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ﬂ Projection de triangles de liquidation : introduction
e Approches déterministes du provisionnement

e Approches stochastiques de provisionnement

0 Distributions prédictives et mesures de risque

e Cas particuliers

@ Calcul de SCR provisionnement 4 un an

@ Extensions de ces modéles
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Organisation

Le cours se répartit comme suit :
@ 10h de cours magistral;
@ 10h de travaux dirigés en salle machine;
@ Une évaluation (examen écrit et/ou projet).

Lobjectif est de connaitre les techniques statistiques utiles au
provisionnement et leurs limites.

Le livre francais de référence est [Partrat et al., 2007].
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Objectif du cours

Aujourd’hui, Solvabilité 2 redéfinit le cadre prudentiel et promeut
@ la mise en place d’'un bilan économique,
@ le calcul de mesures de risque sophistiquées.

Les provisions sont le socle méme d’une évaluation prudentielle.

Nous désirons dans ce cours :

@ présenter les outils statistiques fondateurs des derniers
développements sur les méthodes de provisionnement,

@ poser les hypotheses requises par chaque technique et en
acquérir un regard critique.

© évaluer leurs principales #.

4/243



o Projection de triangles de liquidation : introduction
@ Généralités
@ Données de travail
@ Résultats d'intérét pour le praticien
@ Traitement de phénomene parasite
@ Prise en compte de réassurance
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“RESERVING IS AN ART”
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Utilité et visibilité du perfectionnement des méthodes

Suite la survenance d’un sinistre, 'assureur a une dette envers
son assuré. Pour couvrir cet éventuel événement, cette dette
figure au passif par la constitution d’'une provision.

Toutes les techniques récentes visent a améliorer la fiabilité des
calculs de provisionnement, utiles pour

@ la certification du best estimate,
@ lajustification de la suffisance du provisionnement,

auprés des commissaires contrbleurs, auditeurs externes...
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Contexte : bilan assureur ds Solva 2 - risque de réserve

BILAN Comptable
Solvabilité 1

Plus Values
latentes

Actifs

Valeur comptable
(valeur historique
amortie)

Excédent de
marge

Excédent de
marge
Solvabilité 1

BILAN économique
Solvabilité 2

Actifs

Valeur de marché

Capital
excédentaire

SCR

MCR

Interactions actif-passif (PB, comportements, ...) = BEL varie!

Le SCR provision s’estime a la fin, sur la base de ce bilan.
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SCR/BEL et structure modulaire - Solvency i

SCR
———————
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Formule stand. : matrice de corrél. agrege SCRyx = SCR global.
SCR prov. s’estime sur BEL = aprés décompos. des BEL/risque.
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Problématique

La problématique du reserving est trés ancienne (+sieurs siecles).
Il existe maintenant

@ une grande variété de méthodes (micro-level VS agregated),
@ des outils de gestion toujours plus réactifs et perfectionnés,

@ beaucoup d’approximations pour le calcul de # marges :

e marge de précaution, marge pour risque croissant,
@ marge pour dépréciation (des actifs)...

— La prise en compte du caractére aléatoire de ces montants
devient plus que nécessaire. Notamment sous la pression...

@ ...des forces de marché,
@ ...a cause de l'aversion au risque des administrations.
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Décomposition de la charge d’un sinistre

Provisions
IBNR

Charge B
dossier/dossier l

Méthodes de provisionnement les + utilisées — rapport ASTIN.

Provisions IBNeR

Provisions IBNyR

Provisions
dossier/dossier

Sinistres payés

- PSAP

Charge ultime
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Importance du calcul des PSAP - Faillites
des assureurs dommages US (RC et accidents)

50 Cas de faillite
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[ Croissance rapide M Actifs surévalués I Autres

Provisions pour sinistres insuffisantes M Allégation de fraude

Source : A.M. Best: Best's Insolvency Study, Property/Casualty U.S. Insurers 1969-2002, mai 2004, p.34
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Données type : triangle de liquidation

Au 31/12/1, les données sont répertoriés comme suit :

Année de Années de développement
survenance 0 1 j J-i oo d=1 J

0 Xo0  Xo1 ... Xo,j .. e cee Xog-1 XoJd
1 X10 X114 ... X1 X1.0-1
i Xij .. XiJ-i

I —j Xi-j,j

I-1 Xi-1,0  X1-1,1
| XI,O
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Contexte général des études

Lhypothése fondamentale de tous ces dvp est que les triangles de
liquidation sont fiables : données déja traitées en amont!

Considérations fondamentales a ne pas oublier :
@ traitement de I'inflation (vision “as if”),

@ traitement de données extrémes (dans un souci de stabilité,
séparation sinistres attritionnels/graves/CAT),

@ traitement de données incomplétes : doit-on s’en servir ?

Méthodologies classiques pour évaluer les PSAP :
@ dossier-dossier (case estimate) par le gestionnaire sinistre.
© et IBNR ou “tardifs”.
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Comparaison et performance des méthodes

Depuis 1991 en assurance, on peut utiliser des méthodes stats
pour évaluer les sinistres survenus au cours 2 derniers exercices.

@ La convergence de ces méthodes avec I'estimation
dossier-dossier permet de vérifier leur fiabilite.

@ Une divergence doit prévenir I'instabilité des données.

Différence : évaluation “historique” dossier par dossier =
prospectif # évaluation par méthodes stats = données historiques.

Ces méthodes sont d’autant plus performantes que
@ passeé regulier, présent/futur structurellement peu # du passé,
@ branche peu volatile, données nombreuses et fiables.

15/243



Nécessité d’une réflexion préalable

La qualité de I'estimation de la provision repose sur la qualité et la
stabilité des données : comment ont-elles été générées ? quels
sont les facteurs de risque d’un éventuel changement ?
@ Les facteurs internes :
e évolution du portefeuille,
e politique de souscription, tarification et réassurance,
e politique de gestion des sinistres (cadence de réglement).

@ Les facteurs externes :

pratiques de marché,

cycles économiques, inflation des montants de sinistres,
évolution de la sinistralité (fréquence, sévérité),
modifications réglementaires et comptables.
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0 Projection de triangles de liquidation : introduction

@ Données de travail
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Flexibilité des méthodes sur triangles

Outre la sinistralité historique, on peut intégrer des informations
exogeénes a I'estimation de la provision : indicateurs d’exposition
(volume de prime, nb de contrats), plan de réassurance...

On peut utiliser les triangles de liquidation sur des quantités de
nature trés # :

@ montants, montants moyens,
@ primes, nombres de sinistres
@ loss-ratios (sinistres / primes)...

— Quantités ramenées a des périodes (année, semestre, ...).
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Origine et développement

Les données sont rattachées a des périodes d’origine, soit
@ une période de survenance (critére classique),
@ une période de souscription,
@ une période de déclaration.

Remarque : souvent maille annuelle pour éviter saisonnalité.

Notations : dans toute la suite,
@ i :année d’origine (survenance)
@ j : délai réglement (année de développement/déroulement)

@ x;; : mesure de sinistralité a 'année d'origine i et au délai j.

Exemple de mesure de sinistralité : montants de sinistres.
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Données type : triangle des montants non cumulés

Au 31/12/1, les paiements sont répertoriés comme suit :

Année de Années de développement
survenance 0 1 j J—i oo d=1 J
0 X00  Xod X0, X0.-1  Xou
1 X0 X141 X1, X1.0-1
i Xij XiJ-i
i —j Xl—j,j

X1-1,0  Xi-1,1
X1,0

Pour simplifier, on prendra ici | = J = n (I > J possible) : on
observe donc les données dans T = {x,j ci+j< n}.

La somme des indices des termes diagonaux vaut n (ou /, J).
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Réglements calendaires

Les diagonales correspondent a des réglements calendaires.

L’année calendaire n a donné lieu au paiement total (ttes années
d’origine confondues)

n
EJMH-
i=0

Remarque sur le nb de données : suite arithmétique de raison 1,

n(n+1)
2

1+24+.+n

Ex:n=6 — 21 obs. (short tail), n = 16 — 136 obs (long tail)...
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Construction du triangle des montants cumulés

Année de Années de déroulement
survenance 0 j . J-i J-1 J

0 Coo Co,j . . ... Coy-1 Coy
1 Cio Cij Ciu-1
i CZJ e (DLJ,i

I-j Cijj

I-1 Ci-10 Ci1g
| Cio

Cij : montant cumulé pour I'année d’origine i jusqu’au délai j :

_ v
C,',j = thO Xi.h ou

Xij = C,',j - C,',j_1 (j > 1).
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Trois différentes approches

But : compléter la partie inférieure du triangle de liquidation.

@ Techniques de colt moyen : souvent utilisées en réassurance
(gros risques)

Charges ultimes = nb ultime sinistres x colit moyen sinistres.

@ Techniques basées sur les loss-ratio (LR) :
Charges ultimes = Primes x Loss ratio ultime.

@ Méthodes liquidatives :
Raisonnement a partir des facteurs de développement.
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Données pour la suite (stables)

Données d’aggrégation de montants de dommages matériels en
auto pour +sieurs compagnies au 31/12/1993 (source : FFSA).

Année de Années de déroulement

survenance 0 1 2 3 4 5
1988 3209 1163 39 17 7 21
1989 3367 1292 37 24 10
1990 3871 1474 53 22
1991 4239 1678 103
1992 4929 1865
1993 5217

Hyp. : développement futur complet des sinistres sur 6 ans.
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o Projection de triangles de liquidation : introduction

@ Résultats d'intérét pour le praticien
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Quantités cibles

A partir de ces données, on cherche a obtenir au 31/12/n :
@ une estimation de la charge sinistres pr année d’origine :

Ri = Ciy— Ciy-i (i=0,..10)

@ la provision totale : R =Y, Ri.

= Détermination du résultat technique de la branche.
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Evaluation comptable réglementaire

Selon les normes IFRS, on évalue un portefeuille par somme des
cash-flows futurs actualisés. Pour simplifier,

@ on néglige I'actualisation ici,

@ on obtient les cash-flows de I'année (n + k) au titre des
années d’origine 0 a n avec I'expression

Choik= | X
i+j=n+k

= On s’intéresse a la diagonale des triangles...

= Cela correspond aux diagonales du triangle inférieur a estimer.
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Cadence de réglement

Notion intimement liée aux facteurs de développement :
@ on conduit les calculs avec les facteurs de développement,

@ on interpréte les résultats en cadences cumulées (lag factor).

Pr 'année d’origine i et son dvp en paiements cumulés au 31/12/n,

| 0 ... J-i gt
i|Co ... Cusi ... Cyj Ciyr ... Ciy

@ € facteur de développement : f; = M j=0,..,J-1);
j Cij

@ j¢ cadence cumulée de réglement : pc;j = % (j=0,..J).
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Application a I'exemple slide 20

Ici, seule la 1¢ année est complétement déroulée.
Pr 'année 1988, il ressort du triangle cumuls :
@ les facteurs de développement :

il o 1 2 3 4
1) (120 (2-3) (34) (4-5)

1‘,-‘1.3624 1.0089 1.0039 1.0016 1.0047

@ les cadences de réglement cumulés (en %) :

j | o 1 2 3 4 5
pci | 72.0 98.1 99.0 99.4 995 100
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Généralisation

On obtient, en généralisant, les formules suivantes :
pour les facteurs de développement :  f; = pcj1/pc;,
et pour les cadences cumulées :  pcj = (fifis1...f4—1) 7.
Logiquement,

1 —pcy-

R=C  —-C: ;=
i iJ i,J—i pCyi

Ciu-i= (fyi ... fm1 = 1)Cj i

Impact de f; : visualisation aisée de I'impact sur la provision.
Ex : augmentation des paiements la 26™¢ année : soit 8 > 1,

LI

=P = PO
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o Projection de triangles de liquidation : introduction

@ Traitement de phénomene parasite
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Prise en compte de l'inflation

Idée : les réglements de sinistres sont “pollués” par l'inflation.

Cela peut considérablement
@ biaiser I'analyse d’un triangle de paiements,
© biaiser la méthode de provisionnement (propagation erreur).

= |l faudrait normalement une étape d’actualisation des paiements
qui tienne compte de cette inflation!

On aimerait produire le calcul de la provision exacte, en
considérant une inflation constante dans un premier temps...
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= Cette propriété est requise a tte bonne méthode de provision.,

ce qui caractérise un triangle “régulier”, défini par

@ un vecteur (Séo), 81(0), e S,(O)) de charges sinistres ultimes,
en euros constants de I'année d’origine 0;

Q@ unvecteur (po,...,py-1) de cadences de reglement
(non-cumulées) tel que 21 —oPj=1, avecp; > 0;

© un taux d’inflation T annuel (ou autre unité de temps) constant.

On peut tjs exprimer les paiements non cumulés, Vi,j =0,...,n

@ en euros constants (de I'année 0) : x,.E.O) = p,S(O)

@ ou en euros courants : Xj = p,-S,.(O)(1 + 7).
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On en déduit les paiements cumulés en euros courants...

j
Cj= Z Xik = S,-(O)(1 + 1) Z Pk (1 JrT)k.
k=0

...etles charges sinistres : S; = Cjy = Cjp = S’.(O)(1 + T)iBJ,
conduisant aux provisions par année d’origine : Vi =1, ...,/

R = Ciy-Ciy-i
= 891 +1)(By - Bui)

J
= P01 +0) 3 a1+

k=J—i

Et donc & la provision globale R = Y|_. R;.
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o Projection de triangles de liquidation : introduction

@ Prise en compte de réassurance

35/243



Intégrer un programme de réassurance

@ Réassurance proportionnelle, principe :

o le quote part est facilement traitable et n’améliore pas la
qualité de I'estimation du montant de réserves.

o I'excédent de plein permet d’améliorer la base statistique
nette de réassurance car données + homogénes.

@ Réassurance non proportionnelle :

e la réassurance non proportionnelle dont la priorité P est basse
permet d’écréter plusieurs sinistres et ainsi de rendre la
triangulation sinistres + homogénes et I'estimation + précise.

e avec P haute, permet par I'étude particuliere des sinistres
importants d’homogénéiser le triangle sinistre (+ de données).
Approche frequence - cout moyen tres utile dans ce contexte.

Globalement, les données doivent é brutes d’autres effets, ces
effets étant susceptibles de varier dans le temps...
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9 Approches déterministes du provisionnement
@ Méthode de Chain Ladder
@ Autres approches autorégressives
@ Méthodes basées sur des ratios
@ Modéles factoriels
@ Ajustement de courbes et lissages

37/243



Préambule

Les méthodes déterministes doivent impérativement étre
appliquées avant de recourir a des méthodes stochastiques.

@ Elles ont 'avantage d’étre simples et robustes.

@ En fonction de la méthode choisie, elles s’appliquent a des
triangles de toute nature :

e paiements cumulés,
e charges, ...
@ Elles nécessitent moins d’hypothéses que les méthodes
stochastiques.
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e Approches déterministes du provisionnement
@ Méthode de Chain Ladder
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Méthode Chain Ladder (CL) standard

Soient les délais j et (j + 1) d’1 triangle de paiements cumulés :

Année d’ Années de développement
origine 0o ... J Jj+1 ol
0 e e Co, Co j+1
i e e Cij Cij+1
I—=j=1 ... ... Cijj Crj1js1
I—j Cijj
1

Hypothése fondamentale : ¥j =0, ..., J — 1, les facteurs de
developpement individuels C;j;1/C;; sont 1L de I'année d’origine i.
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. Cojt1 Cijs Cij+1
Ainsi, —/—— = —— = .. = ——,
Co, C1) Cij

et nous pouvons donc déduire une valeur commune M de ces
rapports en moyennant les facteurs de développement :

Z _l 1 Clj+1
z‘f ' Cij

Dans la pratique, I’hypothése n’est qu’approximativement vérifiée.

On choisit pourtant ce facteur commun comme facteur de
développement (0 <j< J-1)

—j1
ZI Cij+1
i
Z,-:]O Cij

j _=
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Dy Dip1 Dy
oy Dy
Di, oo R Ding1-i
D”,]_I anl.Z ’
Dn.l
A Ao A1

Fig. Estimation des facteurs de développement

—k
2771 D 1
Nk oy
Z,—l D
n—k

ZWII\)VIA

~n—k
E:r—] VV[A i=1
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Puis on en déduit les charges ultimes (rappel : C;,-; est le terme
diagonal)

n—1

Si = Ciy = Cin = Cjn-ifp—i...fn-1 = Cin-i n fx,

k=n-i

qui conduisent aux provisions par exercice (i =1, ..., 1) :

!
R,‘ = S,‘ - C,"n_,' = R = Z R,‘.
i=1
Si nécessaire, on peut retrouver le rectangle complet de liquidation
avec les facteurs de développement

j—1
Cij = Cin-ifpzi..fiie = Cin-i l_[ fo.

k=n—i
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D]i] Dl,nfl Dl.n
D2.1 ) D2Jl—l D2.n
Dy ... Dipt1-i

Dn—l‘l Dn—l.2 .
Dn.l Dn.2 cee cee Dn.n

M ML o At |

Fig. Estimation des réglements cumulés futurs

A

Djj=(Ant1—i..-Aj—1)Dips1-i
Ri = Di,n - Df\nirlfi
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Exemple : données pédagogiques cumulées

Année de Années de  développement

survenance 0 1 2 3 4 5
1988 3209 4372 4411 4428 4435 4456
1989 3367 4659 4696 4720 4730

1990 3871 5345 5398 5420
1991 4239 5917 6020

1992 4929 6794

1993 5217

Ce qui donne les facteurs de développement

il o 1 2 3 4
0-1) (1-2) (2-3) (3-4) (4-5)
f| 138 1.01 1.0043 1.0018 1.0047
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Evolution des facteurs de développement

On trace I'allure des facteurs de dév. pr chaque année d’origine :
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Et les cadences cumulées de réglement :

i| o 1 2 3 4 5
pc | 70.8 97.8 989 993 995 100

On en déduit le triangle inférieur de liquidation et les provisions

Exercice i 0 1 2 3 4 5 Provisions
1988 0 4456 0
1989 1 4730 4752 22
1990 2 5420 5430 5456 36
1991 3 6020 6046 6057 6086 66
1992 4 6794 6872 6902 6914 6947 153
1993 515217 7204 7287 7318 7332 7367 2150

Total 2427

La provision du dernier exercice représente 89% de la
provision globale (caractéristique des branches short-tail).
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Représentation des réglements cumulés estimés

On voit une tendance en fonction de I'année d’origine...inflation ?

7000 -

6000 -

5000 -

4000 -

1 2 3 4 5 6

[—+—1988 = 1989 —a 1990 1991 —e 1992 1993 |
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Validation de I’hypothése : les C-C plot

Validation empirique car le modéle n’est pas stochastique.

Si pour j fixe, il existe f; tel que C; .1 = f;Cjj,

.....
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chi+)

3 T T T T T
4400 4600 4800 5000 5200 5400

cij)

La validation essentielle repose sur le triangle de dév., appelé
d-triangle. Il permet d’effectuer des choix alternatifs car

@ ony détecte les tendances (trend) et les saisonnalités,

@ il ressort les valeurs extrémes...
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Exercice i 0 1 2 3 4
1988 0] 1.36242 1.00892 1.00385 1.00158 1.00474
1989 11138372 1.00794 1.00511 1.00212
1990 2| 1.38078 1.00992 1.00408
1991 3| 1.39585 1.01741
1992 4 | 1.37837

Moyenne 1.38023 1.01105 1.00435 1.00185

Ecart-type 0.01074 0.00374 0.00055 0.00027
Coeff. variation 0.008 0.004 0.001 0.000

= Hyp. CL acceptable si f; “constants” a j fixé.

On y constate pour nos données de I'exemple “pédagogique” :
@ tres faible volatilité, décroissante avec le délai j.
@ visualisation de la variation de ces facteurs :
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0048 1.0050

10038 10040 1.0042

annee origine-1

@ aucune structure non-aléatoire évidente pour j = 1,2, ...;
@ mais peut-étre un trend pour j = 0.
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Chain Ladder pondéré : variante + flexible

CL standard = choix d’'un méme facteur de développement Vi.
On pourrait choisir ce facteur comme une fonction des facteurs
individuels fo’j, f1 Jo oo fl—j—1,j de la colonne j

La fonction la plus simple est celle de la moyenne pondérée,

.....

@ l'allure des facteurs individuels, leur fiabilité, leur volatilité,
@ considérations externes : prudentielles, ...
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Exemples de pondérations

f 1y
@ Lamoyenne : fi= 5 X fij-
@ La moyenne des k derniers : par exemple pour k = 3,
I-j-1
1 H

fj:az fii  sij=1,..,1-3;
i=1-j-3

1 ..
fi = 5(fo,j—k f1) sij=1,..,1-2;

ijfoJ Sij:I—1.

Rq : sil'on prend w;; = C;j, on retombe sur le CL standard.
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Pondération par année calendaire

Le but est d’accorder plus d’'importance aux données récentes

qu’aux anciennes. Avec la pondération w;; = i + j + 1, on obtient
I—j—1 n—j—1 , ,
n—j)(n+j+3
Nowy= i+ (n- 11+1)_( J)(2 j+3)

i=0 i=0

Accentuer cet effet en prenant par ex. wij = (i +j + 1)2.

Rq : si 'on a détecté un trend dans le d-triangle, il peut étre utile
de le modéliser par un modéle de régression.
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Bilan

La méthode de Chain Ladder pondérée est une méthode qui
satisfait de bonnes propriétés.

Prop. : CL donne la provision exacte avec un triangle régulier.
@ Elle est simple a mettre en oeuvre, universelle et robuste;
mais n’est pas trés flexible ;
@ Elle peut étre utilisée avec des incréments négatifs, donc
aussi adaptée aux recours.
@ Les versions stochastiques des modeles pondérés

nécessitent de développer de nouvelles formules pour la
volatilité.

Elle est donc particulierement adaptée a des triangles de charges
(intégrant des recours) ou des triangles de paiement...
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e Approches déterministes du provisionnement

@ Autres approches autorégressives
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Alternatives
Les méthodes Chain Ladder supposent I'existence pour j fixé
(j=0,..,d = 1) dun facteur f; tel que
C,‘7j+1 = ij,',j, pouri=1,..,1—-j.

— (Cij, Cij;+1) alignés sur une droite passant par l'origine : parfois,
cette hypothése est remise en cause.

— Une alternative serait alors de supposer que C; . est une
fonction affine de Cjj.
= On ajoute un effet constant (ordonnée a l'origine)...
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Modélisation par London Chain
[Benjamin and Eagles, 1986]

@ Méthode peu utilisée car risque de surparamétrisation.

Suppose I'existence, pour j fixé, de parametres (f;, a;) tels que
Ci,j—H = ij,-?,-+a,- VYi=0,.,I-j-1

Encore une fois, les points devraient étre sensiblement alignés.
Par analogie avec la régression linéaire, on a

I—j—1

(f.&) = argmin " (Cijr1 - & - fiCy).
(fig) o
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On annule les dérivées partielles, et en notant Cj la moyenne de la
colonne j donnée par

on obtient les estimateurs classiques :

1 —/ 1
52 CijCijr1 = CiCia

J 1 —1 1 -2 2
- C Cj

fL(? _

et

LC _ A . {CA
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On remarque qu’il s’agit presque du coefficient de corrélation
linéaire de Pearson entre les colonnesjet(j+ 1) :

fAC _ Cov(col j, col j+1)
I Var(col )

On obtient finalement le montant cumulé de la colonne (j + 1) par

Cijp1 = 1°Cij+a®  pouri>I-j.

Rq : siI'on applique les MCO a CL classique Cjj.1 = f;G;j, cela
oo Z/_]O1 Cl]Cl]+1
conduit a un facteur —

i=0 “ij

# de f; de CL.
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Reprise de I'exemple pédagogique

En appliquant le modéle affine aux mémes données, on obtient

i | o 1 2 4

ijC 1.404 1.0405 1.0036 1.0103 1.0047

ajLC -90.311 -147.27 3.742 -38.493 0
Exercice i 0 1 2 3 4 5 Provisions
1988 0 4456 0
1989 1 4730 4752 22
1990 2 5420 5437 5463 43
1991 3 6020 6045 6069 6098 78
1992 4 6794 6922 6950 6983 7016 222
1993 5| 5217 7234 7380 7410 7447 7483 2266

Total 2631
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Prop. le London Chain fournit la provision exacte d’un triangle
régulier : les charges S,.LC coincident avec les charges exactes S;.

Cette méthode n’implique aucune difficulté de mise en oeuvre
puisqu’il s’agit d’'une simple régression.

Probléme : on estime 2(n — 1) parametres a partir de —n(n;”

données, d’ou un risque de surparamétrisation...
— Un indicateur permettant de quantifier cet effet est donné par le
ratio du nb de paramétres sur le nombre de données

(environ 1/2 pour n = 5)
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Méthode du London pivot
[Straub, 1988]

Obijectif : réduire le paramétrage de la modélisation London Chain.

@ Modéle intermédiaire entre Chain Ladder et London Chain.
@ Suppose I'd d’un param. a tel que (j =0,...,J - 1)

Cijpr +a=1(Cy+a) Vi=1,.,1-]

Ainsi, a est indépendant de j... = si I'hyp. est validée, les points
(Cij+1, Cij) devraient étre alignés sur des droites concourantes.

Leur point d’'intersection se trouve en (—a, —a), le fameux point
pivot (dans la méthode CL, (-a,—a) = (0,0)).
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On estime les (J + 1) paramétres par MCO, en minimisant

J-1 I+
(;, &) _argmln ZZ[ Cij+1 +a)—f/(C,j+a)]
(f.a j=0 i=

— Mais ce probleme n’a pas de solution analytique, d’ou un

algorithme itératif qui provoque une utilisation peu courante...

Prop. Dans le cas régulier, cette méthode fournit la provision
exacte.

67/243



e Approches déterministes du provisionnement

@ Méthodes basées sur des ratios
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Méthodes de ratios : contexte d’utilisation

@ Intégre 1 info. suppl. par rapport au triangle des paiements.

@ Sous la forme d'1 indicateur d’exposition au risque E; par
rapport a la sinistralité pour tte année d’origine i (i =0, ..., 1) :
@ un montant de primes, un nombre de contrats,...
@ un nombre de sinistres déclarés ou réglés (si la définition d’'un
sinistre est constante au cours des années),

On utilisera ici les notations suivantes :
Lij=Cij/Ei (i,j=0,..,n) pour les ratio individuels,

Li = Cin/Ei = Si/E; (i,j=0,...,n) pour le ratio ultime.
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Exemple illustratif

Si l'indicateur d’exposition est une prime P;, alors L;,_; est la part
de prime de I'année d’origine i consommeée au 31/12/1.
— On parle de loss ratio (LR) pour L;, ratio technique tres utilisé.

Dans notre ex., les données d’expo. sont les primes acquises (CL
appliqué ici donne pour le triangle inf. les primes manquantes) :

Exercice i 0 1 2 3 4 5
1988 0 | 4563 4589 4590 4591 4591 4591
1989 1| 4718 4674 4671 4672 4672 4672
1990 2| 4836 4861 4861 4863 4863 4863
1991 3| 5140 5168 5173 5175 5175 5175
1992 4| 5633 5668 5671 5673 5673 5673
1993 5| 6389 6425 6428 6431 6431 6431

Remarquez que les primes sont + vite collectées que le paiement
des sinistres, les facteurs de dev. sont vite égaux a 1...
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Exercice i Si P; Loss ratio ultime (%)
1988 0 | 4456 | 4591 97.1
1989 1| 4752 | 4672 101.7
1990 2 | 5456 | 4863 112.2
1991 3 | 6086 | 5175 117.6
1992 4 | 6947 | 5673 122.5
1993 5| 7367 | 6431 114.6

Naturellement, le d-triangle des facteurs individuels (f;});j<n
associé a celui des paiements cumulés (C;;);j<n est le méme que
celui du triangle des ratios (L) j<n, car

i _ Lijt1 Cijp1/E
UL Cij/Ei

= Ainsi la provision déduite du triangle (L;;)i+j<n par Chain Ladder
coincide avec celle provenant du triangle (Ci;)i+j<n-
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Méthodes basées sur des ratios

Le Loss Ratio simple : supposer constant les LR de toutes les
années d’origine, et poser L; = Ly avec Ly connu.
@ on cristallise le dernier LR connu : on déduit S; = E; x L.
o R = S;— Cj,-;: trés simple mais résultats aberrants si la
branche étudiée n’est pas hyper stable.

Le Loss Ratio complémentaire : supposer les LR constants =
a 1 param. L & estimer pr ttes années d’orig. (L ~ C;,/E;, Vi).
o Parex., X!, Ciy/ Xl Ei~ L.
@ Ou bien pour estimer L, on peut tenter de détecter une
tendance en déterminant LV) = 3, i b Cii | 2 N
Puis I'analyse de la suite des L") (CV) conduit par extrap. au
LR commun final (par rég. lin. par ex.).
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Méthode de Bornhuetter-Ferguson
[Bornhuetter and Ferguson, 1972]

Principe : méthode toujours basée sur des ratios, ici les LR.
@ Tres utilisée en entreprise en complément de la méthode CL.
@ Particulierement adaptée au provisionnement des années

récentes dans les triangles instables.
Si = Cin-i + (1 — pcn-i)LiPi.

On substitue au LR inconnu L; un LR “attendu” ¢; — &; déterminé
par des considérations exogenes, par ex. un benchmark marché.
Rq : existe aussi en version stochastique.

= Approche crédibilisée : a priori (via L;) et expérience (via pcp—;).
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Reprise de I’exemple fil rouge

La réserve s’exprime donc comme suit :
Ri=Si - Cin-i = (1 - pcn-i) Pi®;

Mise oeuvre toujours sur le méme exemple :

Exercice i | (1—pcn-i) (%) P; d; R;
1988 0 0 4591 | 971 0
1989 1 0.47 4672 | 100 22
1990 2 0.66 4863 | 105 34
1991 3 1.09 5175 | 110 62
1992 4 2.20 5673 | 120 | 150
1993 5 29.18 6431 | 125 | 2346

Total | 2614
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Méthode Cape Cod (Biihimann-Stanard)

@ Basée sur une segmentation a priori de I'ensemble des
années d’origine en groupes d’années “semblables”.

@ On attribue a chacun de ces groupes un Loss Ratio et un
vecteur de cadences de réglement.

En reprenant la notion de cadence cumulée :

Cin-i

pCn-i = Si = Ciy = Cin = Cin-i + (1 - pcn-i)Cin.
D’ou en utilisant le LR de la i®™ année d’origine L; = Cj,/P; :

Si = Cin-i + (1 — pcn-i)LiP;.

= Mélange entre a priori (via L;) et historique (via pcp—;).
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Notons pc = (pco, ..., pcn—1) le vecteur des cadences cumulées
provenant par ex. d’'une méthode CL avec pour I'exercice K,

pc, Crn-k et le loss ratio L Crn _ Chnk
k= —, = = .
: Ck.n Px  pcn-kPx

On obtient ensuite naturellement le loss-ratio L4, associé a un
groupe A c {0, 2, ..., n} dannées d’origine semblables,

La = Z Ckonk / Z pPCn—k Pk.

keA keA

La provision d’'une année d’origine i de groupe A; vaut

Ri = Si— Cin-i = (1 — pcn-i)PiLa,.
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Cas particuliers :
Cin-i
pcn-iPi

@ si A = {i}alors La, =
Y k—o Crk.n-k

@ sialopposé A; =1{0,1,2,...,n}alors Ly, = —————.
PP : Y h—o PCn-k Pk

Reprise de I’exemple fil rouge : en utilisant les cadences du CL

=1{0,2,..., [}, on obtient La, = 1.1141 (111,41%) et :

Exercice i | (1—pcn-i) (%) P; R
1988 0 0 4591 0
1989 1 0.47 4672 24
1990 2 0.66 4863 | 36
1991 3 1.09 5175 | 63
1992 4 2.20 5673 | 139
1993 5 29.18 6431 | 2091

Total | 2353
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Cette méthode, extension des méthodes Chain Ladder, est
évidemment sensible au choix des années d’origine semblables...

Ce choix peut résulter :
@ dinformations exogénes au triangle,
@ de I'expérience du praticien,
@ s’appuyer sur des graphiques de développement des LR.

Cette méthode fournit des provisions toujours positives, comme
la méthode de Bornhuetter-Ferguson que nous avons présenté.
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9 Approches déterministes du provisionnement

@ Modeles factoriels
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Les modeéles factoriels : principales caractéristiques

Ces techniques s’appliquent
@ aux montants non-cumulés x;; (ou aux LR correspondants);
@ sous la forme d’un produit de param. correspondant chacun a
une direction du triangle de liquidation (0 < i,j < n) :
Xij = Xi Yj Aitj
ou
@ x; est le paramétre de I'année d’origine,
@ y; est lié au délai de réglement,

@ 1;4; correspond a I’'année calendaire (pour l'inflation par ex.).
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— Approche privilégiée par la plupart des modeéles stochastiques.

— 3n paramétres : inférieur au nb d’obs. & partir de n > 4

Probléme : sous cette forme, le modele n’est pas identifiable :
Yj A
[(xi), (¥;), (k)] et [(a xi), (Ej)’ (k)] donnent les mémes ;...
= |l faut donc imposer des contraintes qui

@ rendent I'effet des facteurs identifiables,
@ conservent l'interprétabilité des paramétres.

C’est I'objet du modéle de De Vylder que nous allons étudier
maintenant...
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Les moindres carrés de Vylder
[De Vylder, 1982]

On se place dans un cadre ou I'on suppose que I’inflation
annuelle est constante dans le triangle, car

@ le triangle a été préalablement déflaté, ou
@ la branche considérée a connu une inflation spécifique cste.

Alors on peut retenir la modélisation qui integre directement cette
inflation (avec 0 < i,j < n)

X,',j = x,y,-
Contrainte supp. : Zf:o y; = 1 pour rendre le modéle identifiable.

Les paramétres (x;) et (y;) sont toujours interprétables :
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° Zf:o Xij = Xi Z}’ZO ¥; = X; : charge sinistres de I'année i,

Xii 7 \ .
@ y; = 3 estla cadence (non-cumulée) de réglement en j¢
1
année de développement.

Ainsi,

j j Al
B - B Cijt1 X 2o Yk
X,']' = X,'yl' = Ci»/ = Xik = Xij Yk = C =
k=0 k=0 b

Les facteurs de développement sont donc indépendants de i,
comme dans le modéle Chain Ladder !

%Z{(:O Yk ‘
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Par contre, ces facteurs ne sont plus des facteurs individuels
pondérés... On estime les 2n param. (x;) et (y;) par MCO

minimisant
n n-i

2
A= wij(xij— xiy)
i=0 j=0
Cela revient a résoudre le systéme (en dérivant)
N=i vy v
Do WijXijyj .
Xi=———— (i=0,..,n)
n—i Wi 2
j=0 WiYj
n—i
ijo Wi jXi jXi

Vi= o (U=0...n)
=0 WijX;

XI - fl(yo’ ceey yn)7

Qui peut se reécrire
¥i = gi(X0s ---» Xn).
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On peut déduire les réserves estimées R; des valeurs X;; prévues
par le modeéle :

IE?,' = Z )?i,k = IE? = i IE?,'.

k=n—i+1 i=1

Une méthode de validation intuitive consiste a comparer les
valeurs prévues X;; avec les valeurs observées x;; du triangle
supérieur.

Prop. Dans le cas régulier, la méthode des moindres carrés de De
Vylder produit la provision exacte.
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Retour a notre exemple fil-rouge

Estimations par moindres carrés de De Vylder :
@ Estimation des facteurs :
k 0 1 2 3 4 5

X« | 45055 4761.0 54685 6019.3 6957.8 73721
¥« | 0.70767 0.27 0.01564 0.00427 0.00184 0.00466

@ Estimation des provisions :

k|]o 1 2 3 4 5 |Total
Ri|0 22 36 45 156 2155|2434
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@ Comparaisons avec valeurs observées :

Exercice i 0 1 2 3 4 5

1988 03209 1163 39 17 7 21

3188 1217 52 19 8 21
1989 13367 1292 37 24 10

3369 1286 55 20 9 22
1990 2| 3871 1474 53 22

3870 1477 63 23 10 26
1991 3| 4239 1678 103

4260 1625 70 26 11 28
1992 4 | 4929 1865

4924 1879 81 30 13 32
1993 51| 5217

5217 1990 85 32 14 34
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e Approches déterministes du provisionnement

@ Ajustement de courbes et lissages
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Les méthodes d’ajustement de courbe

Lintérét de ces méthodes est qu’elles permettent

@ de prendre en compte paramétriquement I'évolution des
cadences de reglement au cours des années d’origine,

@ d'effectuer des projections de celles-ci (problématique du
facteur de queue, “tail factor”),

@ inconvénient : parfois la mise en oeuvre (minimisation en
moindres carrés non-linéaires).

Champ d’application : le plus souvent & des loss ratios cumulés

(ou non-cumulés), mais aussi a des réglements (cumulés ou non).
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Exemple 1 : les courbes de Hoerl

Objectif : ajuster une fonction paramétrée par année d’origine sur
les développements des paiements non-cumulés x; .

@ Méthode proposée en 1989 par Y. Kahane.

@ On calibre une densité Gamma car allure proche des
développements observés :

xij = ai(1 + j)Pie v+,

@ q; est le paramétre d’échelle,

@ fi et vj influent sur la forme et la longueur du déroulement de
'année d’origine i.
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Xifvect, 1,2, 1)

T T T T T T T T T T T
0 2 4 6 8 10 0 200 400 600 800 1000

vect Index

— En pratique, Bj, yi peuvent ne pas dépendre de i.

— Minimisation des moindres carrés pondérés non-linéaires
sur les données du triangle supérieur :

-
A= Z Wi lX,"j - (l’,‘(1 +j)ﬁ’e‘7"(1+f)] .
i+j<n
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Estimation des parameétres

Pour simplifier, on se raméne a une minimisation linéaire par
une transformation :

log xij = log @ + Bilog(1 + j) —yi(1 + ).
On cherche donc & minimiser

A = Z w;j [log xij — log @ + Bilog(1 + j) — vi(1 —l—j)]2 .
i+j<n

Pb : 2 minimisations ne donnent pas exact. les mémes solutions...
Astuce : on peut initialiser les paramétres pour la premiére
minimisation en se servant de I'estimation de ceux de la seconde.
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Exemple 2 : la méthode de Craighead

@ S’applique sur les paiements ou loss ratios (LR) cumulés de
chaque année d’origine.

@ Ajuste une exponentielle décroissante semblable a la fonction
de répartition d’'une loi de Weibull a 2 paramétres :

. _1 TI
Lf,j = I_,' (1 — exp [— (I ?: )
1

@ L; le ratio ultime de I'année i, inconnu;

R

@ «; ~ longueur du déroulement, r; ~ forme de la courbe.
@ peuvent ne pas dépendre de i (cf graph des dev. de L; ).
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Estimation des parameétres

On détermine donc les triplets (L;, @i, 7j)i>0 par minimisation de

n n-i j+ 1\7 2
N = AL =L 1 = - — .
22l s(-eel (5] )
i=0 j=0
Les pondérations permettent de moduler
@ l'importance des années d’origine,
@ la prépondérance des délais de réglement.
On déduit la charge ultime par S; = E;L;.

Rq : méthode connue pour estimer des provisions avec une forte
volatilité, en particulier pour les origines encore peu développées...
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Lissage, interpolation, extrapolation

Recours aux méthodes de lissage dans les méthodes CL, pour

atténuer les irrégularités des facteurs de dév. bruts (f;)o—1,_ 1.

Trés souvent, et surtout dans les branches short-tail, la suite
(f;)j=1...u-1 est décroissante dés I'origine :
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Le lissage de ces facteurs empiriques consiste a ajuster sur ces
points une fonction y = f(t), réguliere et vérifiant f(t) > 1.
Les plus utilisées sont :
@ la puissance inverse :
o a2paramétres : f(t) =1 +a(1+1t)°, a,b>0,
o a3 paramétres : f(t) =1 +a(c+1)™®, abx0,
@ I'exponentielle négative : f(t) =1 +ae ™, b >0,
@ la fonction de type Weibull (cf courbes de Hoerl) :

f(t)y=1+a(1+1)°e™, a,b,c20.

Intégration d’un tail factor : parfois, il manque des données dans
la chronique des réglements pour certaines années d’origine
(dissymétrie : délai réglement > nb d’années d’origine).

= Le lissage permet de projeter les facteurs de développement.
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e Approches stochastiques de provisionnement
Introduction

Le modéle de Mack

Munich Chain Ladder

Approches factorielles et extension par GLM
Incertitude d’estimation sur la provision

(]

o
()
o
()
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Objectif dans l'idéal : la loi de probabilité de la provision. Sinon
@ ...estime la volatilité des provisions (fiabilité de I'estim.).

© ...détermine certaines mesures de risque.

Densité de probabilité

Montant des
sinistres
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Modélisation stochastique du rectangle de liquidation

Les paramétres sont estimés a partir des données du triangle
supérieur T.
— Données supposées étre des v.a.r., observées au 31/12/1.

Les méthodes stochastiques s’appuient sur les déterministes, et

permettent d’expliciter/valider les hyp. (analyse des résidus),
de détecter des irrégularités potentielles dans le triangle,
d’évaluer la variabilité des estimations de ceux-ci,

donc d’en construire des intervalles de confiance,

de simuler (Monte Carlo) la sinistralité d’exercices futurs.
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Avantage : on peut, avec une hyp. de loi sur les données d’entrée,
remonter a I'estimation de la loi de proba. de la provision totale R...

Cela implique beaucoup de calculs utiles en gestion des risques :
@ Value-at-Risk,
@ probabilité d’insuffisance...

ATTENTION au probléme de mauvaise spécification du modele !

— Etant donné I'importance pratique de la méthode CL, on a
d’abord cherché une méthode stochastique visant a reproduire les
évaluations de CL : notamment le best estimate de la provision.
Ainsi ont été développés :

@ le modéle récursif de Mack,

@ le modéle log-Poisson de Renshaw et Verrall.
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Pour ces 2 modéles qui reproduisent exactement les provisions CL
en espérance, voici quelques caractéristiques importantes :

@ Le modéle de Mack :

o basé sur les montants cumulés;

o Extension : le modéle “Munich chain ladder”.
— Permet de faire CV les provisions chain ladder obtenues sur
le triangle de charges et celui des paiements dans une méme
branche.

@ Le modeéle Log-Poisson :
o est basé sur les incréments (montants non cumulés);
@ se trouve dans la lignée des modéles factoriels;

o type de modeéle trés largement développé depuis dans le
cadre de I'application du bootstrap aux modéles GLM.
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Notations en environnement stochastique

Les v.a.r. d'incréments Xj;, celles de montants cumulés Cj;

Parmi les n? variables du rectangle de liquidation, celles du
triangle supérieurs sont observées et notées (X;;)itj<n;

La provision pour la i®™ année d’origine (i = 1, ..., I) s’écrit

J
Ri=Ciy-Ciy-i, oualors Rj= Z Xij-

j=d-i+1

La provision globale : R = Y | R; et Fr sa FdR,

Mg(s) = E[e®F] : fonction génératrice des moments (FGM).
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Quantités d’intérét de la loi de R

Lespérance notée E[R],
La variance V[R] et I'écart-type o(R) : o(R) = {/V[R],
Le coefficient d'asymétrie ou skewness, noté y1(R) :

yi(B) = B avec uo(R) = B[(R-EIR]Y].

Pour les moments d’ordre supérieur, on utilisera la FGM;
Quantile d’ordre (1 — 1) de R (déterminer capital éco.) :

VaR,(R) = qi—,(R) = F3'(1 - 7).

C’est la provision suffisante dans 100(1 — )% des cas.
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Incertitude d’un estimateur

Il'y a plusieurs sources d’erreur dans I'estimation d'un
phénomene...

On décompose I'erreur globale en 3 termes. Supposons que le
vrai modéle sous-jacent aux observations est donné par

Xij = u(i,i; 0) + €.
On estime de notre c6té le modele
X,‘j = V(i, IR ¢) + €ijj,

qui donne les prévisions  Xj = v(i, i; ).
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Lerreur de prévision du modele (résidu) vaut X — )A<,-,-, qui se
décompose en

Xij— Xj = [v(i,i; ) — v(i,i; )] + € + [u(i, i; ) — v(i, i; )]

On parle de :

@ 1°" terme : parameter error — incertitude sur I'estimation du
parameétre sachant le modele bien spécifié ;

@ 2°Me : process error — aléa des futures réalisations
(variance), méme si modéle bien spécifié et param. bien
estimés ;

@ 3°™e : erreur de modéle (mis-specification error) —
difficilement quantifiable, mais a ne pas négliger!
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Solvency 2 standards says : Undertakings are not required to
quantify the degree of model error in quantitative terms, or to
re-calculate the value of the capital requirement using a more
accurate method in order to demonstrate that the difference
between the result of the chosen method and the result of a more
accurate method is immaterial. Instead, it is sufficient if there is
reasonable assurance that the model error included in
simplification is immaterial.
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e Approches stochastiques de provisionnement

@ Le modéle de Mack
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Le modéle de Mack
[Mack, 1993], [Mack, 1994b], [Mack, 1994a], [Mack, 2000]

— Ce modele “stochastise” le modele Chain Ladder standard,
— en y ajoutant des indicateurs de risque de prédiction déduits
d’'une hypothése de volatilité au sein du triangle. Il est :

@ non-paramétrique et conditionnel :

@ aucune hyp. de loi faite sur les composantes du triangle,
e conditionnel car les espérances sont prises connaissant les
réalisations fournies par le triangle supérieur T,

@ s’applique a des quantités cumulés :

e montants, nombres de sinistres, paiements, charges;
o cette caractéristique le distingue des méthodes factorielles.
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Hypothéses fondamentales

Le modele de Mack sous-entend les hypothéses suivantes :
@ H1 :indépendance des exercices d’origine :

(Cij)j=1..u 1L (Cij)j=1..0 pouriy # ip.

© H2 (Markov ou AR(1)) : A fit.q.pri=0,.../;j=0,...J-1:
E[Cij+1ICi1, ..., Cij] = E[Cij+11Cij] = f;Cij.

— H1 non réaliste si changements dans la gestion des sinistres,
inflation (affecte par effet calendaire +sieurs exercices d’origine).
— H2 implique 'absence de corrél. entre facteurs successifs.
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Interprétations :

@ pour chaque survenance i, le méme facteur ?, quantifie I' /" du
montant de I'année j a 'année j + 1 (comme CL);

@ ce facteur est # des facteurs individuels f;;

@ la base du modele de Mack est de supposer que les facteurs
individuels de développement sont des réalisations d’'une v.a.
d’espérance inconnue f;.

Lien direct avec la méthode Chain Ladder :

Cette espérance est estimée par I'estimateur ?, de CL.
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Une remarque sur H2

En reécrivant I'hypothése H2 de Mack,

CIH—'I
Cij

EE | (:I17"w (;Lj = Ga

I'espérance de ”“ ne dépend pas de I'information passée.
En particulier, eIIe ne dépend pas de C;;/ Cjj_1.

= On ne peut donc pas utiliser Mack dans 1 branche ou I'on sait
Ci s o Cij s .
que ’C’“ sera — élevé si C—”1 est 4 élevé que pr les autres années
)=
de survenance (et inversement). Pas de compensation donc.
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Propriétés importantes

Sous H1 et H2 et conditionnellement au triangle

T:{Ci,ji i+j<l et isl}

des v.a. observables, on a un certain nb de résultats intéressants.

Propriété 1 :pouri > 1, E[Ciy| T] = (f)=1...fi=i) Ci-i.
Lhypothése H2 donne méme plus généralement :

E[C,'J_H [Cit, .oy C,',n,,‘] = ij,‘ﬁj.
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2 I=j—1 I=j—1
On montre que les facteurs CL fj = 3" Cijr1/ X7 Cij sont
des estimateurs sans biais des param. f;, non corrélés (cf articles).
Labsence de biais se transmet aux valeurs calculées de
montants a 'aide des facteurs chain-ladder standards :

Cin=Ciy=Cjj fi=j...Ty-1

Plus généralement : é,',j = C,‘,/_,' lf/_,‘...?j_1.
Du coupon a .
Ri=Ciy-CiLi
et
n
R = Z R

i=1

Au final, on estime donc sans biais la provision globale par la
méthode de Mack.
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Incertitude de I’estimateur

— Pour mesurer l'incertitude de I'estimateur § d'un PARAMETRE
6, on utilise I'erreur quadratique moyenne (Mean Squared Error) :

MSE(6) = E[(6 - 6)2].
Ici, on s’intéresse a la MSEP (Mean Square Error of Prediction) de

la provision :
MSEP(R;) = E[(R; - R)?,

Dans notre contexte (conditionnel a T), on considére

MSEP(Ciy) =E[(Ciy - Cu)? | T|-
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A

Seul C; est aléatoire grace au conditionnement (C; ; étant
estimé a partir des f; estimés sans biais et des obs.), donc

N PN 2
MSEP(Ciy) = V[CiyI T] + [E[CisI T] - Ciu]

On appelle le 1er terme la process variance (process error), alors
que le 2e est l'erreur d’estimation (parameter error).

= Pour estimer la MSEP d’une provision individuelle, on a donc
besoin de spécifier la forme de V [Ci 4| T].

Remarque : R,‘ - ﬁl’,‘ = CLJ - é,"J = MSEP(/I:\?,') = MSEP(@,"J).
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Estimateur de la volatilité

Pour estimer cette MSEP, Mack introduit donc une hypothése de
plus sur la variabilité au sein du triangle :

H3 :pourj=0,...,J — 1; il existe un paramétre o-i2 tel que :
V[Cij+11Cix,....Cij] = 0]-20,-,- (i=0,../)
Peut aussi étre transcrit sur les facteurs individuels de dév. :
o2
VI[fij1Ci,n Cijl = = (Ii=0,..,1).
Ci

Interprétation : 4+ montants sont grands, + variance des f; diminue.
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Sous H1, H2 et H3; et en suivant la méme démarche que pour Ies
résultats sur f, I'estimateur & est un estimateur sans-biais de O'

I-j-1 Ciit 2
) ij+ 2 .
o7 = I_]_1 ,EO C,j( — —j) j<dJd-=1

’,

du d-triangle

. C .
o Cet estimateur compare les facteurs f; = <2
aux facteurs communs f; donnés par la méthode CL.

@ Pourj = J -1 (un seul terme dc variance impossible), prendre

@ o peut &tre vu comme la somme normalisée de résidus de
Pearson standardisés.

117/243



Pour ce qui concerne l'incertitude sur la provision estimée, on a :

Théoréme. en posant é,-,,_,- = C;-i et sous les hypothéses H1 a
H3, MSEP(R;) peut étre estimée pour i = 1,...1, par

J-1 52 1
MSEP(R) = C?) ) | = = ]
=i f; C// 2ik—o Ck,

Rq : 1er terme = Process Risk, 2eme terme = Parameter Risk.

Pour estimer MSEP(R), on utilise I'estimateur suivant (qui intégre
de la corrélation entre les estimateurs précédents) :

! . il 267
Crk.y — L1
2 ] ,Z, S Cry

k=i+1.,k<I j=I—-i 'j

I
MSEP(R Z {MSEP )+ Ciy

i=1
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Densité de probabilité

4

Best Estimate
Chain Lodder

Mivean de varabalité
Magk 03

Montant des
sinistres
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Comment vérifier les hypothéses de Mack ?

A t'on des moyens pratiques de vérifier la validité des hypothéses ?

@ H1 : le principal obstacle a I’ LL entre années d’origine serait
un effet diagonal. On doit donc tester I'existence d’un tel effet.

@ H2 : test de corrélation sur les rangs des obs. car H2 :

(;.. (;..
Corr(fij_1,f,) =0 & Corr( W2 ) =0 (i=0,..10).
Cij-1  Gij
@ H3 : forme de la variance et de I'espérance a vérifier :

o prl'espérance : graphe des C;j;4 en fonction des C;;.
e pr la variance : caractére aléatoire des résidus.
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H1 : effet diagonal et 1L d’années d’origine

L1 entre années d’origine peut étre remise en cause par
@ changement dans le traitement des données,
@ évolution de linflation...

= affecte plusieurs années de la méme fagon.
Remarque : souvent, cette hyp. est violée a cause d’'une
agrégation trop grande des données... cf ex. commentaire

Notons D; les éléments de la diagonale j :

D = {ijo, Cj,1’1, e Co,j} 0< j <J
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Introduisons les facteurs de développement (qui dépendent des
élements de D;, ces derniers figurant au dénominateur...) :

g {2, S)
Il C]’O 5 seey CO’] .

— Si les éléments de D; sont + grands que d’habitude, alors les
éléments de A; seront + petits.

Pour chaque colonne k, on marque les facteurs de développement
@ d’'un G s'ils sont plus grands que la médiane de la colonne,
@ d’un P s'ils sont plus petits que cette médiane,

@ on notera une étoile qui correspond a la médiane lorsque
le nombre d’éléments de la colonne est impair.
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Pour chaque diagonale (1 <j < J - 1), on compte alors
@ Gjle nombre d’éléments G de la diagonale considéree,
@ Pjle nombre d’éléments P de cette méme diagonale.

— S’il n’y a pas de changement entre année calendaire, le
nombre de G; et de P; doit étre similaire puisque chaque facteur
de développement a une chance de 50% d’excéder la médiane.
Autrement dit, Z; = min(P;, G)) = (G; + Pj)/2.

Pour élaborer un test, on doit déterminer les 2 premiers moments
de Z;. Dans le cas de I'hyp. Hy (non-effet d’'une année calendrier),

P ~ B(n=Gj+ P;, 0.5).

idem pour G;.
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n; —1 Nj
On peut montrer pour la loi du min que E[Zj] = E’C,’,’{i 12—,%, et

nj(nj—1)
4

nj—1 ni(n/ - 1)

Var[z] = ~Cm —n— TEIZ] - (B[Z)])

ou mj est la partie entiére de (n; — 1)/2.

Pour considérer ttes les diag., on introduit Z = 2o + ... + Z,_1,
avec E[Z] = Y E[Z] et Var[Z] =} Var[Z].

Comme Z est somme de v.a. i.i.d., on applique le T.C.L. et

asymptotiquement Z suit une loi normale.

= On peut construire un IC : nous ne rejetons pas I'hyp. d’effet

non significatif (au seuil 5%) d’'une année calendaire dés lors que

E[Z] - 2/Var[Z] < Z < E[Z] + 2/Var[Z].
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H2 : non-corrélation des coef. de dév. successifs

Un test de corrélation est nécessaire pour valider cette hypothése :

en 'occurrence ce sera le test de Spearman.

En effet, on veut valider le fait que Ie ratio ’”‘ soit le méme

C oy qui peut étre plus grande
ou plus petite que “d’habitude”.

Pour cela, pour chaque colonne k,
@ on calcule le rang rix de chaque facteur individuel de
développement,
@ on retire ensuite le dernier coefficient de la colonne (en bas),
et on retrie en notant sjx le nouveau rang des facteurs de
développement restants ;
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© on définit alors la statistique (rho de Spearman) :

n—k
rlk_slk
k1—62 S

1

On peut alors montrer que
0 —1<Tg<,

@ sous I'hypothése de non-corrélation :

E[Tk] =0 Var[Tk] =

(2<k<n-2)
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On veut tester 'hypothése sur 'ensemble du triangle et non pas

par paires de colonnes d’ou l'utilisation de la statistique globale :

n-2 n-2

n—k-1

n—-k-1
T = — T, = Tk
Iy LN o

C’est une moyenne pondérée des Ty, par des poids
inversement proportionnels a la variance!

Ainsi E[T] =0 et Var[T] = m

Sin—k > 10, la distribution de Ty est approx. gaussienne.
Or, T est la somme de variables i.i.d. Tj.
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Par le T.C.L., T est donc aussi asymptotiquement normale !

Etant donné que le test n’est qu’approximatif et qu’on veut détecter
des corrélations dans le triangle entier, on ne considére pas un IC
a 95% = celui-ci n’aurait que peu de chance de rejeter I'hyp. de
non-corrélation.

On choisit donc un intervalle a 50%, ce qui signifie qu’on ne
rejettera pas I'’hypothése de non-corrélation dés lors que

-0.67 <T< 0.67

V(n-2)(n-3)/2 V(n-2)(n-3)/2
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Construction d’intervalles de confiance

H1-H3 ne permettent pas de déterminer la description compléte de

la distribution R des provisions.
Mais on a des IC en supposant une loi pour la provision R, dont
espérance/variance seront fixés = aux estimations des moments :

@ siR ~ N(u,o) (IC au seuil 5%) :

ICos94(R) = |R — 1.96 SEP(R); R, + 1.96 SEP(R)|.
0 siR~LN(u,0) (u=1InR-%, 02 =In(1 + MSEP(R)/R?)) :

ICy50,(R) = [exp(u — 1.9607); exp(u + 1.960)],
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e Approches stochastiques de provisionnement

@ Munich Chain Ladder
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Ameélioration : le Munich Chain Ladder
[Quarg and Mack, 2008]

La méthode de Munich Chain Ladder est relativement récente,
puisqu’elle a vu le jour en 2003 dans un colloque ASTIN.

Particularité : permet le traitement du probléme crucial de
non-convergence

@ des provisions CL issues du triangle des paiements d’un c6té,
@ et de celui des charges d’autre part.

On ne la présente pas ici, mais il faut savoir que cela 3...
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e Approches stochastiques de provisionnement

@ Approches factorielles et extension par GLM
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Modeéles factoriels stochastiques

Ces modéles sont basés sur les paiements non-cumulés.

Données stockées ds le vecteur X des incréments (Xj;)ijo,...n, Qui
satisfont une hypothése fondamentale d’'indépendance :

H: Vi,j=0,..,n, les Xjsont 1.

Ceci implique que
@ la compensation (recours) de reglements de sinistres d’un
délai au suivant pour une méme année d’origine est exclu;;

@ cette U estinvalidée par des variations annuelles d’inflation
des montants, introduisant des corrélations entre Xj.

En contrepartie,
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@ on a des tests statistiques qui jugent du caractere réaliste de
I'hypothéese d’ 1L sachant les réalisations du triangle sup. T

@ on peut parfois estimer toutes les caractéristiques de la loi de
R, y compris sa distribution, avec ce type de modeéle.

— Ces modéles sont majoritairement paramétriques : on définit
une loi de proba. pour les v.a.r. Xj.

— Tous les Xjj sont munis du méme type de loi (mais auront un
parameétre # évidemment, noté 6 : parameétre de tendance)..

— Certains modéles font parfois intervenir un paramétre

additionnel (dit de dispersion), ¢.

Avantage : on peut intégrer une variable exogéne adaptée a la
problématique en pratique (car modéle de régression).
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— Modeéles explicatifs tres proches de modeéles de tarif. IARD.

Notations :
o uj = E[Xj] = E[Xj|i,]] : espérance de Xj. Des facteurs de
risque (covariables) influent cette moyenne (cf plus loin).
@ f(uj, ¢) estla densité de la loi des X : Xj ~ f(uj, ¢).

On rappelle le calcul des provisions (la provision du premier
exercice (i=0) est nulle puisqu’on a tout observé!) :

J |

R= > X R= >R

j=d=i+1 i—1

Rq : théoriquement, on pourrait trouver la loi de R par convolution
des lois des Xj;, car sous (H) c’est une somme de v.a.r. L.
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En pratique, la convolution de ~ variables est complexe. On

peut passer par la FGM de R car

(n+1)
2

n

Mia(s) = E[e ™) = [ [ Min(s) = [ ] [ M)
=1

i=1 i+j>n
La FGM nous permet de générer les moments, avec

n

B[R] =) > E[X] Var[R] = > > Var[X]

i=1 itj>n i=1 i+j>n

et ainsi de suite pour les moments d’ordre supérieur...
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Modélisation des X : 'usage des GLM
[McCullagh and Nelder, 1989]

On a recours aux modeles GLM, trés populaire en actuariat...

Ces modeles économétriques permettent de
@ modéliser des réponses de # domaines de déf. : R, R*, N;
@ intégrer toute type d’information exogéne influant sur réponse,
@ quantifier 'impact des facteurs de risque.

Nécessite d’introduire 2 hypothéses fondamentales :
@ individus (ici les incréments X ;) 1L entre eux;
@ variables explicatives (survenances et délais ici) 1L 2 a 2.
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Composants d’un GLM

O Laloi de la réponse aléatoire Xj : par hyp. elle € a une
distribution de la famille exponentielle.
O Le prédicteur 0; est linéaire et déterministe : par ex.

O = u+ azlji—2 + ... + apli=p + B2lj=2 + ... + Bnlj=n

© La fonction de lien g : monotone, dérivable, inversible t.qg.

9(EX;11,]]) = 9(uy) = 6j.

Modéle linéaire : g = Id 6 = u+aj+pj Xj~ N(0j,¢ = o?).
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Les variables explicatives

o Leffet période (année d’origine) : considéré comme
catégoriel (ordinale ou non), a n modalités (1,...,n).
o Une des modalités sert de référence (ex. 1),
o les autres sont représentées par les indicatrices
d’appartenance a une modalité, d’ou (n — 1) param. as, ..., @p.

@ Leffet ancienneté (ou délai) : naturellement quantitatif, mais
considéré ici comme qualitatif/catégoriel. On a le choix entre
e un facteur a n modalités (8; = 0, modalité de réf. par ex.);
e une variable quantitative & valeurs entiéres : effet sur les X;;
modélisé par fonctions paramétrées de j (3j, BIn(j + 1), ...)
o Leffet année calendaire (diagonal) : mobiliserait 2(n — 1)
parametres /.
e Prun triangle 3 inflation cste, paramétrage se limite : ;. = p.
o Inexistant en pratique dans les modélisations.
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Caractérisation d’'un GLM par sa fonction variance

Parfois, on caractérise un GLM par sa fonction variance plutét que
par sa distribution. La fonction variance V(.) est définie par

Var(Xy) = ¢ V(uy),
ot pj = E[Xj].

Voici quelques fonctions variance pour des modéles classiques :
@ V(uj) = 1 pour le modeéle gaussien,
@ V/(ujj) = pj pour le modéle log-Poisson,
o V(uj) = M,-Z,- pour le modéle Gamma.
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Exemples de GLM utilisés en provisionnement

e Gaussienne : Xj ~ N(6j, ¢), pij = 0, ¢ = o2, V(i) = 1
e si lien multiplicatif : 8; = x; y; = moindres carrés de De Vylder

e si lien additif et application aux log-incréments = extension
vers le modele lognormal.

o Loi Gamma pour Xj : E[Xij] = uj, ¢ =1, V(uj) = 15 ;

e on retombe sur le premier modeéle de Mack (1991) ;
e donne des résultats similaires a CL.

@ Loide Poisson pour Xj : E[X;] = wjj, ¢ =1, V(uj) = ujj;
@ avec un lien log — modele log-Poisson (cf [Verrall, 1991]),
e les provisions estimées coincident avec celles de CL.
e résultat similaire avec le log-Poisson surdispersé (¢ > 1), sauf
que V() = pj(1 + duy)-
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Exemple de la régression Lognormale

Dans cet esprit des modéles factoriels, la régression lognormale
est 'un des modeles pionniers.

@ Tout premier modéle stochastique, né de Kremer en 1982.
@ Introduit pr I'analyse de provisions de sinistres (X positif).
@ Ony utilise le modéle linéaire gaussien suite a une transfo.

On suppose que
Xj ~  LN(6,02),

ou o2 est un paramétre de dispersion.

— Par définition, on sait que Y;; = In(X;;) ~ N(mj,c?) avec

E[Yijl = mj = p+ ai + B;.
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(De maniére équivalente, Yj; = u + ai+ Bj + €, € ~ N(0,0?))
En utilisant la transformée de Laplace, on obtient

{% = E[X);] = eMito°/2 = gutaithito®/2,
2

VarlXy] = E[X I (e ~ 1) = e2mrie* (e

-1).
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Le modele de Mack vu comme un GLM

Il s’agit en fait de supposer une distribution gaussienne pour les
montants cumulés...

 Hypothese sur la distribution des montants cumulés,
» Modéle récursif,

* 7 estimés par maximum de vraisemblance,

« Estimation séparée de a? .
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Le modele de Poisson surdispersé

Il s’agit de considérer une variable aléatoire surdispersée.

Pour un modeéle de Poisson classique,

X~P) = E[X]=V(ar(X)=21

Ici, il s’agit de considérer le modéle

X
X ~ Psurd(A, ¢) & i P(g)

et donc
E[X]=24 et Var(X)= ¢l = ¢E[X].

145/243



e Approches stochastiques de provisionnement

@ Incertitude d’estimation sur la provision
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Estimation de la réserve globale

Dans ce type de modeéle, on a donc

>
=)

C’est le best estimate de la provision.

On estime par max. de vraisemblance sur les observations du
triangle supérieur, en notant dans la suite

@ L[6;(xj)] la vraisemblance de I'échantillon;

@ 0= (6, (@i)i=1,.n, (Bj)j=1,..n) le vecteur des paramétres a
estimer (qui integre éventuellement ¢).
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..........

propriétés asymptotiques classiques).

Par invariance fonctionnelle de la technique du max. de
vraisemblance, on en déduit les EMV de ujj = E[Xj] :

Ainsi, TEMV de E[R/] est donné par E[R]] = Z].J:J_,H i

et celui de E[R] vaut E[R] = 3|, Z]-J:J,,-H Aij.-
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Risque d’estimation - évaluation

Voir I'article de [?].
Lorsqu’on veut estimer l'incertitude sur I'estimation de R, on a
besoin de connaitre les covariances entre les différents yj; car
Var [E[RI]] = Var [Z] n—i+1 /“lll]
= XjVarlp] + ¥, 2, Covif,, ).
Var|B[R]] = Var[3l,E[R]]
= n j n—i+1 Varbl'}]

n n A A
+ 2y Zip Z‘4}'1:n—i1—|—1 jo=n—ip+1 COV[/Ji1j1’/Ji2j2]-

149/243



Pb : le calcul exact de ces valeurs est svt problématique...

— On pourra alors approcher ces quantités par # méthodes.
@ Techniques de reéchantillonnage :

@ bootstrap,
o ...

@ Expressions analytiques asymptotiques :

@ basées sur la méthode Delta,
@ nécessite suffisamment de données.

— La méthode Delta ne fait intervenir que des produits matriciels,
d’ou sa facilité d'utilisation...

— Ces deux méthodes donnent de plus des intervalles de
confiance pour la provision globale E[R] !
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1ere approche : la méthode Delta

Par définition, & = (i1, (). (3;)) est solution du systéme qui annule
les dérivées partielles d’ordre 1 de la log-vraisemblance :

alnL
n _o
"
oint _ (i=1,...n)
e
n
= 0 j == 1,..” n).
0B, ( )

Ce systéme se résoud par l'utilisation d’algo. t.q. Newton-Raphson

(inspirée de la formule de Taylor-Lagrange) : Ox1 = Ok — LL((HHkk))
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f(x)

A

f(x,)

f(xa)

' slope (first derivative)

XnXo

Objectif : trouver le 0 d’'1 fonction...Déplacement dans le sens

opposé du gradient.
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Du coup (cf formule Newton-Raphson), on se retrouve a inverser la
matrice d’information de Fisher (Hessienne en la densité des
obs.) :
#InlL
10) =|——]|.
0 (")

Linversion de cette derniére matrice n’est rien d’autre que la
matrice de covariance asymptotique de I'estimateur 6!

Conséquences :
@ sur la diag. la variance des estimateurs : V(), V (), V(3;);
@ les autres termes sont les covariances entre ces estimateurs :

Covl[di] Covlji, 3] Cov[Bj, &j]
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Sous certaines conditions de régularité de la vraisemblance, on
sait que 6 possede de bonnes propriétés :

@ il est asymptotiquement efficace (sans biais et de variance
minimale),

@ il est asymptotiquement gaussien.

On déduit de tous ces résultats les variances asymptotiques
des best estimates des provisions...

Pour cela on utilise la méthode Delta, utile lors de I'introduction
d’'une fonction appliquée a I'estimateur dont nous disposons.
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Application de la méthode Delta
Exemple du modele additif

@ Par invariance fonctionnelle de TEMV : 7j; = /i + @; +B,-.
@ On définit 'application 7 : R2™-1 - R™ telle que
6 — n(6) = (ny).
© La jacobienne J, de cette application vaut pour l'indice (i,j)

oy _, Omy _ Jrsik=i ony  [1sil=j
ou - Oak B 0 sinon ’ B - 0 sinon
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© Par la méthode Delta, on sait que 7 = (7j;) est
asymptotiquement normal, centré en r et de matrice de cov.

Z(ﬁ) = JI] I (9) J,Z—
ol J; est la transposée de Jj,.

On suppose la fonction de lien g telle que ujj = g(n;j) avec :
@ g dérivable;
@ g strictement monotone.

Notons D la jacobienne de la transformation de 7; en y;; par g.

Cette matrice est diagonale d’éléments g (77;).
Par suite, on obtient I'estimateur 1 = (i), asymptotiquement
gaussien noté [ ~ N(u, > (1)) avec © (1) = D ¥(7) D.

156/243



Puisque
n
E[F')i] = Z HMijs
j=n—-i+2
on déduit que la jacobienne J, de cette transformation a en ligne i
Osik #i

=<40sik=il<n-i
1sik=il>n-i

JE[Ri]
Ok

On en déduit que pour tout i = 1,..., n, les variables aléatoires
BIR] ~ N(E[R]. Z(E[R])).

avec L(E[R]) = J, Z(2) J].
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On procéde identiquement pour avoir 'estimateur E[R] de E[R] car

n

E[R] = ) E[R].

i=1

De la normalité asymptotique de E[R], on déduit un intervalle de
confiance pour E[R] a un certain niveau de confiance 1 — a :

IC1-o = |E[R] - q1-0/2Z(B[R]); B[R] + q1-0/2Z(E[R])] .
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e Distributions prédictives et mesures de risque
Introduction

Distribution prédictive par convolution

Inversion de la fonction génératrice des moments
Utilisation des moments

Techniques de rééchantillonnage
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Généralités

Comme nous I'avons vu, il ne suffit pas de connaitre les moments
de R. On aimerait connaitre des quantiles de la loi de R.
Il faut donc estimer la loi de R : c’est la distribution prédictive.

On dispose globalement de trois moyens de I'obtenir :
@ la convolution des incréments Xj;, supposés L ;

@ l'approximation par spécification paramétrique d’une loi :
estimer les moments de R pour en déduire une distribution
prédictive approchée basée sur ces moments;

© les simulations Monte-Carlo aprés rééchantillonnage
(bootstrap) des résidus d’'une modélisation.
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La technique de convolution : additivité

Il est rare de pouvoir obtenir la loi prédictive de R par
convolution directe si la loi générique des X;; est additive.

C’est pourtant le cas avec les modéles suivants : Poisson, Poisson
surdispersée, gaussien.

— En effet, si les Xj; ~ P(u;) alors idem pour R = 3, >, Xj; :

n n

R ~%(ur) avec ,UR:Z Z Mij-

i=1 j=n—i+1
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— On peut aussi utiliser 'approximation normale N (ug, ug)

dans le cas ou ug > 50 :

P(RSr):dD(r_ﬂR).

VAR

Ainsi, on peut obtenir le quantile d’ordre (1 — 1) de R par

qa(R) = &7} (R) =pr+ ViR qis,

ol g1, est la quantile de la loi normale centrée réduite.
On déduit des propriétés d'invariance des EMV que

675’:)7(’:{) = ﬁH + \//:\l_R qQ1—y-
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— On peut encore appliquer ce raisonnement a la distribution de
Poisson surdispersée. Ainsi,

XU ~ Psurd(ﬂijv ¢) = R ~ PSUI’d('uR’ ¢)7

avec ur = Niq Xisjon Mij-

Dans ce cas, & ~#(42) etdonc

’ ¢~
p(Rsr)¢(r\/;%),

puis

GSU9(R) = fin + b im a1y
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@ Distributions prédictives et mesures de risque

@ Inversion de la fonction génératrice des moments
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Autre méthode : inversion de la FGM

Rappelons la densité d’'une loi € famille exponentielle :

fx(xj; 0, ¢) = exp

Et la FGM correspondante : Mx(s) = exp {[b(6 + s¢) — b(0)]/#}.

La fonction génératrice des cumulants (FGC) est définie par
1
Cx(s) = InMx(s) = 4 [b(6 + s¢) — b(6)] .

— Idée : appliquer ces résultats au triangle, sous réserve que la
distribution des Xj admette une FGM et qu’on ait I'hyp. d’1L.
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En effet, on peut déduire la FGM de R grace a I’ L :

n

Mg(s) = ]—[ Ma(s)=| | | | Mx(s).
i=1

i=1i+j>n
En se remémorant que 6 = 6(u;) = b~ (i),

DT (blOGuy) + s8] - b(6(uy))) -

1
Mr(s) = exp{—
¢ = T

1

D'ou FGC : Cr(s) = p st Zitjon (DO(wi) + 5] = b(6(i)))-

On a un systéme a 2 inconnues et 2 équations : FGC et FGM
servent a estimer /i;; et # par maximum de vraisemblance.
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@ Distributions prédictives et mesures de risque

@ Utilisation des moments
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Distributions approchées

Cette technique nécessite le calcul des premiers moments de la
charge sinistres pour approcher la distribution de cette charge.

En actuariat, on utilise souvent une des 4 méthodes suivantes :
@ approximation Normal-Power,
@ transformation d’Esscher,
@ loi Gamma translatée,
@ loi Gamma Bowers.

Ces techniques sont utilisées pour obtenir des approximations
fermées de la FdR de R. Nous ne les développons pas ici.
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@ Distributions prédictives et mesures de risque

@ Techniques de rééchantillonnage
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Rappel sur le bootstrap
[Efron and Tibshirani, 1993]

Méthode de rééchantillonnage qui substitue a des calculs stats
complexes I'usage des simu Monte Carlo sur I'échantillon originel

@ Permet de réduire le biais d’'un estimateur,
@ Et permet d’en estimer sa variance.

Introduit par Efron en 1979, largement utilisé aujourd’hui.

— Justification théorique plutét complexe.

— Mise en oeuvre simple car requiert uniquement des simu.
Ici on appliquera le bootstrap au cas de v.a. i.i.d.
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Concept du bootstrap

On considére une variable aléatoire X dont la fonction de
répartition, Fx, est inconnue.

On observe un échantillon i.i.d. (X, ..., Xp). Puisqu’on estime a
partir d’'un échantillon aléatoire, il y a une incertitude : I'estimateur

0()(1,..” )(n)
est donc lui-méme aléatoire (ex pour 8(Xj, ..., X5) : moyenne).

Q : de combien varie 6(Xj, ..., Xp) lorsque (X, ..., X,) varie ?
@ quelle est la variance de 6(Xi, ..., Xn) ?
@ quelle est la distribution de 6(X1, ..., Xp) ?
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Ex. : comment approcher la distribution de 6(F,)?

Example (Echantillon normal)

Soit Xi, ..., X100 un échantillon normal A/(#,1). Sa moyenne 6

est estimée par
100

A 1
0 = izii §£:<)L

i=1

Moyennes de 100 points pour 200 echantillons

Variation compatible avec la loi (connue) 6 ~ A/(6,1/100)

Ici 6(F,,) = 6 est FEMV de 6, donc on sait que 8 ~ N/(6,1/100).
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Pourquoi le bootstrap ?

On peut estimer ce param. (ici moyenne), mais on ne connait pas
'incertitude de cette estimation (sauf cas particulier comme ici
car on pris une gaussienne et 'TEMV).

Ceci est également lié aux difficultés suivantes :

@ on observe un seul échantillon en général,
@ la loi de I'échantillon est souvent inconnue,

@ [|'évaluation de la variation moyenne de 6(Xj, ..., X,) est
essentielle pour la construction d’'IC et de tests comme

Ho: 0<0

= Le boostrap est souvent utilisé dans le cas de petits
échantillons pour évaluer I'incertitude des estimateurs.

173/243



Notion fondamentale : CV de la FAR empirique

Par le théoréeme de Glivenko-Cantelli, un estimateur sans biais et
convergent de F est la fonction de répartition empirique :

1 n
FR(x) = P Z Ix<x — F(x)=P(X<x).
i=1

On distingue en général
@ le bootstrap non-paramétrique : loi de F inconnue.
@ le boostrap paramétrique : loi connue, paramétre inconnu.

Rq : boostrap + efficace si on connait F et on cherche son param.,
mais on peut perdre en robustesse si mauvaise spécification !

174/243



CV de la FdR empirique

Example (Echantillon normal)

Estimation de la fonction de répartition F' a partir d’'un
échantillon normal de 100 points et variation de cette
estimation sur 200 échantillons normaux
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Principe

Pour toute fonctionnelle de la FdR, de la forme

O(F):fh(x) dF(x),
on utilise 'approximation

o(F) = 6(F)
= fh(x)df—',,(x)

1 n
= 5 2,h00
i=1
qui correspond donc a un estimateur des moments.
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Comment approcher la distribution de 6(F,)?

Comme 6(F,) = 6(X4, ..., Xp) ot Xy, ..., Xp " E remplace F par

6(Fp) ~ 6(X:, ... X3) avec X;, ..., X, g p

— F, étant connue, on peut simuler suivant F,,, donc approcher la
loi de 6(X?, ..., X;;) au lieu de celle de 8(F,) = 6(Xi, ..., Xn).

— La loi de F;, donne une probabilité de 1/n & chaque point de
I'échantillon {xq, ..., Xn} :

PFr(X* = x;) = 1/n,

donc il suffit d’opérer des tirages avec remise dans (X1, ..., Xp).
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Distribution bootstrap d’un estimateur

Ici, B désigne le nombre d’échantillons bootstrap.

@ Pourb=1,..,B,
e générer un échantillon X2, ..., X? suivant F,
e construire I'image correspondante :

6° = 6(Xb, ..., xb)

@ Utiliser I'échantillon

~

0',...0°

pour approcher la distribution de 6(Xj, ..., X).
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Mise en place pratique - Distribution de la médiane

Ici, B désigne toujours le nombre d’échantillons bootstrap. Je veux
estimer la distrib. de I'estimateur de la médiane de mon échant..
@ Pourb=1,..B,
e je génére un échantillon X2, ..., X? suivant F,
o je calcule la médiane empirique sur mon échantillon boostrap :

=0(XP, .., x5

@ Jai un échantillon de médianes &', ...,68 pour approcher la
distrib. de la médiane théo. inconnue 6(Xj, ..., Xp).

Je peux par ex. prendre la moyenne (principe de Monte Carlo) :

1 ~
Gbootstrap(x) = E Z Hb-

179/243



Précision de I'estimateur Bootstrap

Lestimateur Bootstrap converge a la vitesse VB.

Cela veut dire que sa variance est donnée par

1

Mm

Var(6

o
Il
A
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Variation moyenne par procédure boostrap

La variance d'un estimateur 6( X1, ..., X)) est donnée par
2
Var(F) = Er [(9(x1, o Xn) — BE[0(X1, o x,,)]) } .
Cette variance est approchée dans le cas du boostrap par
N 2
Var(Fn) = E,A_—n |:(9(X1 5 eees Xn) - E,:—n [9(X1 5 eeey Xn)]) } y

elle-méme approchée par I'estimateur des moments

B B
_ 1 2\ 5_ 1 b b
Var(F Z ( . 0) avec § = B Z 0(X?, ... X5)

b=1 b=1
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Bootstrap et provisionnement par GLM
[England and Verrall, 2001b], [England and Verrall, 2001a]

On rappelle certaines notations :
Xi  f(xij)  wp=E[Xj]  Var[Xj] = ¢ V(u;)
Covariables GLM : années d’origine et délais de réeglement.

La technique consiste a appliquer le bootstrap aux résidus d’'un
modéle pertinent déja calibré.

On applique le bootstrap aux résidus car les données Xj; sont L
mais pas i.d.! — rééchantillonnage des résidus i.i.d. (rj)itj<n-

xij — E[Xj Xij — fj
Ici, résidus de Pearson : r,.j(.P) _ Xy 2B X .
\/Var(X,-,-) \/Var(X,-j)
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On peut considérer plus simplement
(P) _ Xif — i
’ V (ki)

Ensuite, on construit 'observation boostrappée x,j‘ donnée par

Xi; = fij + rj A V(fq),
ou r,.;f est le résidu de Pearson bootstrappé.

Remarque : pas obligé d’estimer le param. ¢ (s’agit d’une
constante de normalisation que I'on ne réinjecte pas ensuite...)
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Quelques remarques importantes

— La loi des résidus ne doit PAS dépendre des param. du modéle
(on les appelle “pivots”) | OK pr lognormale, Poisson et Gamma.

— La dispersion ¢, si constante pour le jeu de données, peut étre
omise ds le calcul des résidus et de I'observation bootstrappée.

— En calibrant un GLM, 2 observ. seront = aux prévisions (car
modele construit sur une seule observ.!) : Xoy et figy, ainsi que Xjg
et fijp = ces résidus n’étant pas réalistes, il ne faudrait pas les
considérer dans le tirage des résidus bootstrappés...

— Rigoureusement, les résidus de Pearson ne sont pas i.i.d. = on
utilise donc parfois les résidus de Pearson standardisés (pas tjs!).
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Application : distribution de la RESERVE MOYENNE

Exemple d'application au param. E[R] d’'un triangle d’'incréments
(Xj)it+j<n, une fois choisi le modéle GLM {,u, (@), (/3,-)} JMij, V., .

@ Estimation des coef. de régression, puis des prévisions fij;

BRI =R= > iy

i+j>n

@ Calcul des résidus de Pearson sur le triangle supérieur (on
peut aussi calculer param. dispersion ¢ = permet rescaler
résidus en tenant compte du nb d’obs. et nb de param.) :

A 1
¢=——ro Z (r,(P)) (M : nb obs., p : nb param.)
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@ Procédure bootstrap : pour b =1, ..., B,
@ obtention d’un échantillon bootstrap de résidus (r;]‘fb);+,-5n par

rééchantillonnage de I'ensemble des résidus initiaux ;
e détermination du triangle d’incréments boostrappés (x;b),-ﬂvg,,

X,/b = fij + r;b @V(ﬁu‘)-

o pour le modele retenu et ces nvelles données du triangle T,
re-estimation du GLM et prévisions des (ﬁ}}b)i+j>n pour

BRI = A" = )
i+j>n

o stockage de R*?; puis b « b + 1 et recommencer !

@ Utilisation du B-échantillon bootstrap (R*?),_1
o estimer le biais de E[R], IC pour E[R]...

yeens
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Exemple : bootstrap sur modele de Mack
(hyp. : réserve gaussienne)

En formulant I'algo. sur le modéle de Mack, on fera les étapes :
@ Transition triangle d’incréments vers triangle cumulé.

@ Application de CL standard : détermination des facteurs de
développement et de la provision correspondante R.

© Recalcul des cumulés initialement observés (i + j < n) par
application rétrospective des facteurs de dév. a la diagonale
calendaire ultime du triangle supérieur.

© Calcul des résidus de Pearson de ce modeéle par

r(P) Xl/ ,u,]

N
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@ (Ajustement possible des résidus pr correction d’1 biais de
prédiction, pour avoir une variance unitaire)

M_ )
M-pi >’

i+ j < n, Mnbobs., knbparamGLM

© Construction d’échantillons bootstrap des résidus ajustés de
Pearson.

@ Reconstruction des triangles supérieurs d’'incréments
bootstrappés.

© Calcul des nouveaux facteurs de développement.

@ Construction du triangle inférieur de montants cumulés
bootstrappés.

@ Déduction de la provision pr chaque échantillon bootstrap.
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Schématisation de la procédure (Mack)

—» Modélede  __ , Eqimationdes A
Mack /

Calcul de résidus i.i.d. 77 ;

Rééchantillonner ces résidus N fois

Inversion de la formule des —»

résidus
Estimation des paramétres du —
modéle

i An=1 7 An=l A2 An=1
Lntroductlon de la > 1D N(ﬂ/D" ,O'/D" )
process error » i+ 0 i . .

n=k n=

=1 R Rtm‘

Calcul de la provision totale —» R;[ tot

L Distribution empirique des provisions
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Bootstrap sur modele log-Poisson surdispersé

Prop. : les prévisions par GLM Poisson surdispersé coincide
exactement avec celles du CL = on peut appliquer le méme algo !
Mack/ODP donnent la méme estimation de la provision moyenne,
mais les hypothéses de volatilité sont # et donc la SEP est #!

Algorithme simple avec des allers-retours cumulés-incréments :

@ Transition triangle d’incréments vers triangle cumulé, et
application de CL standard : détermination des facteurs de
développement et de la provision correspondante R.

© Calcul par application rétrospective des facteurs de dév. a la
diagonale calendaire ultime des valeurs cumulées prévues en
triangle supérieur. Déduction des incréments prévus.
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© Calcul des résidus de Pearson et de ¢ :

Xii — fij ~ 1
f".E.P) 2T H et ¢ = = Z( (P))2

VA

© Construction d’échantillons bootstrap des résidus ajustés,
puis calcul des triangles sup. d’'incréments bootstrappés.

@ Calcul des nouveaux facteurs de développement (en effet, on
sait que le modele ODP donne la méme provision en
moyenne que le CL, donc c’est plus rapide de faire comme
pour Mack) : construction triangle inf. de montants cumulés
bootstrappés.

= Déduction provision pour chaque échantillon bootstrap.
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Bootstrap - MSEP de la provision totale

Définissons I'erreur standard associée au bootstrap par

B
SE®(2) = J L@ - ap

avec /i le MLE, et i® I'estimateur d’'un échantillon bootstrap.

Puis on en déduit I'erreur de prévision globale par la formule :

A M
b~ — ~ b(~\2
SEP®(p2) \/(;5/,( + —M—pSE ()3
Engénéral, M =n(n-1)etp =2n-1 (GLM).
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e Cas particuliers
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Provisionnement multivarié, multi-branches

Prise en compte de la corrélation entre les branches : cf travaux de
C. Genest.
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Prise en compte des recours
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Facteurs de queue pour branche a developpement long

Quantification de l'incertitude
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Cas de reouverture de sinistre
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Méthode de Schnieper (1991)

Principe : décomposition des IBNeR (triangle D) et IBNyR (triangle
N)...

Triangle C

Triangle D

Cij = Cij-1— Dij+ Nj;
Pour obtenir les triangles d’'IBNeR et d’'IBNyR, une base de
données détaillées pour tous les sinistres et leurs évolutions est
nécessaire : il faut pouvoir disposer de I'évolution de chaque
sinistre de maniére individuelle. contrairement a la méthode de 198/243



Sinistres graves : méthode de DHV

Méme principe : décomposition des IBNR en IBNyR et IBNeR.

Projection des IBNeR : variante de Chain Ladder sinistre par
sinistre.

Projection des IBNyR : méthode fréquence-co(t, colt a partir des
IBNeR et fréquence par Bornhuetter-Ferguson.

Rq : voir le mémoire d’actuariat d’Eric Gettler.
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@ Calcul de SCR provisionnement & un an
@ Contexte et notions fondamentales
@ Le modéle de Merz & Wiithrich
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SCR et ruine économique

Le SCR (Solvency Capital Requirement) est un montant a
provisionner permettant de se prémunir contre une ruine
économique pour 'année a venir dans 99,5% des cas.

Il est défini a partir des fonds propres (FP). 4 précisément, il faut

que
FP-SCR >0

dans un an dans 99,5% des cas.

Les provisions évaluées en Best Estimate évoluent dans le temps :

cette variation vient modifier les FP dispo, donc impacte le SCR.
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Le SCR est donc indirectement lié a un quantile de la distribution
des pertes, et directement lié au quantile de la distribution des
FP (qu’il faut donc pouvoir estimer...).

Notons L la variable aléatoire des pertes.

Pour évaluer le SCR(L), on cherche ainsi

Goges(L) = inf{l: P(L <) >99.5%).

La loi demande de provisionner BE + SCR, donc en tout g gg5(L) !
Dans ce cadre, le SCR correspond au capital économique.
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SCR ~ capital économique

Distribution des pertes

Perte attendue

Probabilité

K : capital économique alloué = Perte inattendue Pertes
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Formule standard ou modeéle interne

Pour la mise en place de la réforme européenne Solvabilité 2 début
2016, on a recours a plusieurs méthodes pour évaluer le SCR :

@ utiliser la formule standard fournie par les autorités;

@ développer un modéle interne partiel : i.e. utiliser un modéle
interne pour certains modules de la matrice des risques, voire
utiliser formule standard en modifiant des parameétres (USP)

@ développer un modele interne “total”.

L Autorité de Controle Prudentiel et de Résolution (ACPR) est
chargée de valider ces # approches au sein des entreprises.
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Modules de risque sous Solvency Il

SCR
————+——
=3
r
T T T
——
L e e ST | s | owes
|- Action |- Mortaiits }: Primes [~ Longévité Rachat
|- immobilier I Longévits Rachat [~ Invalidits Catastrophe
- credi W s |- Rachat
- chang - Rachat L &
L Concentration |- Frais - Revalorisation
L Revalorisation L catastrophe

Une matrice de corrélation (linéaire) permet d’agréger les SCR de
chaqgue sous-module pour obtenir le SCR global.
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Bilan Sll d’'une compagnie

Dans le cadre de Solva 2, les passifs d’assurance non-vie doivent
étre évalués a leur juste valeur, définie comme la somme de

@ la meilleure estimation (Best Estimate) : correspond a la
valeur actuelle probable des flux de trésorerie futurs;

@ la marge pour risque (Risk Margin) : garantit que le montant
global des provisions techniques soit équivalent a la somme
que les assureurs devraient payer s'ils transféraient leurs
droits/obligations contractuels a une autre entreprise.

Risque de provisionnement : incertitude sur I'estimation du Best
Estimate (BE). Le BE varie de fagon + ou — importante ds le
temps, d0 aux interactions actif-passif.
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BILAN Comptable
Solvabilité 1

Schéma bilantiel

Plus Values
latentes

Actifs

Valeur comptable
(valeur historique
amortie)

Excédent de
marge

Excédent de
marge
Solvabilité 1

BILAN économique
Solvabilité 2

Actifs

Valeur de marché

Capital
excédentaire

SCR

MCR
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Le SCR : une notion prospective
Notion complexe car ce n’est pas le SCR aujourd’hui. Il faut donc
étudier la déformation du bilan dans un an.

En effet, le SCR provisionnement est lié a la déformation du Best
Estimate dans I'année a venir.

Il faut donc étre capable de quantifier I'impact de cette déformation
sur les FP dans un an : pour cela, on introduit le Claims
Development Result (CDR) (cf ci-apres).
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e Calcul de SCR provisionnement & un an

@ Le modéle de Merz & Wiithrich
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Le modeéle de Merz & Wiithrich
[Withrich and Merz, 2008], [Merz and Withrich, 2008],
[Wathrich et al., 2009], [Verrall and W(thrich, 2012]

Ce modele s’est imposé comme une référence de marché.
@ Lun des 1¢" modeles développés pour la mesure de ce risque.
@ Trés utilisé pr sa simplicité d'implémentation (formule fermée);
@ Repris dans les textes réglementaires (cf QIS... etc).

— Extension de Mack, permettant le calcul du SCR provisions a

un an. Pour intégrer cette dimension de projection temporelle, il
s’appuie sur un processus auto-régressif AR(1).
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Le Claims Development Result (CDR)

Le CDR correspond a la # entre la prévision du montant final des
paiements vus en date [ et vus en date | + 1 (un an plus tard).

— Permet de comparer la robustesse de la prévision avec ce qu’il
s’est effectivement passé par la suite.

Ainsi, on introduit les notations suivantes : pour la provision de
'année de survenance ivue ent = |,

R/ = Ciy- Cii,
etvueent=1+4+1:

I+1
R = Ciy— Ciris1-
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CDR - 1Y vs Ultimate

Ult\mate view”

CDR, = Z P(1)
= future CY ¢
future CY ¢

Figure 1: Ultimate View

CDR, =R, -P()-R,

: X

VAR(CDR,)=VAR(P()+R,)

Figure 2: One Year View

@ Ry la provision de départ, connue,
@ P(t) les paiements de I'année calendaire t (mais run-off),
@ Ry la provision de cloture, apres avoir observé P(1).
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Hypothéses et informationent =/ett =1+ 1

On définit les données observées en t = | par le triangle supérieur
T. Dans la suite, on note cette information D, ou

Di={Cij: i+j<I et i<l

Ent = | + 1, cette information devient

Dyyq :{C,‘,ji i+j<I+1 et I'SI}:D/U{C,',/_,'_H: i<l

Les hypothéses de ce modele sont les mémes que celles de Mack.
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Evaluation de provisions

Pour évaluer la provision, il faut estimer le montant moyen final des
paiements :

J—1
E[CiyI D)) = Ci i 1_[ fi,
j=i-i

et
J-1

E[Ciy|Diy1] = Ci-it1 l_[ fi
j=l—it1

ou les f; sont les facteurs de développement.

Probleme : il faut connaitre les f;. On les estimera par CL.
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EstimationCLent=/ett=1/+1

En t = I (donc sachant D)), pour j =0, ...,

i I—j-1
. Zizo Cijr1 2z Cijt

J —1 1A I
Z:i:o C'»/ S/’

J-—1ona:

I-j—1

avec Sj’ = Z Cij.
pry

I-j I-j
fi/_H . Zi:o Ci,j+1 . ZIZO Ci,j—H

Ent=1/+1, on obtient : ;

Ny
ZI:O CI,]

SI+1
j

— Ces estimateurs sont sans biais, et pour tout j # I/,

Corr( = Corr(f’+1 )y =0

216/243



Donc pour j > I — i,

Cl, = Cirif|_..T,f | : estimateur non-biaisé de E[C;;| D],

C,.’j+1 = Cipip1 I fj’_*ﬂ . estimateur non-biaisé de E[C;;| Dj11].

Ii41°
Comme dans le modéle de Mack, on a
MSEP, ,10,(C!)) = E[(Ciy - C))? 1 DJ].
Or éi{J est D;-mesurable, donc
MSEP, ,p,(C! ) = Var(Cij| D)) + (E[Ciu | D|] - C/ )%

C’est la décomposition en process variance et estimation error
(cette derniére serait nulle si on connaissait les f;!).
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Retour au CDR

Pour 'année comptable (I, + 1], le vrai CDR de I'année de
survenance i (ou [ € [1, I]) est donné par

CDRi(I+1) = E[R/ID] - (Xisis1 +E[R" | D1])
= E[Ciy|Di] - E[Ciy|Di11]
avec Xj-i+1 = Gj-it1 — Gj-i.

Pour obtenir le CDR global, on agrége sur les années de
survenance :

I
CDR(I+1) = > CDRi(I+1).

i=1
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Par définition, on a un processus centré :
E[CDR;(I+1)|Dj] = 0.
En effet, si les facteurs CL f; étaient connus, le vrai CDR attendu

vu en date | vaudrait O ; et on aurait

1 0%,
MSEPcpg,(1+1)p,(0) = Var(CDR;(I+1)| D) = E[Ciy | Di? Cili %
L=

Probleme : les facteurs CL f; ne sont pas connus! = Le CDR n’est
pas observable...
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Estimation du CDR

On estime le CDR,; par

CﬁR,‘(I—i— 1) = I/:\?,-I - (Xi,/—i—H -+ ﬁ?il+1) = CI - C-IJH

iJ iJ
avec
Rl = Cl,-CiLi  estimateur non biaisé de E[R/ | D|]
R' = Cl'-Ciiiz1  :estimateur non biaisé de E[R/! | D]

Etle CDR global par CDR(I+1) = 3!_, CDR;(I+1).
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Incertitude autour de cette estimation

Rappel :

— Pour quantifier I'incertitude de I'estimateur R; d’une v.a. R;, on
utiise MSE(R;) = E[(R; — E[R{])?].

— La MSEP est donnée par MSEP(R;) = E[(R; - Ri)?].

Adapté a notre contexte, on obtient

MSEP g, (0) = E[(CDR;(I+ 1) - 0)?|D)]

(I+1)1D,

MSEPcpr,(1+1)p,(CDRi(14+1)) = E[(CDRi(I+1)~CDR;(1+1))?| D]
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La premiére quantité correspond a une vision prospective : en
moyenne le vrai CDR devrait valoir 0 dans un an.

La seconde est rétrospective : on regarde la distance entre vrai
CDR et CDR observable.

Pour quantifier ces MSEP, on a recours a I'estimateur de la
variance comme défini dans Mack :

1 & Cijt1 2

A2 i, 2 .

2 >’ ¢ iy <J-1.
N C”]( Cij ’) )=

Gréace a cet estimateur, on donne dans la suite I'expression des
MSEP qui nous intéressent.
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Notations et résultats

Soient
2 2 ~\2
i gl | /I:+1W ol |7
S f,_,. S; S\
2 2
n Cr_ij 1 i
o &l =y 12 — |5
iJ = Aj=l-it1 Sjl+1 Crjj fjl
2
A L K
o Ul=_—_|=
" Crij fl’_i]
SR ol I
o, =0,+V, =2 &,
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On peut montrer que I'estimateur de la variance s’écrit

Var(CDRi(I+1)|Dy) = (C/ )2 ¥!
et au final on obtient les estimateurs suivants :
MSEP . (0) = (G2 |Fi, + Al
CDR;(I+1)|D; iJ iJ iJ
MSEP cor,(1+1)10,(CDRi(1 + 1)) = ()2 [®],+ Al ]

Puis il suffit d’agréger les années de survenance pour en déduire
le CDR global. Le calcul fait intervenir des termes de covariance.
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Agrégation pour obtenir le CDR total
On obtient :

I
MSAEPCDR(I+1)|D, = MSEPy, CDR,-(I+1)|D,(Z CDR;(1+1))

i=1
/

Z MSEP cpg,1+1y;0,(CDRi(I + 1)) + 2 Z CIIJCliJ[q)IIJ+AI ]
— k>i>0

Cil- 2 (oY 1 (a)
et () § (6 2 (0
> I ol 1+1 "
I S+1 SI’ ]Z + ’;I

ou

I—i i+1
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Et en introduisant

2
o ~ 1 o o
I _ &l 1= I
ona
MSEPCEJH(I+1)|D,(O) = MSEPz,- ch,-(/+1)|D,(0)

|
- Z MSEP cpp,(11)10,(0) + 2 Z CiuCic [E"’J + A'{’J]
=1 k>i>0
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Application

Voir le papier de Merz-Wuthrich, Modelling the Claims
Development Result for Solvency purposes

Le calcul du SCR risque de provisionnement passe donc par le

postulat d’'une hypothése sur la forme de la distribution du CDR :

I'hypothése la plus communément utilisée est I'hypothése
log-normale.
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Preuves

Voir si on ajoute des preuves dans Mack, GLM, Merz...

Expliquer que la prediction variance est la somme de la process
variance et de I'estimation variance...
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0 Extensions de ces modeles
@ Technique bayésienne et méthodes MCMC?
@ Provisionnement ligne a ligne : censure et covariable
@ Corrélation : agrégation de triangles de réserves par copule
@ Tendance et effets calendaires - modele de Gluck and Venter
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Valeurs négatives

Parfois le triangle contient des valeurs négatives...

[?]
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Agrégation de triangles

Un groupe peut avoir plusieurs branches d’activité, chacune étant
lié a une provision. Comment calculer une provision globale au
niveau groupe, sachant que certaines business lines sont
corrélées...?

[?]
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Bornhuetter-Ferguson stochastique

Blabla
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0 Extensions de ces modeles
@ Technique bayésienne et méthodes MCMC?
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0 Extensions de ces modeles

@ Provisionnement ligne a ligne : censure et covariable
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0 Extensions de ces modeles

@ Corrélation : agrégation de triangles de réserves par copule
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0 Extensions de ces modeles

@ Tendance et effets calendaires - modele de Gluck and Venter

236/243



CONCLUSION



Conclusion

Les méthodes actuelles permettent de quantifier I'incertitude :
@ ces méthodes évoluent pour répondre a la non réalisation
d’une ou plusieurs conditions de performance.

@ les résultats entre ces différentes approches peuvent différer
assez largement!
@ Toutes les techniques présentées nécessitent

o des données fiables et plutdt nombreuses,
@ un passé régulier, et un présent/futur structurellement proche.

@ La branche doit étre peu volatile.
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On apporte des modifications pour concilier avec des observations
qui sortent de I'ordinaire : lissage, pondération, co(it moyen,
dépendance des coefficients, méthode complémentaire...

Certaines questions opérationnelles ne sont pas traitées dans le
cadre de ce cours : on pense notamment a

@ les recours : comment les traiter ?
@ les données absentes ou non triangulaires

@ le changement du programme de réassurance, d’une politique
de gestion des sinistres...

Certains mémoires abordent ces questions et y apportent des
solutions pratiques.
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