efron en 1979, largement utilisé aujourd’hui.
→ Justification théorique plutôt complexe.
→ Mise en oeuvre simple car requiert uniquement des simu.
Ici on appliquera le bootstrap au cas de v.a. i.i.d.
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Concept du bootstrap

On considère une variable aléatoire X dont la fonction de
répartition, FX , est inconnue.

On observe un échantillon i.i.d. (X1, ...,Xn). Puisqu’on estime à
partir d’un échantillon aléatoire, il y a une incertitude : l’estimateur

θ(X1, ...,Xn)

est donc lui-même aléatoire (ex pour θ(X1, ...,Xn) : moyenne).

Q : de combien varie θ(X1, ...,Xn) lorsque (X1, ...,Xn) varie?

quelle est la variance de θ(X1, ...,Xn) ?

quelle est la distribution de θ(X1, ...,Xn) ?
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Ex. : comment approcher la distribution de θ(F̂n)?Nouveaux outils informatiques pour la Statistique exploratoire (=NOISE)

Méthode du bootstrap

Introduction

Example (Échantillon normal)

Soit X1, . . . ,X100 un échantillon normal N (θ, 1). Sa moyenne θ
est estimée par

θ̂ =
1

100

100�

i=1

Xi

Moyennes de 100 points pour 200 echantillons

x

−0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4
5

6

Variation compatible avec la loi (connue) θ̂ ∼ N (θ, 1/100)

Ici θ(F̂n) = θ̂ est l’EMV de θ, donc on sait que θ̂ ∼ N(θ, 1/100).
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Pourquoi le bootstrap?

On peut estimer ce param. (ici moyenne), mais on ne connait pas
l’incertitude de cette estimation (sauf cas particulier comme ici
car on pris une gaussienne et l’EMV).
Ceci est également lié aux difficultés suivantes :

on observe un seul échantillon en général,

la loi de l’échantillon est souvent inconnue,

l’évaluation de la variation moyenne de θ(X1, ...,Xn) est
essentielle pour la construction d’IC et de tests comme

H0 : θ ≤ 0

⇒ Le boostrap est souvent utilisé dans le cas de petits
échantillons pour évaluer l’incertitude des estimateurs.
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Notion fondamentale : CV de la FdR empirique

Par le théorème de Glivenko-Cantelli, un estimateur sans biais et
convergent de F est la fonction de répartition empirique :

Fn
X (x) =

1
n

n∑
i=1

1Xi≤x −→ F(x) = P(X ≤ x).

On distingue en général

le bootstrap non-paramétrique : loi de F inconnue.

le boostrap paramétrique : loi connue, paramètre inconnu.

Rq : boostrap + efficace si on connait F et on cherche son param.,
mais on peut perdre en robustesse si mauvaise spécification !
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CV de la FdR empiriqueNouveaux outils informatiques pour la Statistique exploratoire (=NOISE)

Méthode du bootstrap

Le théorème de GlivenkoCantelli

Example (Échantillon normal)
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Estimation de la fonction de répartition F à partir d’un
échantillon normal de 100 points et variation de cette
estimation sur 200 échantillons normaux
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Principe

Pour toute fonctionnelle de la FdR, de la forme

θ(F) =

∫
h(x) dF(x),

on utilise l’approximation

ˆθ(F) = θ(F̂n)

=

∫
h(x) dF̂n(x)

=
1
n

n∑
i=1

h(Xi)

qui correspond donc à un estimateur des moments.
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Comment approcher la distribution de θ(F̂n) ?

Comme θ(F̂n) = θ(X1, ...,Xn) où X1, ...,Xn
i.i.d.
∼ F , remplace F par

F̂n :
θ(F̂n) ' θ(X∗1 , ...,X

∗
n) avec X∗1 , ...,X

∗
n

i.i.d.
∼ F̂n.

→ F̂n étant connue, on peut simuler suivant F̂n, donc approcher la
loi de θ(X∗1 , ...,X

∗
n) au lieu de celle de θ(F̂n) = θ(X1, ...,Xn).

→ La loi de F̂n donne une probabilité de 1/n à chaque point de
l’échantillon {x1, ..., xn} :

PF̂n (X∗ = xi) = 1/n,

donc il suffit d’opérer des tirages avec remise dans (X1, ...,Xn).
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Distribution bootstrap d’un estimateur

Ici, B désigne le nombre d’échantillons bootstrap.

1 Pour b = 1, ...,B,
générer un échantillon Xb

1 , ...,X
b
n suivant F̂n

construire l’image correspondante :

θ̂b = θ(Xb
1 , ...,X

b
n )

2 Utiliser l’échantillon
θ̂1, ..., θ̂B

pour approcher la distribution de θ(X1, ...,Xn).
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Mise en place pratique - Distribution de la médiane

Ici, B désigne toujours le nombre d’échantillons bootstrap. Je veux
estimer la distrib. de l’estimateur de la médiane de mon échant..

1 Pour b = 1, ...,B,
je génère un échantillon Xb

1 , ...,X
b
n suivant F̂n

je calcule la médiane empirique sur mon échantillon boostrap :

θ̂b = θ(Xb
1 , ...,X

b
n )

2 J’ai un échantillon de médianes θ̂1, ..., θ̂B pour approcher la
distrib. de la médiane théo. inconnue θ(X1, ...,Xn).

Je peux par ex. prendre la moyenne (principe de Monte Carlo) :

θbootstrap(X) =
1
B

B∑
b=1

θ̂b .
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Précision de l’estimateur Bootstrap

L’estimateur Bootstrap converge à la vitesse
√

B.

Cela veut dire que sa variance est donnée par

Var(θ) =
1
B

B∑
b=1

(θ̂b − θ̄)2

180 / 243



Variation moyenne par procédure boostrap

La variance d’un estimateur θ(X1, ...,Xn) est donnée par

Var(F) = EF

[(
θ(X1, ...,Xn) − EF [θ(X1, ...,Xn)]

)2
]
.

Cette variance est approchée dans le cas du boostrap par

Var(F̂n) = EF̂n

[(
θ(X1, ...,Xn) − EF̂n

[θ(X1, ...,Xn)]
)2

]
,

elle-même approchée par l’estimateur des moments

V̂ar(F̂n) =
1
B

B∑
b=1

(
θ(Xb

1 , ...,X
b
n )− θ̄

)2
avec θ̄ =

1
B

B∑
b=1

θ(Xb
1 , ...,X

b
n )
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Bootstrap et provisionnement par GLM
[England and Verrall, 2001b], [England and Verrall, 2001a]

On rappelle certaines notations :

Xij f(xi,j) µij = E[Xij] Var[Xij] = φV(µij)

Covariables GLM : années d’origine et délais de règlement.

La technique consiste à appliquer le bootstrap aux résidus d’un
modèle pertinent déjà calibré.

On applique le bootstrap aux résidus car les données Xij sont ⊥⊥
mais pas i.d. !→ rééchantillonnage des résidus i.i.d. (rij)i+j≤n.

Ici, résidus de Pearson : r(P)
ij =

xi,j − Ê[Xij]√
̂Var(Xij)

=
xi,j − µ̂ij√
̂Var(Xij)

.
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On peut considérer plus simplement

r(P
?)

ij =
xi,j − µ̂ij√

V (̂µij)

Ensuite, on construit l’observation boostrappée x∗ij , donnée par

x∗i,j = µ̂ij + r∗ij

√
V(µ̂ij),

où r∗ij est le résidu de Pearson bootstrappé.

Remarque : pas obligé d’estimer le param. φ (s’agit d’une
constante de normalisation que l’on ne réinjecte pas ensuite...)
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Quelques remarques importantes

→ La loi des résidus ne doit PAS dépendre des param. du modèle
(on les appelle “pivots”) ! OK pr lognormale, Poisson et Gamma.

→ La dispersion φ, si constante pour le jeu de données, peut être
omise ds le calcul des résidus et de l’observation bootstrappée.

→ En calibrant un GLM, 2 observ. seront = aux prévisions (car
modèle construit sur une seule observ. !) : X0J et µ̂0J , ainsi que XI0

et µ̂I0 ⇒ ces résidus n’étant pas réalistes, il ne faudrait pas les
considérer dans le tirage des résidus bootstrappés...

→ Rigoureusement, les résidus de Pearson ne sont pas i.i.d.⇒ on
utilise donc parfois les résidus de Pearson standardisés (pas tjs !).
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Application : distribution de la RESERVE MOYENNE

Exemple d’application au param. E[R] d’un triangle d’incréments
(xij)i+j≤n, une fois choisi le modèle GLM

{
µ, (αi), (βj)

}
, µij ,V , φ.

1 Estimation des coef. de régression, puis des prévisions µ̂ij :

Ê[R] = R̂ =
∑

i+j>n

µ̂ij .

2 Calcul des résidus de Pearson sur le triangle supérieur (on
peut aussi calculer param. dispersion φ⇒ permet rescaler
résidus en tenant compte du nb d’obs. et nb de param.) :

φ̂ =
1

M − p

∑
i+j≤n

(
r(P)
i

)2
(M : nb obs., p : nb param.)
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3 Procédure bootstrap : pour b = 1, ...,B,
obtention d’un échantillon bootstrap de résidus (r∗bij )i+j≤n par
rééchantillonnage de l’ensemble des résidus initiaux ;
détermination du triangle d’incréments boostrappés (x∗bij )i+j≤n

x∗bij = µ̂ij + r∗bij

√
φ̂V(µ̂ij).

pour le modèle retenu et ces nvelles données du triangle T,
re-estimation du GLM et prévisions des (µ̂∗bij )i+j>n pour

Ê[R]∗b = R̂∗b =
∑

i+j>n

µ̂∗bij ;

stockage de R̂∗b ; puis b ← b + 1 et recommencer !

4 Utilisation du B-échantillon bootstrap (R̂∗b)b=1,...,B pour
estimer le biais de Ê[R], IC pour Ê[R]...
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Exemple : bootstrap sur modèle de Mack
(hyp. : réserve gaussienne)

En formulant l’algo. sur le modèle de Mack, on fera les étapes :
1 Transition triangle d’incréments vers triangle cumulé.
2 Application de CL standard : détermination des facteurs de

développement et de la provision correspondante R̂.
3 Recalcul des cumulés initialement observés (i + j ≤ n) par

application rétrospective des facteurs de dév. à la diagonale
calendaire ultime du triangle supérieur.

4 Calcul des résidus de Pearson de ce modèle par

r(P)
ij =

Xij − µ̂ij√
µ̂ij

187 / 243



5 (Ajustement possible des résidus pr correction d’1 biais de
prédiction, pour avoir une variance unitaire)√

M
M − p

r(P)
ij , i + j ≤ n,Mnbobs., knbparamGLM

6 Construction d’échantillons bootstrap des résidus ajustés de
Pearson.

7 Reconstruction des triangles supérieurs d’incréments
bootstrappés.

8 Calcul des nouveaux facteurs de développement.
9 Construction du triangle inférieur de montants cumulés

bootstrappés.
10 Déduction de la provision pr chaque échantillon bootstrap.
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Schématisation de la procédure (Mack)
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Bootstrap sur modèle log-Poisson surdispersé

Prop. : les prévisions par GLM Poisson surdispersé coincide
exactement avec celles du CL⇒ on peut appliquer le même algo !
Mack/ODP donnent la même estimation de la provision moyenne,
mais les hypothèses de volatilité sont , et donc la SEP est , !

Algorithme simple avec des allers-retours cumulés-incréments :
1 Transition triangle d’incréments vers triangle cumulé, et

application de CL standard : détermination des facteurs de
développement et de la provision correspondante R̂.

2 Calcul par application rétrospective des facteurs de dév. à la
diagonale calendaire ultime des valeurs cumulées prévues en
triangle supérieur. Déduction des incréments prévus.
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3 Calcul des résidus de Pearson et de φ̂ :

r(P)
ij =

Xij − µ̂ij√
µ̂ij

et φ̂ =
1

M − p

∑
i,j

(r(P)
ij )2

4 Construction d’échantillons bootstrap des résidus ajustés,
puis calcul des triangles sup. d’incréments bootstrappés.

5 Calcul des nouveaux facteurs de développement (en effet, on
sait que le modèle ODP donne la même provision en
moyenne que le CL, donc c’est plus rapide de faire comme
pour Mack) : construction triangle inf. de montants cumulés
bootstrappés.

⇒ Déduction provision pour chaque échantillon bootstrap.
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Bootstrap - MSEP de la provision totale

Définissons l’erreur standard associée au bootstrap par

SEb(µ̂) =

√√√
1
B

B∑
b=1

(µ̂b − µ̂)2,

avec µ̂ le MLE, et µ̂b l’estimateur d’un échantillon bootstrap.

Puis on en déduit l’erreur de prévision globale par la formule :

SEPb(µ̂) =

√
φ̂µ̂ +

M
M − p

SEb(µ̂)2.

En général, M = n(n − 1) et p = 2n − 1 (GLM).

192 / 243



5 Cas particuliers
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Provisionnement multivarié, multi-branches

Prise en compte de la corrélation entre les branches : cf travaux de
C. Genest.
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Prise en compte des recours
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Facteurs de queue pour branche a developpement long

Quantification de l’incertitude
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Cas de reouverture de sinistre
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Méthode de Schnieper (1991)

Principe : décomposition des IBNeR (triangle D) et IBNyR (triangle
N)...

Éric GETTLER – Mémoire d’actuariat                              39 

 

2) Méthodes « pseudo ligne à ligne » et ligne à ligne 

 
2.1) Méthode de Schnieper 

 

a) Origine 

 

Mise au point en 1991, cette méthode déterministe présente des similarités avec la 
méthode Chain Ladder. 

 

b) Principe 

Elle est basée sur la séparation des IBNeR et des IBNyR (comme on l’a défini dans la 
partie I). 

En partant du même triangle C des montants cumulés des charges des sinistres utilisé 
pour la méthode Chain Ladder, il s'agit de diviser ce triangle, en 2 autres triangles, D, et N, 
représentant les IBNeR et les IBNyR. 

L’exemple simple suivant montre la décomposition des 2 triangles. 

  

 

Fig. 29 : Décomposition des triangles en euro pour la méthode de Schnieper 

 

 

1 2 3 4 5 6 7
2008 2009 2010 2011 2012 2013 2014

1 30 335 301         26 736 038  22 586 126     23 875 565  41 422 385  21 554 126  39 859 233  
2 47 628 823         38 769 987  31 628 942     37 721 419  35 322 351  24 961 059  
3 46 210 389         35 347 199  25 894 460     31 695 496  33 767 940  
4 44 228 890         33 850 637  26 470 319     30 993 783  
5 44 143 899         32 545 983  26 308 108     
6 43 502 366         30 549 547  
7 43 096 708         

1 2 3 4 5 6 7
2008 2009 2010 2011 2012 2013 2014

1 30 335 301         26 736 038  22 586 126     23 869 772  41 413 579  21 751 475  39 859 233  
2 12 634 811         4 342 697    6 214 026       5 493 122     2 218 905     6 796 764     
3 232 530              715 831       525 600          1 392 983     353 161        
4 85 310                 549 921       229 296          158 379        
5 52                         137 999       14 963             
6 2 125                   1 241            
7 130                      

1 2 3 4 5 6
2008 2009 2010 2011 2012 2013

2 4 658 712 -          7 691 252 -   2 828 789 -      8 352 732 -    8 318 938     3 389 830     
3 1 650 964           4 138 619    6 260 082       7 418 906     1 907 573     
4 2 066 809           2 046 483    346 562 -         860 092        
5 85 043                 1 442 653    177 174          
6 643 657              1 997 678    
7 405 788              Triangle C

Triangle D

Triangle N

Ci,j = Ci,j−1 − Di,j + Ni,j

Pour obtenir les triangles d’IBNeR et d’IBNyR, une base de
données détaillées pour tous les sinistres et leurs évolutions est
nécessaire : il faut pouvoir disposer de l’évolution de chaque
sinistre de manière individuelle, contrairement à la méthode de
Chain Ladder où un triangle agrégé suffit.
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Sinistres graves : méthode de DHV

Même principe : décomposition des IBNR en IBNyR et IBNeR.

Projection des IBNeR : variante de Chain Ladder sinistre par
sinistre.
Projection des IBNyR : méthode fréquence-coût, coût à partir des
IBNeR et fréquence par Bornhuetter-Ferguson.

Rq : voir le mémoire d’actuariat d’Eric Gettler.
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6 Calcul de SCR provisionnement à un an
Contexte et notions fondamentales
Le modèle de Merz & Wüthrich
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SCR et ruine économique

Le SCR (Solvency Capital Requirement) est un montant à
provisionner permettant de se prémunir contre une ruine
économique pour l’année à venir dans 99,5% des cas.

Il est défini à partir des fonds propres (FP). + précisément, il faut
que

FP − SCR > 0

dans un an dans 99,5% des cas.

Les provisions évaluées en Best Estimate évoluent dans le temps :
cette variation vient modifier les FP dispo, donc impacte le SCR.

201 / 243



Le SCR est donc indirectement lié à un quantile de la distribution
des pertes, et directement lié au quantile de la distribution des
FP (qu’il faut donc pouvoir estimer...).

Notons L la variable aléatoire des pertes.

Pour évaluer le SCR(L), on cherche ainsi

q0.995(L) = inf{l : P(L ≤ l) ≥ 99.5%}.

La loi demande de provisionner BE + SCR, donc en tout q0.995(L) !
Dans ce cadre, le SCR correspond au capital économique.
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SCR ∼ capital économique

203 / 243



Formule standard ou modèle interne

Pour la mise en place de la réforme européenne Solvabilité 2 début
2016, on a recours à plusieurs méthodes pour évaluer le SCR :

utiliser la formule standard fournie par les autorités ;

développer un modèle interne partiel : i.e. utiliser un modèle
interne pour certains modules de la matrice des risques, voire
utiliser formule standard en modifiant des paramètres (USP)

développer un modèle interne “total”.

L’Autorité de Contrôle Prudentiel et de Résolution (ACPR) est
chargée de valider ces , approches au sein des entreprises.
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Modules de risque sous Solvency II

Une matrice de corrélation (linéaire) permet d’agréger les SCR de
chaque sous-module pour obtenir le SCR global.
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Bilan SII d’une compagnie

Dans le cadre de Solva 2, les passifs d’assurance non-vie doivent
être évalués à leur juste valeur, définie comme la somme de

la meilleure estimation (Best Estimate) : correspond à la
valeur actuelle probable des flux de trésorerie futurs ;

la marge pour risque (Risk Margin) : garantit que le montant
global des provisions techniques soit équivalent à la somme
que les assureurs devraient payer s’ils transféraient leurs
droits/obligations contractuels à une autre entreprise.

Risque de provisionnement : incertitude sur l’estimation du Best
Estimate (BE). Le BE varie de façon + ou − importante ds le
temps, dû aux interactions actif-passif.
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Schéma bilantiel
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Le SCR : une notion prospective

Notion complexe car ce n’est pas le SCR aujourd’hui. Il faut donc
étudier la déformation du bilan dans un an.

En effet, le SCR provisionnement est lié à la déformation du Best
Estimate dans l’année à venir.

Il faut donc être capable de quantifier l’impact de cette déformation
sur les FP dans un an : pour cela, on introduit le Claims
Development Result (CDR) (cf ci-après).
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6 Calcul de SCR provisionnement à un an
Contexte et notions fondamentales
Le modèle de Merz & Wüthrich
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Le modèle de Merz & Wüthrich
[Wüthrich and Merz, 2008], [Merz and Wüthrich, 2008],

[Wüthrich et al., 2009], [Verrall and Wüthrich, 2012]

Ce modèle s’est imposé comme une référence de marché.

L’un des 1er modèles développés pour la mesure de ce risque.

Très utilisé pr sa simplicité d’implémentation (formule fermée) ;

Repris dans les textes réglementaires (cf QIS... etc).

→ Extension de Mack, permettant le calcul du SCR provisions à
un an. Pour intégrer cette dimension de projection temporelle, il
s’appuie sur un processus auto-régressif AR(1).
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Le Claims Development Result (CDR)

Le CDR correspond à la , entre la prévision du montant final des
paiements vus en date I et vus en date I + 1 (un an plus tard).
→ Permet de comparer la robustesse de la prévision avec ce qu’il
s’est effectivement passé par la suite.

Ainsi, on introduit les notations suivantes : pour la provision de
l’année de survenance i vue en t = I,

R I
i = Ci,J − Ci,I−i ,

et vue en t = I + 1 :

R I+1
i = Ci,J − Ci,I−i+1.
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CDR - 1Y vs Ultimate
• Ultimate view: the uncertainty due to all future payments P (t); and
• One-year view: the uncertainty of the Claims Development Result, i.e. the uncer-

tainty of the payments which will occur during the year P (1) plus the revaluation
of the claims’ reserve at the end of the year.

In mathematical terms, they are defined as follows:

Figure 1: Ultimate View

Figure 2: One Year View

Where:

• R0 is the opening reserve, and is known (i.e. VAR(R0) = 0);
• P (t) are the payments during calendar year t, solely for claims already happened at

the moment of evaluation t = 0 (i.e., it is assumed that there is no new business);
• R1 is the closing reserve after having observed P (1).

CDRt is the Claim Development Result after t years from the instant of evaluation, i.e. the
difference between actual and expected over the specified tth period. Ideally, if actuaries
truly reserve at best estimate taking into account all the possible knowledge, the expected
value of the CDR for any future t at the instant of evaluation should be zero (“prospective
CDR”). This is opposed to the “retrospective CDR”, which is the observed CDR after
t years and thus not centred on zero. We recommend Wüthrich and Merz (Merz and
Wüthrich 2008) for further reading on this topic, as this paper is only concerned with the
prospective view.

7

R0 la provision de départ, connue,

P(t) les paiements de l’année calendaire t (mais run-off),

R1 la provision de cloture, après avoir observé P(1).
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Hypothèses et information en t = I et t = I + 1

On définit les données observées en t = I par le triangle supérieur
T . Dans la suite, on note cette information DI où

DI =
{
Ci,j : i + j ≤ I et i ≤ I

}
En t = I + 1, cette information devient

DI+1 =
{
Ci,j : i + j ≤ I + 1 et i ≤ I

}
= DI ∪

{
Ci,I−i+1 : i ≤ I

}
Les hypothèses de ce modèle sont les mêmes que celles de Mack.
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Evaluation de provisions

Pour évaluer la provision, il faut estimer le montant moyen final des
paiements :

E[Ci,J |DI] = Ci,I−i

J−1∏
j=I−i

fj ,

et

E[Ci,J |DI+1] = Ci,I−i+1

J−1∏
j=I−i+1

fj

où les fj sont les facteurs de développement.

Problème : il faut connaitre les fj . On les estimera par CL.
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Estimation CL en t = I et t = I + 1

En t = I (donc sachant DI), pour j = 0, ..., J − 1 on a :

f̂ I
j =

∑I−j−1
i=0 Ci,j+1∑I−j−1

i=0 Ci,j

=

∑I−j−1
i=0 Ci,j+1

S I
j

avec S I
j =

I−j−1∑
i=0

Ci,j .

En t = I + 1, on obtient : f̂ I+1
j =

∑I−j
i=0 Ci,j+1∑I−j

i=0 Ci,j

=

∑I−j
i=0 Ci,j+1

S I+1
j

.

→ Ces estimateurs sont sans biais, et pour tout j , l,

Corr (̂f I
j , f̂

I
l ) = Corr (̂f I+1

j , f̂ I+1
l ) = 0
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Donc pour j ≥ I − i,

Ĉ I
i,j = Ci,I−i f̂ I

I−i ...̂f
I
j−2 f̂ I

j−1 : estimateur non-biaisé de E[Ci,j |DI],

Ĉ I+1
i,j = Ci,I−i+1 f̂ I+1

I−i+1...̂f
I+1
j−1 : estimateur non-biaisé de E[Ci,j |DI+1].

Comme dans le modèle de Mack, on a

MSEPCi,J |DI (Ĉ
I
i,J) = E[(Ci,J − Ĉ I

i,J)2 |DI].

Or Ĉ I
i,J est DI-mesurable, donc

MSEPCi,J |DI (Ĉ
I
i,J) = Var(Ci,j |DI) + (E[Ci,J |DI] − Ĉ I

i,J)2.

C’est la décomposition en process variance et estimation error
(cette dernière serait nulle si on connaissait les fj !).
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Retour au CDR

Pour l’année comptable (I, I + 1], le vrai CDR de l’année de
survenance i (où I ∈ [1, I]) est donné par

CDRi(I + 1) = E[R I
i |DI] −

(
Xi,I−i+1 + E[R I+1

i |DI+1]
)

= E[Ci,J |DI] − E[Ci,J |DI+1]

avec Xi,I−i+1 = Ci,I−i+1 − Ci,I−i .

Pour obtenir le CDR global, on agrège sur les années de
survenance :

CDR(I + 1) =
I∑

i=1

CDRi(I + 1).

218 / 243



Par définition, on a un processus centré :

E[CDRi(I + 1) |DI] = 0.

En effet, si les facteurs CL fj étaient connus, le vrai CDR attendu
vu en date I vaudrait 0 ; et on aurait

MSEPCDRi(I+1) |DI (0) = Var(CDRi(I+1) |DI) = E[Ci,J |DI]
2 1

Ci,I−i

σ2
I−i

f2
I−i

Problème : les facteurs CL fj ne sont pas connus !⇒ Le CDR n’est
pas observable...
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Estimation du CDR

On estime le CDRi par

ˆCDR i(I + 1) = R̂ I
i −

(
Xi,I−i+1 + R̂ I+1

i

)
= Ĉ I

i,J − Ĉ I+1
i,J

avec

R̂ I
i = Ĉ I

i,J − Ci,I−i : estimateur non biaisé de E[R I
i |DI]

R̂ I+1
i = Ĉ I+1

i,J − Ci,I−i+1 : estimateur non biaisé de E[R I+1
i |DI+1]

Et le CDR global par ˆCDR(I + 1) =
∑I

i=1
ˆCDR i(I + 1).

220 / 243



Incertitude autour de cette estimation

Rappel :

→ Pour quantifier l’incertitude de l’estimateur R̂i d’une v.a. Ri , on
utilise MSE(R̂i) = E[(R̂i − E[Ri])

2].

→ La MSEP est donnée par MSEP(R̂i) = E[(R̂i − Ri)
2].

Adapté à notre contexte, on obtient

MSEP ˆCDR i(I+1) |DI
(0) = E[( ˆCDR i(I + 1) − 0)2 |DI]

MSEPCDRi(I+1) |DI (
ˆCDR i(I+1)) = E[(CDRi(I+1)− ˆCDR i(I+1))2 |DI]
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La première quantité correspond à une vision prospective : en
moyenne le vrai CDR devrait valoir 0 dans un an.

La seconde est rétrospective : on regarde la distance entre vrai
CDR et CDR observable.

Pour quantifier ces MSEP, on a recours à l’estimateur de la
variance comme défini dans Mack :

σ̂2
j =

1
I − j − 1

I−j−1∑
i=0

Ci,j

(
Ci,j+1

Ci,j
− f̂j

)2

j ≤ J − 1.

Grâce à cet estimateur, on donne dans la suite l’expression des
MSEP qui nous intéressent.
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Notations et résultats

Soient

∆̂I
i,J =

1
S I

I−i

 σ̂I−i

f̂ I
I−i

2

+
∑J−1

j=I−i+1

CI−j,j

S I+1
j

2
1
S I

j

 σ̂j

f̂ I
j

2

Φ̂I
i,J =

∑J−1
j=I−i+1

CI−j,j

S I+1
j

2
1

CI−j,j

 σ̂j

f̂ I
j

2

Ψ̂I
i =

1
CI−i,i

 σ̂I−i

f̂ I
I−i

2

Γ̂I
i,J = Φ̂I

i,J + Ψ̂I
i ≥ Φ̂I

i,J .
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On peut montrer que l’estimateur de la variance s’écrit

V̂ar(CDRi(I + 1) |DI) = (Ĉ I
i,J)2 Ψ̂I

i

et au final on obtient les estimateurs suivants :

ˆMSEP ˆCDR i(I+1) |DI
(0) = (Ĉ I

i,J)2
[
Γ̂I

i,J + ∆̂I
i,J

]
ˆMSEPCDRi(I+1) |DI (

ˆCDR i(I + 1)) = (Ĉ I
i,J)2

[
Φ̂I

i,J + ∆̂I
i,J

]
.

Puis il suffit d’agréger les années de survenance pour en déduire
le CDR global. Le calcul fait intervenir des termes de covariance.
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Agrégation pour obtenir le CDR total

On obtient :

ˆMSEPCDR(I+1) |DI = ˆMSEP∑
i CDRi(I+1) |DI (

I∑
i=1

ˆCDR i(I + 1))

=
I∑

i=1

ˆMSEPCDRi(I+1) |DI (
ˆCDR i(I + 1)) + 2

∑
k>i>0

Ĉ I
i,JĈ I

k ,J

[
Φ̂I

i,J + Λ̂I
i,J

]
où

Λ̂I
i,J =

Ci,I−i

S I+1
I−i

1
S I

I−i

 σ̂I−i

f̂ I
I−i

2

+
J−1∑

j=I−i+1

CI−j,j

S I+1
j

2
1
S I

j

 σ̂j

f̂ I
j

2
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Et en introduisant

Ê I
i,J = Φ̂I

i,J +
1

S I+1
I−i

 σ̂I−i

f̂ I
I−i

2

≥ Φ̂I
i,J ,

on a

ˆMSEP ˆCDR(I+1) |DI
(0) = ˆMSEP∑

i
ˆCDR i(I+1) |DI

(0)

=
I∑

i=1

ˆMSEP ˆCDR i(I+1) |DI
(0) + 2

∑
k>i>0

Ĉ I
i,JĈ I

k ,J

[
Ê I

i,J + Λ̂I
i,J

]
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Application

Voir le papier de Merz-Wuthrich, Modelling the Claims
Development Result for Solvency purposes

Le calcul du SCR risque de provisionnement passe donc par le
postulat d’une hypothèse sur la forme de la distribution du CDR :
l’hypothèse la plus communément utilisée est l’hypothèse
log-normale.
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Preuves

Voir si on ajoute des preuves dans Mack, GLM, Merz...

Expliquer que la prediction variance est la somme de la process
variance et de l’estimation variance...
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7 Extensions de ces modèles
Technique bayésienne et méthodes MCMC2

Provisionnement ligne à ligne : censure et covariable
Corrélation : agrégation de triangles de réserves par copule
Tendance et effets calendaires - modele de Gluck and Venter
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Valeurs négatives

Parfois le triangle contient des valeurs négatives...

[?]
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Agrégation de triangles

Un groupe peut avoir plusieurs branches d’activité, chacune étant
lié à une provision. Comment calculer une provision globale au
niveau groupe, sachant que certaines business lines sont
corrélées... ?

[?]
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Bornhuetter-Ferguson stochastique

Blabla
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CONCLUSION
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Conclusion

Les méthodes actuelles permettent de quantifier l’incertitude :

ces méthodes évoluent pour répondre à la non réalisation
d’une ou plusieurs conditions de performance.

les résultats entre ces différentes approches peuvent différer
assez largement !
Toutes les techniques présentées nécessitent

des données fiables et plutôt nombreuses,
un passé régulier, et un présent/futur structurellement proche.

La branche doit être peu volatile.
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On apporte des modifications pour concilier avec des observations
qui sortent de l’ordinaire : lissage, pondération, coût moyen,
dépendance des coefficients, méthode complémentaire...

Certaines questions opérationnelles ne sont pas traitées dans le
cadre de ce cours : on pense notamment à

les recours : comment les traiter?

les données absentes ou non triangulaires

le changement du programme de réassurance, d’une politique
de gestion des sinistres...

Certains mémoires abordent ces questions et y apportent des
solutions pratiques.
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