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ORGANISATION DU COURS

21h de cours magistral : 7 séances de 3h (2 séances en FC) ;
cours 1 - introduction : slide 1-25
cours 2 - : slide 26-45
cours 3 - slide 46-61
cours 4 - slide 62-84
cours 5 - slide 85-90 + début zonier
cours 6 - Fin zonier et début microlevel reserving
cours 7 - microlevel reserving

16h de travaux dirigés en salle machine (prenez vos
ordinateurs pour chaque seance) : 8 séances de 2h.

Objectif : confronter la théorie à la pratique !
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La chaîne de gestion des risques dans l’assurance 

Copyright CARITAT – octobre 2012 

Risque opérationnel : mesure, assurabilité, couverture 
(banque de données des incidents, plan de continuité d’activité, risque de sous-traitance…) 

ERM 

RÉASSURANCE 

CONTRÔLE INTERNE 

SOUSCRIPTION 

Suivi de la constitution 
du portefeuille 

VALORISATION  
DE L’ENTREPRISE 

- Agrégation des risques 
- Corrélations 
- Crédit de diversification 

- Capital économique 
- Arbitrage (couverture) 
- Solvabilité 
- Embedded Value 
- Communication financière 

PROVISIONNEMENT 

- Règles IFRS, best estimate et distribution 
- Risque de modèle 

GESTION D’ACTIFS 

- Règles IFRS, market value 
- Risque de contrepartie 
- Risque de modèle 

ALM 

Congruence 
- en taux 
- en duration 
- en devise 

TARIFICATION 

Risques  
NON 
VIE 

Risques 
VIE 

Risque de 
modèle 

FONCTIONS SUPPORT 

MARKETING 

 

DISTRIBUTION 
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CONTRAT D’ASSURANCE ET TARIFICATION

Une police d’assurance est un contrat entre deux parties :

→ l’assuré, détenteur du contrat ;

→ l’assureur, pourvoyeur du contrat.

En échange de la couverture d’un risque par l’assureur, l’assuré
verse une prime d’assurance.

En cas de sinistre, le bénéficiaire du contrat reçoit le montant
contractuel prévu en cas de survenance du sinistre.

Ainsi le risque économique initialement supporté par l’assuré est
transféré vers l’assureur.
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La mutualisation induite par la souscription de nombreux contrats
au sein d’une compagnie d’assurance permet l’utilisation grossière
de la loi des grands nombres.

En effet,

→ un portefeuille d’assurance couvre un risque en particulier :
les pertes sont considérées être de même loi de probabilité...
⇒ Tarification par garantie !

→ les contrats sont a priori indépendants les uns des autres.

Ces propriétés doivent permettre à l’assureur de prédire avec une
précision relative les pertes encourues pour une période donnée.
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Soit un portefeuille d’assurance contenant I polices. Notons la loi
du ième contrat Si (perte), et la loi des pertes agrégées SI.

La LFGN stipule la CV presque sûre de la moyenne empirique de
pertes i.i.d., notée S̄I = 1

I
∑I

i=1 Si , vers l’espérance de la loi :

S̄I
p.s.
−→
n→∞

E[Si] = µ.

Ou encore : P
(

lim
I→∞

S̄I = µ
)

= 1.

Ce résultat est à l’origine du principe général de tarification : la
prime vaut au moins µ, aussi appelée prime pure du contrat. C’est
cette prime que nous modéliserons.
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DANGERS D’UNE MAUVAISE TARIFICATION

Se tromper dans la tarification d’un produit peut avoir plusieurs
conséquences dommageables :

comme cela est souvent lié à la segmentation, il y a un risque
de composition du portefeuille (bons et mauvais risques) ;

investir dans 1 politique de vente (marketing, ...) mal adaptée ;

impact néfaste sur la concurrence, déficit d’image ;

mauvaise évaluation de la marge de risque, et donc in fine du
provisionnement : (pour rappel, SI =

∑
i Si)

VaRα(SI) = inf{s ∈ R+ : P(SI > s) ≤ (1 − α)}
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RESTRICTIONS DUES A LA REGLEMENTATION

→ La législation a également un impact en termes de
segmentation et de tarification.

L’exemple récent le plus célèbre (pas le cas en provisionnement) :
Primes unisexe : “Les compagnies d’assurances ne pourront plus,
à partir du 21 décembre 2012, prendre en considération le critère
du sexe pour calculer les primes et prestations d’assurances dans
leurs contrats.” a jugé la Cour de justice de l’UE.

→ Explication du tarif en assurance : directive DDA (distribution en
assurance : éclairage notamment sur marges / commissions).
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PRIME COMMERCIALE

En pratique l’assureur applique des chargements à cette prime,
car mathématiquement sa ruine est certaine à horizon infini dès
lors que la tarification respecte le strict principe d’équivalence.

La prime d’assurance Πi se décompose donc en +sieurs parties :

→ la prime technique (provisions techniques dans le bilan
économique SII) : comporte la prime pure (modèles vus ici)
E[Si]+ chargements techniques ; où les chargements
techniques sont issus des principes de prime (cf plus loin).

→ la prime d’inventaire composée de la prime technique plus les
frais :

d’acquisition,
d’administration et gestion du contrat,
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→ la prime commerciale (prime finale) intègre à la prime
d’inventaire la rémunération d’intermédiaires (courtiers, ...).

La stratégie de la compagnie peut également jouer sur la hauteur
de ces chargements.

Objectif de l’assureur :

Mettre en place une tarification segmentée tout en conservant le
principe de mutualisation.

En effet, nous savons que

→ E[S] = E[E[S |X ]]

→ ce qui se dérive empiriquement 1
n
∑

i Si ∼ 1
n
∑

i π(Xi)
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MARGE POUR RISQUE (RM)

C’est une notion différente du chargement technique.

Elle dépend du risque couvert, et n’entre pas dans le tarif. En
revanche, elle fait partie des provisions techniques (BE + RM).

Elle représente le coût du capital appliqué aux flux de SCR futurs
actualisé :

RM = CoC ×
T∑

t=1

SCRt

(1 + r)t .

Rq : RM = coût d’immobilisation du capital pr l’activité (CoC ' 6%),
ou coût de portage du risque (ex : lors d’un rachat du portefeuille).
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PRINCIPE DE L’ESPERANCE MATHEMATIQUE

Notons Π la prime, S le montant cumulé des sinistres de la police.

Le principe de la prime pure donne Π(S) = E[S].

Le principe de l’espérance mathématique donne

Π(S) = (1 + β)E[S], β > 0.

→ Chargement très simple, mais n’apporte aucune information sur
les fluctuations de S autour de sa moyenne...

Difficulté de ce principe : choix de β.

Remarque : pour des risques dégénérés (P(S = s) = 1), on
devrait avoir Π(S) = s ce qui n’est pas vrai ici.
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Pour évaluer son risque de perte, l’assureur peut utiliser la théorie
des grandes déviations et le lemme de Chernoff.

Lemme. (Chernoff). Soient S1,S2, ...,Sn des v.a.p. indépendantes et
de même loi que S telles que E[etS ] < ∞ pour un t > 0. Posons
Xi = Si − (1 + β)E[Si]. Alors

P

 n∑
i=1

Xi ≥ 0

 ≤ ρn et lim
n→∞

1
n

log P

 n∑
i=1

Xi ≥ 0

 = log ρ,

où ρ = inf
t

MX (t) < 1 et MX (t) = exp(−t(1 + β)E[Si]) MS(t).

Preuve. En utilisant l’inégalité de Bienaymé-Tchebischev, on déduit

P

 n∑
i=1

Xi ≥ 0

 = P
(
et

∑n
i=1 Xi ≥ 1

)
≤ E[et

∑n
i=1 Xi ] = (E[etXi ])n = (MX (t))n.
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L’inégalité est vraie ∀t > 0, donc en particulier pour celui qui vérifie
le minimum de MX (t).

Remarque :

- La dérivée M
′

X (0) est négative car E[Xi] = −βE[Si] < 0, alors
même que MX (0) = 1.
- D’autre part, P(Xi > 0) > 0, donc lim

t→∞
MX (t) = +∞.

D’où l’existence d’un minimum < 1 (théo. valeurs intermédiaires).

Ainsi, si l’assureur souhaite majorer par ε la probabilité d’un
résultat négatif sur la période, donc

P

 n∑
i=1

Xi ≥ 0

 ≤ ε,
il choisira β tel que ρn(β) = ε (ex : S ∼ E(λ)⇒ ρ = e−β(1 + β)).
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PRINCIPE DE LA VARIANCE

Le principe de la variance donne

Π(S) = E[S] + βVar(S), β > 0.

Inconvénient : symétrie par rapport à l’espérance.

→ On comptabilise les valeurs négatives de la v.a. (S − E[S]),
pourtant favorables à l’assureur.

Conséquence : on augmente trop les chargements techniques.
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i) Application du principe à la réassurance proportionnelle.

Cherche une couverture pour une prop. λ ∈ [0, 1] du risque S :

Π(λS) = E[λS] + βVar(λS) = λE[S] + λ2βVar(S) < λΠ(S).

Donc l’assuré aurait intérêt à diviser son risque initial en n
parties égales car il paierait moins cher : en effet,

n Π

(
S
n

)
< Π(S).

ii) Principe de la variance et agrégation de risques indépendants.

Si on considère deux risques indépendants S1 et S2, on a

Π(S1 + S2) = Π(S1) + Π(S2) ,

ce qui implique que l’accumulation de risques indépendants ne
conduit pas au principe de diversification.
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PRINCIPE DE L’ECART-TYPE

Le principe de l’écart-type donne

Π(S) = E[S] + βσ(S), β > 0.

A l’inverse, le découpage du risque ici ne conduit pas à une
diminution de la prime :

n Π

(
S
n

)
= Π(S).
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PRINCIPE EXPONENTIEL

Le principe exponentiel donne

Π(S) =
1
α

ln(E[eαS ]).

Le paramètre α est appelé coefficient d’aversion au risque.

D’après l’inégalité de Jensen, la prime technique est supérieure à
la prime pure :

Π(S) ≥ E[S].

En effet, si α est proche de 0, en utilisant les propriétés de la
transformée de Laplace :
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Π(S) =
1
α

ln

(
1 + αE[S] +

α2

2
E[S2] + o(α2)

)
=

1
α

(
αE[S] +

α2

2
E[S2]

)
−

1
2α

(
αE[S] +

α2

2
E[S]

)2

+ o(α)

= E[S] +
α

2
Var(S) + o(α)

On retrouve le principe de la variance...

Si

→ α→ 0 : principe de la prime pure ;

→ α→ ∞ : principe de la perte maximale,

Π(S)→ sup{s : P(S < s) < 1} = rs .

24 / 283



PRINCIPE D’ESSCHER

Le principe d’Esscher préconise de choisir une prime égale à

Π(S) =
E[SeαS ]

E[eαS ]
.

On peut montrer que Π(S) ≥ E[S] puisque Cov(S, eαS) ≥ 0.

Cette prime est l’espérance mathématique calculée avec la
nouvelle f.d.r. G définie par

dG(x) =
eαxdFS(x)∫ ∞

0 eαxdFS(x)
,

qui est la transformée d’Esscher de FS .
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PRINCIPE DE WANG (Proportional hazard transform)

Le principe de Wang s’appuie sur la définition

Π(S) =

∫ ∞

0
(F̄S(x))r dx,

où F̄S = 1 − FS (survie), et r ∈ [0, 1]. On a Π(S) ≥ E[S].

Ce principe est très utilisé en réassurance.

En effet, la transformée de Wang permet de calculer très
simplement les primes des traités en excédent de sinistre.
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Par exemple, pour un traité (noté dans la pratique : hXSa)

de priorité a,

de portée h,

on a :

hXSa =


0 si 0 ≤ S ≤ a
S − a si a ≤ S ≤ a + h
h si a + h ≤ S

La prime vaut

Π(hXSa) =

∫ h

0
(F̄S(x + a))r dx =

∫ a+h

a
(F̄S(x))r dx.
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PRINCIPE DU FRACTILE

Dans le principe du fractile, on adopte la prime Π qui vérifie

Π(S) = inf (p |FS(p) ≥ 1 − ε) = inf (p |P(S > p) ≤ ε).

C’est donc la plus petite prime telle que la probabilité que le
sinistre dépasse la prime est au plus de ε.

Par exemple,

→ si ε = 1/2, alors la prime est la médiane de la distribution ;

→ si ε = 0, alors la prime suit le principe de la perte maximale.
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PROPRIETES SOUHAITABLES DES PRINCIPES

Un assureur utilisant une mesure de risque donnée attend d’elle
un ensemble de propriétés “naturelles” censées refléter la réalité...

1 La prime vaut au moins la prime pure : Π(S) ≥ E[S].

On peut ajouter que si P(S = s) = 1, alors Π(S) = s.
Ceci implique qu’il n’y ait pas de chargement injustifié. Parfois,
le chargement peut même être négatif suivant les conditions
de marché (concurrence, ...).

2 Invariance par translation : Π(S + c) = c + Π(S), ∀c ≥ 0.

c est une constante, et en particulier Π(0) = 0.
Tout risque déterministe est tarifé à sa propre valeur.
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3 Additivité : Π(S1 + S2) = Π(S1) + Π(S2),

si S1 et S2 sont indépendants.

Cependant, cette propriété ne vérifie pas le principe de
diversification des risques. On lui préfère la propriété

Π(S1 + S2) ≤ Π(S1) + Π(S2).

Rappelons au passage que le principe de la variance est
additif, alors que celui de l’écart-type est sous-additif.

Cette propriété induit un gain de diversification, qui profite
+ soit à l’assuré (prime plus faible),
+ soit à l’assureur (probabilité de ruine moins élevée).
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4 Homogénéité : Π(λS) = λΠ(S), ∀λ ≥ 0.

⇒ invariance par changement de numéraire, elle est
essentielle pour la réassurance proportionnelle.

Propriété remise en cause par quelques auteurs lorsque λ est
grand (Π(λS) > λΠ(S)).

5 Itérativité : Π(S1) = Π(Π(S1 |S2)).

On peut calculer la prime du risque S1 en deux étapes :

→ on applique d’abord la prime Π à la distribution de S1

conditionnelle à S2 ;
→ on obtient une v.a.r., fonction de S2, à laquelle on applique de

nouveau le principe de prime.
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Exemple.
Le nombre annuel d’accidents d’un chauffeur est modélisé
par une loi de Poisson P(λ). Le profil de risque λ est inconnu
et différent pour chaque chauffeur, donc la réalisation d’une
v.a.r. Λ. La loi du nombre d’accidents conditionnelle à Λ = λ

est de Poisson, et si Λ ∼ Gamma alors la loi est une binomiale
négative.

6 Convexité : Π(λS1 + (1 − λ)S2) ≤ λΠ(S1) + (1 − λ)Π(S2),

∀λ ∈ [0, 1] et S1,S2.

Cette propriété est utile pour la recherche de décisions
optimales dans le choix de contrat d’assurance ou de
réassurance.
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RESUME DES PROPRIETES DES PRINCIPES

Propriétés
Principes Prime pure Trans. Addit. Itérat. Homog.
Prime pure + + + + +

Espérance + − + − +

Variance + + + − −

Ecart-type + + − − +

Exponentiel + + + + −

Utilité + + e e −

Valeur moyenne + e e + −

Esscher + + + − −

Fractile + + + + −

+ : la propriété est vérifiée ; − : la propriété n’est pas vérifiée ;
e : vérifiée en considérant les fonctions u et f qui nous permettent
de retomber sur les principes exponentiel et prime pure.
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PRINCIPE DE PARTAGE DE VARIANCE DU RISQUE

Source : A. Charpentier.

Aucune segmentation, aucun transfert de risque.
→ Tout la partie risquée (contenu dans la variance) est conservée
par l’assureur.

Arthur CHARPENTIER - Big Data (a Personal Perspective)

Insurance : Personalization and Customization
Recall basic results on ratemaking and risk pooling.

No risk classification, identical premium

Insured Insurer
Loss E[S] S ≠ E[S]
Average Loss E[S] 0
Variance 0 Var[S]

37
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SEGMENTATION ET INFORMATION COMPLETE

Source : A. Charpentier.

Information complète sur les facteurs de risque.

Arthur CHARPENTIER - Big Data (a Personal Perspective)

Insurance : Personalization and Customization
Perfect classification, (ultra) personalized premium

Insured Insurer
Loss E[S|�] S ≠ E[S|�]
Average Loss E[S] 0
Variance Var

Ë
E[S|�]

È
Var

Ë
S ≠ E[S|�]

È

Var[S] = E
Ë
Var[S|�]

È

¸ ˚˙ ˝
æinsurer

+ Var
Ë
E[S|�]

È

¸ ˚˙ ˝
æinsured

.

38

Car Var(S − E[S |Ω]) = E[Var(S |Ω)]
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SEGMENTATION ET INFORMATION INCOMPLETE

Source : A. Charpentier.

Arthur CHARPENTIER - Big Data (a Personal Perspective)

Insurance : Personalization and Customization
Imperfect classification, personalized premium

Insured Insurer
Loss E[S|X] S ≠ E[S|X]
Average Loss E[S] 0
Variance Var

Ë
E[S|X]

È
E

Ë
Var[S|X]

È

Var[S] = E
Ë
Var[S|X]

È
+ Var

Ë
E[S|X]

È

= E
Ë
Var[S|�]

È

¸ ˚˙ ˝
pooling

+ E
Ë
Var

Ë
E[S|�]

---X
ÈÈ

¸ ˚˙ ˝
solidarity¸ ˚˙ ˝

æinsurer

+Var
Ë
E[S|X]

È

¸ ˚˙ ˝
æinsured

.
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APPROCHE INDEMNITAIRE

Idée : coûts dépendent de l’occurrence éventuelle d’un sinistre (au
plus un sinistre dans la période) et du montant qui en résulte.

Si =

b si Ii = 1

0 si Ii = 0

où Ii ∼ Bernouilli B(pi) (occurrence du sinistre), et b déterministe.

→ E[Si] = E[Ii] × b

→ Var(Si) = Var(Ii) × b2

Exemple : coût en sinistre d’un contrat d’assurance vie sur un an.
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APPROCHE FORFAITAIRE

Idée : Si est définie par 2 composantes. Une masse en 0, et une
composante continue pour le coût si un sinistre survient.

Si =

Y si Ii = 1,

0 si Ii = 0

où Ii ∼ Bernouilli B(pi) (occurrence du sinistre), et Y ⊥⊥ Ii .

→ E[Si] = pi E[Y ], Var(Si) = E[Ii]Var(Y) + Var(Ii)E[Y ]2

→ FSi (s) = qi + piFY (s) (s ≥ 0).

→ MSi (t) = MIi (ln(MY (t)))

Exemple : le coût en sinistres pour le contrat santé i sur un an.
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APPROCHE FREQUENCE - COUT MOYEN

La + souvent utilisée en IARD.

Idée : Si est fonction de 2 aléas, Ni et Yk , respectivement le
nombre de sinistres et les montants unitaires associés.

Si =


∑Ni

k=1 Yik si Ni > 0,

0 si Ni = 0

où Ni est une v.a. discrète, Ni et Yik sont ⊥⊥ et les Yik sont i.i.d.

→ E[Si] = E[Ni] E[Yik ],

→ Var(Si) = E[Ni]Var(Yik ) + Var(Ni)E[Yik ]2

→ MSi (t) = MNi (ln(MYik (t)))

→ FSi (s) = P(Ni = 0) +
∑∞

m=1 FYi1+...+Yim (s)︸           ︷︷           ︸
inconnu

× P(Ni = m)
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MODELE CLASSIQUE DE PRIME PURE

Soit Si la somme annuelle des sinistres du contrat i.
Le nb Ni de sinistres est une v.a. considérée ⊥⊥ des coûts Yik ,
eux-même i.i.d. :

Si =

0 si Ni = 0

Yi1 + . . . + Yin si Ni = n.
⇔ Si =

Ni∑
k=1

Yik

Ainsi, EP[Si] = EP[Ni] × EP[Yik ].

En réalité, Ni est souvent conditionnellement ⊥⊥ à Yi , donc

EP[Si | Xi] = EP[Ni | Xi] . EP[Yik | Xi],

où Xi est un ensemble d’informations.
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APERCU D’UNE BASE DE DONNEES

> head(myData, n=16)

PERMIS ACV SEX STATUT CSP USAGE AGECOND ... GARAGE CHARGE
1 245 10 F C 50 2 40 ... 3 0
2 348 10 F A 50 1 63 ... 3 0
3 16 10 F C 26 2 20 ... 3 0
4 291 10 F A 50 1 56 ... 3 0
5 123 10 F A 50 1 29 ... 3 0
6 295 10 F A 37 1 43 ... 3 0
7 24 10 F A 50 2 21 ... 3 0
8 181 9 F A 50 3 35 ... 3 0
9 157 10 M C 55 1 31 ... 3 0
10 338 10 M C 1 2 48 ... 2 179
11 20 10 M C 26 2 19 ... 3 0
12 208 10 F A 50 2 39 ... 3 0
13 127 10 F A 37 1 29 ... 1 0
14 93 7 F C 50 2 39 ... 3 0
15 134 10 F A 50 1 36 ... 3 0
16 416 10 F C 50 1 60 ... 3 0
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Le principe de la tarification est d’approcher X par un proxy
(variables tarifaires).
Ce proxy correspond aux info. indiv.→ variables explicatives :

⇒ c’est le contexte des modèles de régression.

Supposons que l’assureur dispose de J facteurs explicatifs du
risque, notés {X1, . . . ,XJ}, on obtient alors la formule

EP[S |X1, . . . ,XJ] = EP[N |X1, . . . ,XJ] . EP[Y |X1, . . . ,XJ].

Le problème est donc d’obtenir (tarification a priori, VS a
posteriori en crédibilité)

EP[N |X1, . . . ,XJ] : estimation de la loi de N.

EP[Y |X1, . . . ,XJ] : idem.
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En économétrie, on cherche à estimer EP[Z |X1, . . . ,XJ] par une
fonction des facteurs explicatifs notée Φ(X1, . . . ,XJ).

En économétrie linéaire, on a coutûme de supposer que

Z |X1, . . . ,XJ ∼ N(β0 + β1X1 + . . . + βJXJ , σ
2).

En notant X = (1,X1, . . . ,XJ)T le vecteur des facteurs de risque
et β = (β0, β1, . . . , βJ)T les coefficients de régression, on peut
simplifier cette écriture sous forme matricielle :

Z |X ∼ N(XTβ, σ2).

Problème : le modèle linéaire est rarement adapté en assurance...
Alternative : besoin de supposer relations non-linéaires⇒ GLM.
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ETAPES STATISTIQUES DE TARIFICATION

1 Statistiques descriptives univariées et bivariées ;
2 Modélisation de la fréquence par un GLM adapté (choix d’une

loi pour la réponse, intégration des covariables), cela donne

E[N |X] = f1(Xβ)

3 Modélisation du coût par un autre GLM adapté, on obtient

E[Y |X
′

] = f2(X
′

β)

4 Synthèse pour en déduire la prime (pure) :

E[Si |X,X
′

] = E[N |X] × E[Y |X
′

]
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PROPAGATION D’ERREUR?

En construisant deux modèles (1 pour la fréquence et 1 pour la
sévérité), on prend le risque de propager des erreurs...

Parfois il vaut mieux essayer de construire un unique modèle qui
rende compte à la fois de la fréquence et de la sévérité : cela
dépend de la qualité d’adéquation de la loi de fréquence
notamment.

En réalité dans cette ultime approche, on perd l’info sur le nb de
sinistres et on s’intéresse à la charge totale par contrat. La masse
en 0 (contrats non-sinistrés) induit des difficultés de calibration, ce
qui explique la décomposition fréquence - coût moyen en pratique.
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EXEMPLES CLASSIQUES D’APPLICATION

L’usage des GLM est ancré depuis longtemps dans les moeurs.
On peut citer parmi les domaines concernés :

assurance santé : remboursements soins, frais
d’hospitalisation ;

assurance auto / moto : dommages matériels, vol, ... ;

assurance Multi-Risques Habitation (MRH) : incendie, vol,
dégâts des eaux, ...

assurance Responsabilité Civile (RC) : dommages à autrui.

Les cas de la RC, de l’assurance CATNAT et de la réass. IARD
sont un peu , car font intervenir des montants CAT en général.
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APPLICATIONS EN VIE

On se sert aussi des GLM en Vie, notamment en

épargne : essentiellement du risque comportemental sur les
produits en taux garantis (euro) ou non (UC) ;

prévoyance : DC, LTC (Long-Term Care : dépendance), CI
(Critical Illness : maladies redoutées), incap/inval. ;

réassurance vie : même remarque qu’en non vie.

Remarque : de par la nature des contrats, il y a souvent une
dimension temporelle dans la modélisation en Vie qui @ en non-vie
→ modèles de durée.
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RISQUE DE LONGEVITE [Lee and Carter, 1992]

C’est le modèle le plus utilisé en mortalité (longévité) :

log(µx(t)) = αx + βxκ(t) + εx(t)

x est l’âge, t l’année ;

µx(t) est le taux de mortalité instantané l’année t à l’âge x ;

αx : structure de la mortalité en fonction de l’âge ;

κ(t) : vitesse d’amélioration de la mortalité (série temp.) ;

βx : la vitesse d’amélioration a des impacts , selon l’âge ;

les résidus εx(t) ∼ N(0, σ2).
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RISQUE DE MORTALITE : MODELE DE BRASS
[Brass, 1964], [Brass and Macrae, 1984]

C’est un modèle relationnel basé sur la régression logistique :

ln
(

qexp(x, t)
1 − qexp(x, t)

)
= a + b × ln

(
qref (x, t)

1 − qref (x, t)

)
où

x est l’âge de la personne, t est le facteur temporel,

qref est une table de mortalité de référence,

qexp est la table de mortalité d’expérience.

Calibre les coef. (a, b) pour établir le passage d’1 table à l’autre,
par ex. d’une population nationale à une population d’assurés.
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INTERET DES GLM

Les GLM permettent de

modéliser des réponses diverses ∈ R, R+, N, [0, 1], ... ;

intégrer toute type d’information exogène susceptible d’influer
sur la variable dépendante (réponse Y ),

quantifier l’impact des facteurs de risque X (sens/intensité),

résidus hétéroscédastiques (la loi varie par profil).

Ils nécessitent d’introduire deux hypothèses fondamentales :

les individus Yi sont ⊥⊥ entre eux (rq : si les indiv. étaient
corrélés, cela résulterait aussi à avoir − d’indiv., donc n ↘) ;

les variables explicatives X sont ⊥⊥ deux à deux.
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POURQUOI CES HYPOTHESES?

Vision géométrique du modèle linéaire, voir l’article Econometrie et
Machine Learning d’Antoine Ly et Arthur Charpentier pour
expliquer la nécessité d’indépendance entre les Xj ...
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ATTENTION A LA NOTION DE CORRELATION

∃ plusieurs mesures de dépendance, e.g. corrélation de rang
(Kendall, Spearman). La + répandu est Pearson,

ρX ,Y =
Cov(X ,Y)

σXσY
=

E[(X − µX )(Y − µY )]

σXσY
,

où µX = E[X ] et σX est l’écart-type de X .

Mesure la corrél. linéaire. En effet, considérons la v.a. X telle que
X ∼ N(0, 1). Ainsi µX = 0, et µX3 = 0. Notons Y = X2, on a

ρX ,Y =
E[(X − µX )(X2 − µX2)]

σXσX2
=
µX3 − µXµX2

σXσX2
= 0.

Corrélation nulle alors que X et X2 parfaitement corrélées !
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COMPOSANTS D’UN GLM [McCullagh and Nelder, 1989]

Pour l’individu i...
1 La loi de la réponse aléatoire Yi : par hyp. elle ∈ à une

distribution de la famille exponentielle.

2 Le prédicteur ηi =
∑J

j=1 βjXij , linéaire et déterministe :

les facteurs de risque explicatifs le constituent.

3 La fonction de lien g : monotone, dérivable, inversible. En
pratique, n’importe quelle FdR, t.q.

g(E[Yi |Xi]) = ηi .

Ex. du modèle linéaire : g = Id ηi =
∑J

j=1 βjXij Yi ∼ N(ηi , σ
2).
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LOI DE L’ERREUR / FONCTION DE LIEN

Adapter le lien en fonction du domaine de définition de Y .

Loi Lien naturel Moyenne Utilisation

N(µ, σ2) Id : η = µ µ = Xβ Rég. lin.

B(µ) logit : η = ln( µ
1−µ) µ =

exp(Xβ)
1+exp(Xβ)

Taux

P(µ) log : η = ln(µ) µ = exp(Xβ) Fréquence

G(α, β) inverse : η = 1
µ µ = (Xβ)−1 Sévérité

IN(µ, λ) inverse2 : η = − 1
µ2 µ = (Xβ)−2 Sévérité
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COEFFICIENTS ESTIMES ET IMPACTS

En général, on interprète les résultats de la manière suivante :

β̂j > 0 :↗ du facteur de risque Xj provoque↗ de g(E[Y |Xi]) ;

β̂j < 0 :↗ du facteur de risque Xj provoque↘ de g(E[Y |Xi]) ;

β̂j = 0 : effet nul de la variation dudit Xj .

Evidemment, cela dépend aussi du type de modélisation !

Pour des modèles à effets additifs, la valeur de réf. sera 0 ;

Pour des modèles multiplicatifs, la valeur de référence sera 1
(à une transformation près parfois, cf modèle log-Poisson).

Pour connaitre le type d’effet, on réécrit le modèle sous la forme

E[Y |X] = g−1(XTβ).
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RAPPORT DE COTE (ODD-RATIO ou OR)

En souscrivant en ligne, vous pouvez par ex. avoir une idée de la
calibration de certains assureurs pour certains facteurs de risque :
comparer le tarif en faisant évoluer 1 seule caractéristique (ex :
âge, ancienneté du permis, couleur de la voiture, ...)

Cela correspond à l’odd-ratio, un rapport sur la quantité d’intérêt :

E[Y |Xj = xj + 1]

E[Y |Xj = xj]
= h(βj),

avec h une fonction à déterminer.

Exemple log-poisson : Y ∼ P(λ), donc λ = eXTβ ⇒ h(βj) = eβj .
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VALIDATION D’UN GLM - ETAPES

1 Construction de 2 échantillons ⊥⊥ par tirage aléatoire : un
d’apprentissage (construction) et un de validation ;

2 Validation de la significat. globale du modèle (déviance,
LRT) : déviance 2(ln L(Y |Y) − ln L(µ̂ |Y)) ∼ χ2(n − p − 1)

3 Validation de la significativité des coef. de régression un à un ;
4 Résidus : homoscédasticité (pour un segment donné), doit

être aléatoire (test des signes? on ne connait pas la loi des
résidus dans un cas général à cause du lien...) ;

5 Confrontation “modélisé / empirique” sur l’éch. de validation.
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COMPARAISON MODELE - EXPERIENCE

Pour le dernier point mentionné précédemment, on peut recourir
par exemple à :

Ex : indice de Gini à minimiser (aire), montants sinistres en
fonction des primes, tout normalisé entre 0 et 1 par la
transformation x−min

max−min ).

Q-Q plot (par ex. sévérité Gamma) doit se faire par segment
car les lois sont conditionnelles...(si Y |X ∼ G(α, λ), alors Y
n’est pas Gamma).
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LIMITES DE LA GAUSSIENNE

L’utilisation d’une loi Normale est encore très répandue... Mais cela
implique des erreurs fondamentales de raisonnement, notamment

la densité de la loi est symétrique,

sa queue de distribution est fine,

support non adapté à des charges sinistres⇒ P(Y < 0).
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EFFETS DES FACTEURS DE RISQUE

Inutile de modéliser sans réflexion préalable sur les données...

En ce sens, il est essentiel de faire des statistiques descriptives
afin de déterminer l’intérêt éventuel de

discrétiser une variable continue : par des stats descriptives
bivariées, par des arbres CART, par des modèles GAM
(optimisation faite par méthode semi-paramétriques de
lissage, par ex. les splines, cf [Pouna Siewe, 2010]), ...

rendre continue une variable catégorielle (ordonnée) : si l’effet
est monotone en fonction des modalités.

C’est la vision "ingénieur" couplée à la vision statisticien !
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TRANSFORMATION DU PREDICTEUR?

Il peut être utile d’introduire une transfo. dans le prédicteur sur
certaines covariables en fonction du type d’impact sur Y .

Cette transformation sera choisie en fonction de l’effet du facteur
de risque sur Y lors de la visualisation des statistiques desc.

Prenons un ex. concret : supposons que l’âge x a un impact
exponentiel sur le taux de mortalité qx , mais que la CSP joue de
manière linéaire. Ainsi on posera un modèle de la forme

ln(qx) = a + b x + ln(c CSP) ⇔ qx = A × exp(bx) × c CSP
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LES RESIDUS

L’exemple ci-dessous montre que le modèle Gamma est bien
mieux adapté que le modèle lognormal dans cet exemple...

38Tarification, méthodes avancées

Validation d’un modèle GLM – Résidus
Les graphiques ci-dessous mettent par exemple en évidence que le modèle
gamma (à gauche) est mieux adapté que le modèle LN (à droite) :

,2. Les modèles GLM

Dans le cas d’une loi continue (coût moyen), on peut tester ces
résidus grâce au test des signes.
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TWEEDIE or not TWEEDIE? [Boucher and Danail, 2011]

La densité est donnée par

f(y; µ, φ) = a(y, φ) exp

(
1
φ

[
yθ(µ) − κ(θ(µ))

])
,

θ(µ) =

µ1−p

1−p si p , 1

log µ si p = 1
κ(θ(µ)) =

µ2−p

2−p si p , 2

log µ si p = 2

Dans cette formalisation, E[Y ] = µ et Var(Y) = ψµp = ψE[Y ]p ,
avec ψ un parametre de dispersion > 0.
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L’ordre p ∈ R+ (paramètre d’indice), choisi (en fonction de
l’application) avant d’estimer µ et φ, définit le type de distribution :

→ p < 0 : réalisations dans R; p = 0 : loi gaussienne,

→ 0 < p < 1 : pas de distribution (pas de modèle Tweedie),

→ p = 1 avec φ = 1 : loi de Poisson,

→ 1 < p < 2 : loi composée Poisson-Gamma (réalisations ≥ 0),

→ 2 < p < 3 ou p > 3 : positive stable distributions (x > 0),

→ p = 2 : loi Gamma, p = 3 : loi inverse gaussienne.

En pratique, 1 < p < 2 pour modéliser fréq. et coût en mm tps !
Inconvénient : mêmes var. explicatives prises en compte dans les
lois de fréq. et de coût, or les praticiens savent qu’elles sont ,.
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AVANTAGES

L’avantage essentiel des modèles non-paramétriques réside dans
la flexibilité de la forme de dépendance entre la réponse Y et les
facteurs de risque X.

Ils permettent naturellement de traiter :

les effets de seuil,

les effets non-monotones,

la dépendance entre les variables explicatives.

Il sont donc une excellente alternative aux GLM.

69 / 283



ILLUSTRATION AVEC UN ALGORITHME GBM

Gradient Boosted Trees (GBM) : effets seuil, non-monotones !
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INCONVENIENTS

La difficulté de la manipulation de ces modèles réside dans :

le manque d’interprétabilité,

la gestion du surappentissage qui parfois est complexe.

En effet, certaines modélisations nécessitent de bien maitriser le
choix des paramètres de tuning, qui peuvent en nombre assez
grand (GBM par exemple).
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TYPES DE MODELE

Parmi les approches non-paramétriques, on peut notamment
utiliser :

les arbres de décision CART,

les modèles ensemblistes de type bagging ou boosting,

les modèles à effet additif GAM.

Quelques références intéressantes :
- mémoire IA de C. Dutang sur les GAM,
- de nombreux mémoires IA sur le bagging et le boosting.
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2 Construction d’un zonier

3 Provisionnement
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CREATION DE POCHES D’ASSURES

La segmentation amène à créer des poches d’assurés ayant les
mêmes caractéristiques. Il y a un arbitrage naturel entre

une segmentation “grossière” : peu de tarifs , ;

une segmentation précise : beaucoup de profils de risque
considérés ,, des tarifs très personnalisés.

La question essentielle liée à la segmentation est l’exposition :
→ Remise en cause du principe de mutualisation (LFGN)...
→ Attention pour les GLM (MLE asymptotique), voire même pour
le calcul de la sinistralité globale en espérance par agrégation...
→ Bc segmenter ne fait pas forcément↘ tarif car prime de risque
(composant la prime technique)↗ (incertitude des estimateurs).
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MODELE PARCIMONIEUX

On a tjs 2 effets inverses en modélisation (cf théorie de Vapnik) :

adéquation du modèle : + la dimension du modèle est grande,
+ l’adéquation aux données est bonne ;

qualité prédictive : + la dimension du modèle est grande, + sa
capacité prédictive est mauvaise (bruit au lieu du signal).

L’idée est donc de rechercher un arbitrage dans la dimension qui
permette d’obtenir un bon compromis dans ces 2 objectifs.�� ��C’est ce qu’on appelle un modèle parcimonieux.

Critères de sélection de modèles emboîtés : AIC, BIC, ...
Econométrie : pénalité ex-post / Machine-learning : pénalité dans
l’optimisation (LASSO, ...).
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PENALITES EX-POST ET EX-ANTE

Usuellement, on utilise des pénalisations a posteriori...

Bien que conduisant potentiellement à des estimateurs biaisés, on
peut préférer au regard d’un critère d’erreur quadratique moyenne
des estimateurs pénalisés ex-ante : cf article Econométrie et
Machine Learning p.15 !

monde paramétrique : régressions pénalisées (pénalisations
ex-ante)

monde Machine Learning : gestion des paramètres de tuning
(pénalisations ex-ante)
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GLM : DIFFICULTES D’ESTIMATION

Il arrive souvent en pratique que des coefficients de régression
calibrés ne soient pas significatifs. Cela correspond au test :

H0 : β̂j = 0 VS H1 : β̂j , 0.

But : rejeter H0 à un certain niveau de confiance α, en se basant
sur le test de Fisher (ou Wald) (β̂j/σ(β̂j))2 (∼ χ2(1)).

Lorsque l’exposition est faible dans une poche, la calibration des
coefficients de régression affectés à cette poche devient ardue...

Cela est dû au fait que le MLE est asymptotiquement gaussien :

β̂MLE
j ∼ N(βj , 1/I(βj)).
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⇒ La variance de l’estimateur peut devenir grande si l’information
de Fisher est faible (quantité d’info contenue dans les données,
petite dans le cas de trop peu d’individus).

La technique consiste alors à regrouper certaines modalités de
covariables qualitatives (ou catégorielles). La démarche
statistique “propre” s’y rapportant :

1 calibration du modèle complet,
2 pour le test de chaque coef. associé aux covariables, repérer

la pire “p-valeur” au-dessus du seuil α,
3 agréger la modalité correspondante avec une autre

“intelligemment” ;
4 recalibrer le modèle, et revenir à l’étape 2 tant que le modèle

n’est pas satisfaisant.

78 / 283



POURQUOI PARTIR DU MODELE COMPLET?

Lors de l’étape de sélection de modèle, on conseille généralement
de partir du modèle complet, puis d’en chercher un sous-modèle
optimal. Cela est dû au théorème de Frish-Waugh (voir aussi
article Econométrie et Machine Learning d’Antoine Ly et Arthur
Charpentier, section 2.9).

En effet, imaginons les 2 cas suivants :

underfit, i.e. le vrai modèle (inconnu en pratique) s’écrit

yi = β0 + xT
1 β1 + xT

2 β2 + εi

et que l’on estime

yi = β0 + xT
1 β1 + ηi .
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Alors

β̂1 = (XT
1 X1)−1XT

1 y = β1 + (XT
1 X1)−1XT

1 X2β2 + (XT
1 X1)−1XT

1 ε

Et donc E[β̂1] = β1 + E[(XT
1 X1)−1XT

1 X2β2] , β1 (biais !).

overfit, i.e. le vrai modèle (inconnu) s’écrit

yi = β0 + xT
1 β1 + εi

et que l’on estime

yi = β0 + xT
1 β1 + xT

2 β2 + ηi .

Alors E[β̂1] = β1,
mais perte d’efficacité car overfitting ! D’où pénalisation par
complexité du modèle.
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DISTRIBUTION DE SINISTRALITE PAR POCHE

Au final, une question importante est d’identifier les poches pour
lesquelles la modélisation marche bien ou non : il vaut mieux
se tromper sur certains profils que sur d’autres...

Pour cela, on confronte la densité théo. construite par GLM à la
densité empirique du profil et on espère une bonne adéquation
(ex : rootogram) !
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PRATIQUE COURANTE

Dans les compagnies d’assurance, on penche souvent pour la loi
de Poisson dans la modélisation de la fréquence des sinistres
lorsqu’on adopte une modélisation de type fréquence-coût.

En effet,

la survenance des sinistres est considérée sans mémoire„

la Poisson ne dépend que d’un paramètre donc est simple

cela simplifie le calcul global de sinistralité à l’échelle du
portefeuille : loi Poisson composée stable par addition.

Souvent la variance empirique du nombre de sinistres est bien
supérieure à sa moyenne empirique : cela va à l’encontre de la
propriété fondamentale de cette loi⇒ pas adapté !

83 / 283



SURDISPERSION : BINOMIALE-NEGATIVE

Elle peut être construite comme un mélange de lois de Poisson :

(N |Λ = λ) ∼ P(λ) et Λ ∼ Ga(α, δ).

La densité jointe de N et Λ vaut

fN,Λ(n, λ) = fN |Λ=λ(n) fΛ(λ) = e−λ
λn

n!

δαλα−1e−δλ

Γ(α)
(λ, α, δ > 0, n ∈ N).

Λ est continue et N discrète : la distribution marginale de N est

P(N = n) =

∫ ∞

0
fN,Λ(n, λ) dλ =

∫ ∞

0
e−λ

λn

n!

δαλα−1e−δλ

Γ(α)
dλ

=
δα

n! Γ(α)

∫ ∞

0
λn+α−1e−(δ+1)λ dλ =

δαΓ(α + n)

n! Γ(α) (δ + 1)α+n
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Posons ensuite p = δ
δ+1 , et q = 1 − p = 1

δ+1 . Alors

P(N = n) =
Γ(α + n)

n! Γ(α)
pαqn.

La v.a. N ∼ NB(α; p) prend ses valeurs dans {0, 1, 2, ...}.

Remarques :

La queue de distribution est plus épaisse que celle d’une loi
de Poisson.

Sa variance est plus grande qu’une loi de Poisson : loi utilisée
en cas de surdispersion des observations.
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AUTRES LOIS SURDISPERSEES

Une autre loi potentiellement utille pour traiter le phénomène de
surdispersion est la loi de Borel-Tanner.

Elle fait partie des EDF (Exponential Distribution Functions)...donc
appartient à la famille des GLM!
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MODELES INFLATES
[Frees, 2009], [Vasechko et al., 2009]

Mélange discret à 2 composantes (grande masse en 1 point)...

Les “0” observés viennent de loi de comptage + masse en 0 (ex :
“vrais” 0 pr pas de sinistre, et “faux” 0 provenant de recours...) :

deux “sources” de 0, proportion du Dirac égal à fzero(0)

l’autre regroupe les obs. , 0 provenant de la loi de comptage.

P(N = k) = fzero(0) dirac(0) + (1 − fzero(0)) fcount(k).

Ex : N ∼ ZIP(λ) : P(N = k) =


π0 + (1 − π0) e−λ si k = 0,

(1 − π0) e−λ
λk

k !
si k > 0.

Régression (N continue) (cf formation comportements chris à la
fin). π0 peut resulter d’une binomiale par ex. Offset?
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MODELES TRONQUES
[Frees, 2009], [Vasechko et al., 2009]

Mélange à 2 composantes (“hurdle-at-zero”), 1 seule source de 0 :

loi de type binomiale par exemple qui génère les 0 (ne
proviennent plus du tout de la loi comptage),

à laquelle on ajoute une loi de comptage tronquée.

P(N = k) =


fzero(0) si k = 0,

(1 − fzero(0))
fcount(k)

1 − fcount(0)
si k > 0.

Zero-trunc. P : P(N = k) =


π0 si k = 0,

(1 − π0)
e−λλk

(1 − e−λ)k !
si k > 0.
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REMARQUES

On pourrait voir le modele zero-inflate comme un modele dans
lequel les couts sont parfois egaux a zero a cause de recours
par exemple...alors qu’initialement ils n’étaient pas nuls !

Si les zéros n’ont qu’une provenance, + robuste d’utiliser un
modèle hurdle concernant l’estimation statistique des param.
(car estimation isolée pour chacune des 2 parties du modèle :
logit et modèle de comptage).

Ex. : data “AutoClaim” dans la librairie R cplm (Yip and Yau, 2005).
Computational tools for such models (zero-altered models, ...) :
librairie mboost et countreg.
→ Voir l’article Boosting actuarial regression models (IME 2019).
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TYPOLOGIES DE SINISTRE

La sinistralité se décompose généralement en trois typologies de
sinistre :

attritionnels : haute fréquence, petite sévérité ;

graves : basse fréquence, grande sévérité ;

CAT : très basse fréquence, sévérité extrême.

Nécessité de séparer ces données car les modèles classiques
ne fonctionnent que sur les sinistres attritionnels (à cause des
queues des distributions des lois utilisées)⇒ écrêtement.

Rq : utiliser techniques de Théorie des Valeurs Extrêmes.
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DONNEES ATYPIQUES

Malgré l’écrêtement des sinistres, on observe parfois de la
sinistralité un peu atypique au sein de l’échantillon...

On peut traiter ce problème avec des approches un peu plus
sophistiquées comme celle présentée dans l’article

Computational Bayesian Credibility for GLMs, de José Garrido
(Concordia University, Montreal)

Il s’agit d’estimer la prime en 2 étapes...En moyennant 2 fois.
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DISCONTINUITE - DISTRIBUTION DES MONTANTS

On observe parfois (surtout pour les branches à développement
long) des pics de densité pour certaines valeurs de coût de sinistre
unitaire.

Cela est dû par exemple à des forfaits à l’ouverture (de sinistre),
type convention IRSA ou forfait IDA en assurance automobile.

Ces montants forfaitaires doivent être exclus de l’étude !

Rq : cette suppression fait souvent baisser le coût moyen,
suggérant que les forfaits d’ouverture sont prudents.
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GESTION D’UNE HETEROGENEITE INOBSERVABLE

Une approche potentielle pour gérer l’hétérogénéité inobservable
des données consiste à considérer des modèles mélanges finis. Ils
peuvent être discrets ou continus (ex : mélange Poisson-Gamma).

Admettons que l’on observe l’échantillon x = (x1, ..., xd)T ,
réalisations iid de X = (X1, ...,Xd)T .

La densité mélange de X s’écrit comme suit dans le cas discret :

p(x; Θ) =
M∑

j=1

πj fj(x; θj), avec
M∑

j=1

πj = 1, πj > 0.

En termes d’estimation des paramètres, on se base généralement
sur l’algorithme Espérance-Maximisation (EM).
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ILLUSTRATION

On se propose ici d’afficher l’aspect caractéristique d’une densité
de probabilité d’une loi mélange discret.
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PRINCIPE DE L’ALGORITHME EM

Complétion artificielle des données pas à pas (on n’observe pas le
label Y d’appartenance des indiv. aux composantes).

Soit Z = (X ,Y) les données (X est observé, au contraire du label
Y ). L’algorithme se décompose en 2 étapes à chaque itération k :

E-step : calcule log-vraisemblance espérée des données
fictives :

Q(Θ; Θ(k)) = EΘ(k) [ln Lc(Θ) |X ]

M-step : met à jour les paramètres en maximisant Q , donc

Θ(k+1) = arg max
Θ

Q(Θ; Θ(k)).

Au final : attribution de l’obs. à l’une des composantes (Bayes).
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FRANCHISE ET EFFET DE SEUILLAGE

Franchise : impacte la loi de fréquence et de coût.

Historiquement, la franchise a été instaurée afin de

diminuer l’aléa moral (comportement moins prudent car
assuré) ;

l’antisélection (délai de carence par exemple en
Prévoyance).

D’un point de vue statistique, cette approche doit être adaptée
pour tenir compte des contraintes liées au dispositif de collecte
des données, à savoir qu’il existe un seuil de collecte des pertes.

Seules les pertes > H (où H est la franchise) sont collectées.
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IMPACT SUR LA SEVERITE

On observe un échantillon (X1, ...,Xn) de pertes i.i.d. au delà du
seuil de collecte H.

On obtient donc une distribution modifiée par rapport à la
distribution théorique sans seuillage, donnée par

f̃θ|H(x) =
fθ(x)

P(X > H)
1x>H =

fθ(x)∫ ∞
H fθ(u) du

1x>H .

Estim. des paramètres θ : méthode des moments généralisée
(minimise l’écart entre moments théo / moments empiriques), ...
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EXEMPLE : X k
i,j ∼ X ∼ LN(µ, σ)

Besoin : au − autant de moments théo. que de param. à estimer...

En notant les moments mp(θ) = E[Xp | X > H] =
∫ ∞
−∞

xp f̃θ|H(x) dx,

m1(µ, σ) =
1 − Φ(

ln H−(µ+σ2)
σ )

1 − Φ( ln H−µ
σ )

eµ+σ2/2

m2(µ, σ) =
1 − Φ(

ln H−(µ+2σ2)
σ )

1 − Φ( ln H−µ
σ )

e2(µ+σ2)

où Φ désigne la fonction de répartition d’une loi N(0, 1).

Puis on inverse le système en remplaçant m1 et m2 par µ̃n et σ̃n

(EMM), et on trouve µ̂ et σ̂ !
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IMPACT SUR LA FREQUENCE - EXEMPLE POISSON

Souvent modélisée par la loi de Poisson (N ∼ P(λ)) :

P(N = n) = e−λ
λn

n!

Simple (EMV = moy. empirique).

Calibration de la fréquence après celle de la sévérité pour
prendre en compte la présence du seuil de collecte :

λ̂ =
λ̂H

P(X > H)
=

λ̂H

1 − Fθ̂(H)

En pratique donc : calculer la moyenne empirique du nb de
pertes annuel (λH) et utiliser l’estimateur de θ pour obtenir le vrai λ.
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RECOURS ET REASSURANCE

Concernant les recours, il y a 2 solutions :

soit les recours se traitent en amont de la modélisation,

soit on modélise la probabilité de recours, puis combien cela
rembourse (approche PD-LGD en crédit)

La réassurance peut également intervenir dans le tarif : elle
s’intégre après estimation des modèles et déduction de la prime
pure.
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PROVISION AJOUTEE AU TARIF

Idée : il manque de l’information dans la sinistralité observée dans
la base, car certains sinistres ne sont pas déclarés/clos...

Le provisionnement peut donc jouer dans la valeur de la prime, en
l’occurence la baisser si l’activité fait des bénéfices ou la monter
pour des branches à développement long.

Une manière d’intégrer le provisionnement serait de faire d’abord
un Chain Ladder pr évaluer la charge ultime puis utiliser le volume
de prime pour en déduire un Loss-Ratio.

Ce Loss-Ratio est ensuite appliqué à la prime déterminée par
GLM.
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EXEMPLE : DOMMAGES EN RC CORPORELLE

Difficultés : consolidation médicale⇒ rapport AGIRA par ex.
Rq : attention donc à l’inflation, notamment médicale.

Tarification d’un portefeuille automobile sur le marché luxembourgeois 
 

Mémoire d’actuariat CEA – Nicolas FAUGERE Page 97 
 

Préjudice passé 
1. Capitalisation au taux d’intérêt légal 

(intérêts compensatoires et moratoires): 
3.00% en 2015 au Luxembourg 

2. Table de mortalité (conversion de rente) 
 

 
 

 
Nous schématisons ci-après les postes d’évaluation et leurs paramètres d’évaluation 
temporelle 
 

 
 
 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

La fixation de l’indemnité donnant lieu à un règlement définitif n’est possible qu’une fois la 
date de consolidation connue. 

 

Capital ou rente 

Les préjudices futurs peuvent être versés sous forme de rentes ou de capital, avec dans les 
deux cas des avantages et des inconvénients. 
 

Forme d’indemnisation Avantages Inconvénients 
 

Capital 
-Dossier clos en gestion et en 
comptabilité 
-Pour la victime, pas de fiscalité sur 
le capital 

Perte technique lorsque la victime 
décède  plus vite que la table de 
provisionnement 

 
Rente 

-Gain technique en cas de décès 
prématuré 
-Versements réguliers à la victime 

Gestion lourde dans le suivi des rentes 
(paiements, certificats de vie, 
fiscalité,…) 

 
Sur le marché luxembourgeois, la pratique des juges est d’attribuer un versement en capital 
plutôt qu’une rente. 
 
Pour autant, la tendance européenne de ces dernières années est plutôt de favoriser le 
paiement en rente. Ainsi, le Livre Blanc de l’Indemnisation des dommages corporels publié 
en avril 2008 par l’Association Française des Assureurs (AFA) préconise un paiement en 

Date de consolidation médicale Accident 

Préjudice futur 
1. Taux d’actualisation 

pour les cashflows après consolidation 
2. Table de mortalité (conversion de rente) 

Retraite 
(65 ans) 

Perte de revenu (avant et après consolidation) 
Frais médicaux 
(avant et après consolidation) 

X mois après l’accident 

Préjudice Passé Préjudice Futur 

Décès 

t 

Paiement 
(65 ans) 

X mois après la 
consolidation 

Assistance Tierce personne 
 (après consolidation) 

Source : mémoire actuariat de Nicolas Faugère.
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VISION “AS-IF” DES MONTANTS

En principe, les données répertorie les montants de sinistre
relativement à une certaine date... qui peut être ancienne !
Attention donc à l’inflation.

Afin de tarifer pour les années à venir, il est important de
ramener ces montants au moment de la tarification (en
ramenant ces montants à des coûts “actuels”)

C’est ce qu’on appelle la mise en “as-if” : cela revient en général à
capitaliser les montants sur une ou plusieurs périodes.
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LISSAGE DU TARIF

En réalité, une refonte tarifaire amène quasi-systématiquement à
un écart de tarif significatif entre l’existant et le nouveau.

Une manière de combler cet écart en pratique est d’estimer le
modèle GLM sans en tenir compte, puis on compare la nouvelle et
l’ancienne prime. Cela nous permet de déterminer une constante
permettant de passer d’une prime à l’autre.

Cette constante est ensuite réintégrée dans la modélisation via un
nouvel offset ; puis on re-estime le modèle avec cet offset.

N.B. : les méthodes différent suivant les compagnies...
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DANS LES GLM : QU’EST CE QU’UN OFFSET?

L’offset représente une sorte d’exposition.

C’est une constante qui va venir modifier le risque de base, donc
le risque qui n’est pas lié au profil de l’assuré en particulier.

Exemples d’offset :

assurance auto indiv. : nb d’années d’assurance du véhicule ;

assurance collective auto : taille de la flotte assurée ;

incapacité-invalidité : effectif salariés, masse salariale ;

réassurance : taille du portefeuille, ...

Calcul du tarif : bien fixer l’offset à 1 (si unité de mesure en année,
car durée d’assurance de 1 an par défaut).
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INTEGRATION D’UN OFFSET DANS UN GLM

Tout simplement ! C’est un terme commun à tous les individus,
mais dont la valeur va changer en fonction des individus.

En terme explicite, l’équation devient

g(E[Y |X = x]) = offset + xTβ.

on contraint le coefficient de l’offset à valoir 1 (c’est
pourquoi il n’apparait pas dans l’équation !) ;

pour la calibration, on régresse g(E[Y |X = x])− offset = xTβ.
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EXEMPLE AVEC LE MODELE LOG-POISSON

L’idée globale de l’offset est que la réponse y est proportionnelle.

Donc l’offset s’exprime sur la même échelle que la réponse. Dans
le cas du modèle log-Poisson de paramètre λ, on aurait donc

ln(E[Y |X = x]) = ln(exposition) + xTβ.

Soit le modèle suivant à calibrer : ln
(
E[Y |X = x]

exposition

)
= xTβ.

On remplace donc la fréquence (au sens nb de sinistres) par une
fréquence standardisée !
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ET DANS LES AUTRES MODELES?

Cf TP sur le modele binomial.

Modèle CART?
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CONTRAINDRE DES COEFFICIENTS

Si l’on veut intégrer dans le modèle des facteurs de risque dont les
coefficients ont déjà une valeur (estimée par ailleurs), on peut
donc utiliser la même idée que l’offset...

Ainsi, si l’on souhaite intégrer un zonier dans le modèle tarifaire,
on introduira Z comme un offset. Ex : si 3 zones de risque :

zone 1 : z = −5%

zone 2 : rien.

zone 3 : z = +5%

Ex. GLM log-Poisson : on introduit l’offset log(z), donc log(1.05)
pour la zone 3...
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TAUX DE REPONSE FAIBLE

On cherche parfois à modéliser un événement binaire “rare” en
utilisant des modèles GLM.�� ��Quel(s) problème(s) cela pose?

Difficultés énoncées précédemment sur la calibration notamment
→ +sieurs poches où on observe (très) peu ou pas l’événement...

Exemples concrets (souvent en risque comportemental) :

taux de résiliation en assurance vie et non-vie (surtout en vie
où les taux de résiliation annuels sont + faibles) ;

taux de conversion en assurance directe par exemple.
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SEUIL D’AFFECTATION ET COURBE ROC

Dans ce type de problématique, on a coutume d’évaluer la
performance d’un modèle grâce à la courbe ROC.

Celle-ci permet également de voir que dans un tel cas, le meilleur
seuil d’affectation de la réponse à l’une ou l’autre des modalités
possibles pour la réponse ne se situe pas à une probabilité égale à
0,5...
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FORMALISATION DU CONTEXTE

Plaçons nous dans le cadre de risque comportemental pour
présenter le concept (ex : taux de conversion). Cela nous amène à
considérer un modèle GLM de type logistique, à savoir

ln
(

pi

1 − pi

)
= xT

i β.

Rappelons que

XT
i = (1,Xi1, ...,XiJ) et βT = (β0, β1, ..., βJ) ;

i ∈ 1, ..., I : Yi ∈ {0, 1} ⇒ Yi ∼ B(pi) ;

pi = P(Yi = 1).

En pratique, p̄ = 1
I
∑

i 1yi=1 est de l’ordre de quelques % au +.
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UN APARTE SUR LA FONCTION DE LIEN

Dans le cadre du modèle logistique, 3 fonctions de lien possibles.
Liées aux 3 fonctions de répartition possibles pour Y∗ (continue)
non observable (cf TP) :

FdR loi logistique (modèle logit) :

F(x) =
1

1 + ex , g(p) = ln
(

p
1 − p

)
FdR loi normale centrée réduite (modèle probit) :

F(x) = Φ(x) =

∫ x

−∞

e−t2/2dt , g(p) = Φ−1(p)

FdR loi Gumbel II (modèle complementary log-log) :

F(x) = 1 − exp(− exp(x)), g(p) = log(−log(1 − p)).
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PROBLEMES THEORIQUES ASSOCIES
[Albert and Anderson, 1984]

1 La séparabilité : en fait, l’existence d’un estimateur du
maximum de vraisemblance est conditionné par le problème
de séparation. Il n’@ de MLE en cas de séparation complète.

Conversion Modeling in Direct Motor Insurance and Study of Some Related Rare Events Issues           Zhe LI 

 19 / 84 

following. 
 
Let    be the column vector of observations for the      point           and 
denote   the         matrix with the   

  as rows. We assume that   is of full 
rank,    . The total sample is noted as   and it can obviously be diveided into 
distinct sub-sets of observations              with      . 
 
We define “complete seperation” in the sample points, if there exists a vector     , 
such that for all      and for                  

       
      (Eq. 5) 

Similarly for quasi-complete seperation:  

       
      (Eq. 6) 

 
Otherwise, it is the case of overlap. 
 
For a simple example    ,        . Complete separation means that     
such that   

           and   
          . Quasi-complete separation means 

that     such that   
           and   

          . Otherwise it is the case 
of overlap. 
 
The following graph shows the case when there are only two variables in the sample. 
 

 

Figure 2  Possible configuration of sample points in the case of two variables,    and   , and two 
groups,   , shown by circles, and   , shown by crosses. Regions    and    define corresponding 
allocation rule. (a) Complete separation. (b) Quasi-complete separation. (c) Overlap. 

 
With this definition, we will list the results from Albert and Anderson concerning the 
situation of separation in logistic regression: 
 
Theorem 1: If there is complete seperation or quasi-separation of the data points, the 
maximum likelihood estimates    does not exist and at least one element will get the 
value of infinity.  
 
Theorem 2: If there is overlap of the data points, the maximum likelihood estimate    
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2 La dimensionnalité (“curse of dimensionality”).
On dispose souvent de bc de covariables : la dim. de l’espace
↗ vite et les données peuvent rapidement devenir “sparse”.

Pour toute procédure statistique, la sparsité est un problème
important. On entend parfois parler de

“Small N large P”

Pour avoir un résultat fiable dans la plupart des modèles
statistiques, la taille des données dont nous avons besoin croit
souvent exponentiellement en fonction de la dimension du modèle.

Remarque : dans le cadre de données “sparse”, on utilise plutôt la
régression ridge, lasso, elastic net...
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SOLUTIONS THEORIQUES POSSIBLES

Pour éviter le problème de sparsité ou de non-existence du MLE
pour des données qui seraient séparées (ou quasi-séparées), il
existe deux principales méthodes :

la vraisemblance pénalisée (penalized likelihood method) ;

la régression logistique conditionnelle exacte (exact
conditional logistic regression).

Rq : la 3e alternative est le response-based sampling, artifice pour
retomber sur un problème plus facile à traiter mais qui n’est pas
applicable directement sur le problème d’origine (cf + loin).
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UN MOT SUR LA VRAISEMBLANCE PENALISEE
[Firth, 1993]

C’est une technique adaptée au problème de petit échantillon (peu
de réponses observées égales à 1 entre dans ce cadre).

L’idée est de corriger le biais des estimations MLE (biais en
o(n−1)) dû au manque de données. Pour corriger ce biais, on
optimise la vraisemblance pénalisée de l’information de Fisher :

L∗(β) = L(β)
√
I(β).

Cette fonction de pénalité est appelée l’a priori de Jeffrey.
Asymptotiquement, son influence est négligeable.
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LA REGRESSION LOGISTIQUE CONDITIONNELLE
EXACTE [Mehta and Patel, 1995]

Considérons un coefficient de régression βj (j = 1, ..., J).
Introduisons la statistique exhaustive (ou suffisante) de βj

Tj =
I∑

i=1

yi xij ,

L’inférence est basée sur la distribution exacte sous hypothèse
nulle de Tj , conditionnellement au vecteur de statistiques
exhaustives des autres coefficients :

Tj− = (Tk )k∈[1,J], k,j
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On maximise ensuite la vraisemblance conditionnelle

P(Tj = tj | βj ,Tj− = tj−) =
exp(βj tj)∑

Ωj
exp(βj

∑
i y∗i xij)

où Ωj est l’ensemble des permutations y∗ de y telles que pour
chaque y∗ ∈ Ωj ∑

i

y∗i xij′ = Tj′ ∀j
′

∈ j−.

Fonctionne bien pour des données mal séparées ;

Consommateur de ressources calcul (mal adapté si big BdD).
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VARIANCE DE L’ESTIMATEUR MLE

Rappel : l’erreur d’estimation de β est composée de 2 termes : le
biais au carré, plus la variance de l’estimateur.

Estimation classique : on estime le vecteur β de paramètres par
maximum de vraisemblance, où la vraisemblance vaut

L(β; y = (y1, ..., yI)) = f(Y1,...,YI)(y1, ..., yI; β).

Grâce à l’indépendance, L(β; y = (y1, ..., yI)) =
∏

i fYi (yi; β),
et donc

L(β; y) =
∏

i

pyi
i (1 − pi)

1−yi

où β est caché dans pi .
(pi = exp(β0 +β1Xi1 + ...+βk XiJ)/(1+exp(β0 +β1Xi1 + ...+βk XiJ)))
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Ainsi, on cherche à résoudre le problème de minimisation

(β̂0, β̂1, ..., β̂J) = arg min
β=(β0,...,βJ)

(− log L(β; y))

avec log L(β; y) = −
∑

i ln
(
1 + exp((1 − 2yi)xT

i β)
)
.

[Greene, 2008] montre que la variance de l’estimateur est donnée
par

Var(β̂) =

∑
i

pi(1 − pi)XT
i Xi

−1

.

La proportion de 1 intervient dans le terme f(pi) = pi(1 − pi) ;

pi = P(Yi = 1 |X) est petit pour la plupart des individus ;
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On peut faire quelques remarques :

f(pi) est maximale pour pi = 0.5 ;

si le modèle a un pouvoir explicatif convenable, pi sera plus
grand pour les individus dont la réponse observée yi vaut 1
que pour les autres ;

donc pi(1 − pi) sera plus grand pour ces individus (yi = 1)⇒
leur variance sera + faible.

Ce raisonnement explique pourquoi augmenter la proportion de
réponses égales à 1 améliore l’estimation des coefficients de
régression.

126 / 283



BIAIS DU MLE SUR DONNEES DESEQUILIBREES
[McCullagh and Nelder, 1989]

Après avoir vu l’expression de la variance de l’estimateur, on peut
en estimer le biais (évidemment ces 2 quantités sont à minimiser).

Rappel : pour un estimateur β̂ de β, on définit le biais comme

biais(β̂) = E[β̂ − β] = E[β̂] − β.

Dans le cadre du MLE dans le modèle logistique, il est estimé par
la quantité

biais(β̂MLE) =
XT Wξ

XT WX
.

où W et ξ sont liés aux poids des observations et aux p̂i .
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De manière plus précise, on a

wi est le poids accordé à l’observation i ;

p̂i est l’estimation fournie par la modélisation ;

ξi = 0.5 × Qii × [(1 + wi) p̂i − wi] ;

W est la matrice telle que W = diag(p̂i (1 − p̂i) wi) ;

Q est la matrice donnée par

X XT

XT WX
;

Qii sont les éléments diagonaux de la matrice Q ;

Rq : dans le cadre de petits échantillons avec peu de “succès”
(yi = 1), c’est β̂0 qui est affecté en premier. Par propagation, tous
les β̂j sont ensuite affectés.
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EXEMPLE DE BIAIS [King and Zeng, 2001]

Considérons la modélisation suivante : pi =
exp(β0 + β1X1)

1 + exp(β0 + β1X1)
.

Dans ce cas, on peut approximer le biais de β̂0 par

E[β̂0 − β0] =
p̄ − 0.5

n p̄ (1 − p̄)
.

Clairement, le biais sera donc négatif car p̄ est petit dans notre cas
⇒ on aura tendance à systématiquement sous-estimer β0 !

En revanche, ce biais diminue à la vitesse n−1...
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PROPAGATION DU BIAIS

Le biais dans l’estimation des paramètres induit automatiquement
un biais dans l’estimation des probabilités pi . On montre que la
proba. pi est sous-estimée dans le contexte du modèle logistique
(avec peu de succès observés), et que le biais peut être estimé par

pi = P(Yi = 1 |X) = p̂i + Ci

où le facteur de correction Ci vaut

Ci = (0.5 − p̂i) p̂i (1 − p̂i) X Var(β̂MLE) XT .

→ Ci > 0 car p̂i petit : on sous-estime systématiquement pi ;
→ biais↘ si la variance de l’estimateur diminue, ou si p̂i ↗...
⇒ Lien entre biais de la proba estimée et variance de l’estim. β̂.
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REECHANTILLONNAGE

Les 2 approches théo. de correction du biais (vraisemb. pénal. /
reg. log. cond. exacte) étant difficiles à mettre en oeuvre, on opte
en pratique pour la méthode de type “importance sampling”.

Nous avons au départ un jeu de données dont le taux de
conversion vaut τ (ex : τ = 2%).

Pour éviter les pb de calibration avec ces données, on rééquilibre
l’échantillon en termes de nb d’événements d’intérêt observés.

C’est la response-based sampling method (ou choice-based
sampling method). Notons τc le nv taux de conversion (τc > τ).
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TYPE RESPONSE-BASED SAMPLING

Nous devons donc construire un response-based dataset.
Cette méthode soulève 2 questions sans réponse évidente :

si nous changeons la proportion des modalités observés dans
l’échantillon d’apprentissage, le modèle construit sera
différent. Comment ensuite retrouver des résultats cohérents
pour la population d’origine?

lors du rééchantillonnage, il faut choisir un taux arbitraire de
représentation des modalités de la réponse. Par ex., on choisit
30% (τc) de contrats souscrits. Comment fixer ce taux?
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FORMALISATION DU CONTEXTE

On dispose des données et du problème suivant :

I est la taille de l’échantillon initial ;

Yi ∼ B(pi) ⇒ yi ∈ {0, 1} ;

Xi = (Xi1, ...,XiJ) ∈ RJ ;

on note fX la densité de X, et fY celle de Y .

On cherche à estimer le paramètre p0 de la loi de Y , après avoir
supposé un modèle paramétrique (logistique) :

fY (y | x) = fY (y | x, p0).

Notons que f(y, x) = fY (y | x, p0) fX(x) (Bayes).
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AUTRES TECHNIQUES DE REECHANTILLONNAGE

Simple random sampling : vraisemblance d’1 seule obs. :

Lsr(p; (y, x)) = f(y, x) = fY (y | x, p) fX(x).

→ Propriétés estimateur identiques que sur la population
globale (maximise la même forme de vraisemblance).

Exogenous stratified sampling : stratifie l’échantillon sur x.
On a dc une nvelle densité g(x), et la vraisemblance s’écrit

Les(p; (y, x)) = f(y, x) = fY (y | x, p) g(x).

→ Adapté pour sur-représenter des catégories de personnes.
→ Ne modifie pas le maxim. de la vraisembl. (se fait sur p).

134 / 283



RESPONSE-BASED SAMPLING ET MODELE LOGIT
[Xie and Manski, 1989]

Stratification sur la réponse Y : on modifie le taux d’occurence
de l’événement de la population d’origine. I désigne la taille de
l’échantillon, fY la densité de Y dans la population d’origine.

Y ∈ {0, 1} : notons 1− τc le taux moyen (dans le nouvel échantillon)
de non occurence de l’événement, et τc son complémentaire.
On y associe le nb d’événements (ou pas événement) I0 et I1 t.q.

1 − τc = (I0/I) et τc = (I1/I).

Rappelons que fY désigne la densité de la réponse Y . On a

L rb(p; (y, x)) = f(x | y)
Iy
I

=
fY (y | x, p)fX(x)∫

X
fY (y | x, p)fX(x) dx

Iy
I
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Ici l’optimisation est modifiée, contrairement à précédemment où la
vraisemblance à optimiser était directement une fonction de p à
travers le noyau fY (y | x, p).

Ainsi le paramètre d’intérêt p sur lequel optimiser intervient
différemment dans le noyau qui devient

f(x, y)

f(y)
=

fY (y | x, p)fX(x)∫
X

fY (y | x, p)fX(x) dx
.

Ici, la densité marginale de Y (au dénominateur) dépend de p : on
va donc modifier p̂ en maximisant la vraisemblance (estimation de
p) et obtenir un estimateur qui n’est pas robuste pour la population
globale.
Comment le rendre donc robuste?
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METHODE 1 : WEIGHTING METHOD
[Manski and Lerman, 1977]

Il suffit de pondérer la vraisemblance avant de l’optimiser sur
l’échantillon response-based.

Ils définissent ainsi la weighted maximum likelihood estimation,
basée sur la log-vraisemblance

log Lw(p; (y, x)) =
I∑

i=1

w(yi) ln(f(yi | xi , p))

avec

w(y) =
fY (y)

(Iy/I)
.
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On conserve au final l’estimateur

p̂MLE = arg max
p

log Lw(p; (y, x)).

Remarque : les poids font intervenir

la quantité (Iy/I) : proportion de 0-1 dans la popu. créée.
→ Directement observable à partir des données.

fY (y) =
∫
X

fY (y | x, p)fX(x) dx : choix crucial si proportion du
phénomène non-observée en pratique.
→ issu en général d’une connaissance / information
extérieure (survey, ...) si non-observée (mais prop. observée
pr nous ds la pop. globale car classif. supervisée).

Rq : méthode qui fonctionne qlq soit le lien (logit, probit, ...).
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EN PRATIQUE

On a

w(y) =
fY (y)

(Iy/I)
.

Au numérateur, il s’agit de la proportion de 1 (respectivement 0)
dans la population d’origine. Au dénominateur, il s’agit de la
proportion de 1 (respectivement 0) dans la pop. response-based.
Donc

pour yi = 1 : les poids sont w(1) = τ
τc < 1

pour yi = 0 : les poids sont w(0) = 1−τ
1−τc > 1

On surpondère les observ. égales à 0 : logique puisque l’échant.
response-based contient bien moins de 0 que celui d’origine...
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ECART DE TARIF

Ce biais peut rapidement mener à une sous-estimation importante
de la sinistralité dans le cas de gros portefeuille...

Prenons par ex. le portef. avec caractéristiques suivantes :

1 000 000 d’assurés,

une fréquence moyenne de survenance des sinistres de 10%,

un coût moyen du sinistre de 2000 euros.

Admettons que le biais de la probabilité de survenance soit de 1%,
donc sous-évaluée à 10% plutôt que 11%.
Grossièrement, il faudrait donc ajouter 10 000 sinistres dans
l’année, soit une charge totale de

10000 × 2000

soit 20 000 000 d’euros à payer en plus !
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METHODE 2 : PRIOR CORRECTION
[Xie and Manski, 1989]

Uniquement dans le cas du modèle logit (lien logit et bonne
spécification du modèle). Estimer par MLE sur l’éch. response
based conduit à bien estimer ts les coef. de régr., excepté β0.

On “corrige” donc l’estimation β̂0 de β0 comme suit :

β̃0 = β̂0 − ln

(
1 − τ
τ

τc

1 − τc

)
,

avec τ la prop. de 1 ds la pop., et τc celle ds l’éch. response-based.

Ainsi, on estime coef. par max de vrais. sur l’échantillon response

based en introduisant avant un offset valant ln

(
1 − τ
τ

τc

1 − τc

)
.
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JUSTIFICATION DE LA CORRECTION

Soit C1 l’événement Y = 1 et C0 l’événement Y = 0.

P(C1|x) =
P(x |C1)P(C1)

P(x |C1)P(C1) + P(x |C0)P(C0)

=
1

1 +
P(x |C0)P(C0)
P(x |C1)P(C1)

=
1

1 + exp
(
ln

(
P(x |C0)P(C0)
P(x |C1)P(C1)

))
=

1

1 + exp
(
− ln

(
P(x |C1)P(C1)
P(x |C0)P(C0)

))
=

1
1 + exp (−(β0 + β1 × x))
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Or,

β0 + β1 × x = ln

(
P(x |C1)P(C1)

P(x |C0)P(C0)

)
,

donc les paramètres de régression sont estimés sous l’hyp. que
les probabilités a priori de chaque classe sont équilibrées voire
égales... On peut ainsi re-introduire le odd-ratio a priori dans
l’intercept comme ceci :

β0 + β1 × x + ln

(
P(C1)

P(C0)

)
= ln

(
P(x |C1)P(C1)

P(x |C0)P(C0)

)
+ ln

(
P(C1)

P(C0)

)
β0 + ln

(
P(C1)

P(C0)

)
+ β1 × x = ln

(
P(x |C1)P(C1)

P(x |C0)P(C0)

)
+ ln

(
P(C1)

P(C0)

)

D’où β̃0 = β0 + ln
(

P(C1)
P(C0)

)
.
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RESUME DES ETAPES DE CREATION D’UN TARIF

On résume ici les principales étapes à exécuter dans une optique
de tarification.

Dans l’ordre :

1 Importation des données et premiers traitements (données
aberrantes, valeurs manquantes, transformation de types, . . . )

2 Extraction des bases par garantie assurée
3 Traitement des données (nettes de franchises, recours, forfait

type IDA, mise en as-if pour l’inflation, dvp des sinistres pour
prise en compte de provision ds tarif, réass. à répercuter?)

145 / 283



4 Statistiques descriptives (exposition, fréquence et cout moyen
par variable explicative, tests de corrélation, . . . ) et premiers
choix de travail sur les modalités

5 Extraction des seuils et écrêtement : isolement des extrêmes
6 Détermination de l’individu de référence (si GLM) ;

7 Création d’échantillons d’apprentissage et de validation ;
8 Modélisation (hypothèse, adéquation aux lois choisies, . . . ) ;
9 Optimisation du modèle et travail manuel sur les variables et

les modalités ;
10 Validation du modèle (résidus, comparaison à l’empirique sur

l’échantillon de validation) ;
11 Détermination des primes ;
12 Viabilité des primes segmentées définies.
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CONCLUSION

De nombreux écueils à la mise en place opérationnelle d’une
tarification en assurance...

Principalement :

travail sur les covariables (regroupement de modalités,
catégorisation) en amont de la modélisation / optimisation ;

la segmentation et ce qu’elle induit (attention à ne pas trop
segmenter !) ;

le choix paramétriques éventuels (lois, liens, ...) ;

la calibration des modèles (convergence MLE, bornitude
vraisemblance, initialisation de l’algo. Newton-Raphson, ...) ;
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la validation d’un modèle ;

la gestion de la surdispersion des données ;

la potentielle (très) faible sinistralité...

Il est primordial de bien être conscient de ces limites.

La qualité du tarif peut être apprécié par une courbe de Lorenz (en
abscisses : % population triée par primes estimées classées par
ordre décroissant, en ordonnées les pertes cumulées empiriques
correspondantes...⇒ loi du 20-80 : 20% des contrats engendrent
80% de la perte globale)

Une alternative serait d’adopter une approche non-paramétrique
⇒ Machine Learning ([Paglia and Phelippe-Guinvarc’h, 2011],
[Aouizerate, 2012], [Leroy and Planchet, 2016]...)
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DEFINITION D’UN ZONIER

Définition (Larousse) du mot “Zonier, zonière”. Adj, nom.
Relatif à la zone autour de Paris ; habitant de cette zone.

Il semble que ce ne soit pas très adapté... En revanche, zonaire
(adj.) est affecté à un nom et désigne un ensemble qui présente
des zones.

Remarque importante : un véhiculier peut être rapproché d’un
zonier : on explique la sinistralité spécifique par le type de
véhicule. Par exemple, un certain modèle de moto est très présent
dans les motos école. La fréquence de sinistre observée sera
alors plus grande, cela est dû à l’utilisation du véhicule.
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OBJECTIF PRINCIPAL

A la base, le zonier en assurance a été introduit essentiellement
pour des raisons commerciales.

Objectif : éviter des “sauts” de tarif sur deux zones géographiques
voisines, tous critères égaux par ailleurs.

⇒ Vente par les agents rendue plus facile... Moins de plaintes des
assurés.

Autre avantage : création de classes de risque géographiques.
On diminue le nombre de modalités par rapport à si l’on avait
introduit la variable comme facteur de risque dans un modèle.
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TYPES DE ZONIER

Le zonier administratif :

   

Zonage des territoires administratifs 49 
 

9.5. Cartographie du zonier des territoires administratifs 

A partir de ce qui vient d’être défini ci-avant, un zonier de 10 zones a été réalisé et est 
présenté ci-dessous (Figure 9-7). Le risque augmente selon le numéro de zone. Ainsi, la zone verte 
foncée correspond au territoire où le risque vol est le moins élevé et à l’inverse, la zone 10, rouge 
foncée, correspond au territoire où le risque vol est le plus élevé. Comme cité précédemment, 
chacune des 10 zones rassemble le même niveau d’exposition. 

 

 

Figure 9-7 – Zonier administratif 

 

Les zones géographiques où le risque vol est le plus élevé sont l’Ile de France, la région PACA 
et l’Isère.  Les pôles urbains de Lilles, Toulouse, Nantes et Reims présentent aussi une forte 
sinistralité. A l’inverse, les régions les moins risquées sont le Limousin, l’Auvergne, la Bretagne et la 
Basse-Normandie. Les départements des Alpes de Haute Provence jusqu’à la Haute Savoie,  les 
Pyrénées Atlantiques, les Ardennes, les Vosges et le Jura sont aussi peu sinistrées. 

 

 

154 / 283



LISSAGE SPATIAL

Le zonier par lissage spatial :

   

Zonage par lissage spatial 61 

 

10.4. Cartographie du zonier lissage spatial 

Les niveaux de risques  ont été calculés pour chaque commune. La technique de 

classification par quantile est utilisée pour regrouper les communes en zones (paragraphe 9.4). La 

carte illustre le zonier obtenu (découpage en 10 zones). 

 

 

Figure 10-5 – Zonier lissage spatial 

 

Cette cartographie montre bien l’effet de lissage spatial par rapport au zonier des territoires 

administratifs (Figure 9-7). Les zones géographiques où le risque vol est le plus élevé sont l’Ile de 

France, la région PACA, le bassin Lyonnais et le pôle urbain Lillois. Les agglomérations de Nice, 

Grenoble, Montpellier, Carcassonne, Toulouse, Nantes, Le Havre, Reims ont aussi une sinistralité vol 

au-dessus de la moyenne. 
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ZONIER PREDICTIF

Le zonier prédictif :
   

Zonage par analyse prédictive 69 
 

 

Figure 11-9 – Zonier prédictif 
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CARACTERISTIQUES D’UN ZONIER

Les zoniers se construisent en général par garantie !

Exemples :

garantie vol,

garantie CAT NAT (zonier inondation, sécheresse),

zonier santé (prix de la santé assez différent en fonction des
régions),

...

Idée sous-jacente : le risque de vol est fortement lié au lieu
d’habitation.
Agrégation de zoniers : question délicate !
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SYSTEME D’INFORMATION GEOGRAPHIQUE (SIG)

Ensemble de données repérées ds l’espace (référence) : ex,

données géographiques : un code postal, ... ;

données localisées : nb de sinistres dans ce code postal.

On a des référentiels de données géographiques :

Code Officiel Géographique (COG) : codification communes,
cantons, arrondissements, départements, ..., DOM-TOM;

Référentiel GEOFLA : géré par Institut Géog. Natio. (IGN) ;

Référentiels postaux : Hexaposte, Hexavia, Hexaclé,
Hexaligne3, Cedexa ;

Norme AFNOR : pour normaliser les adresses pour l’Europe.
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STRATEGIE GENERALE

En commun de toutes les techniques de zonage, il existe une
étape préliminaire permettant d’“isoler” l’effet du risque
géographique.

Considérons par exemple un modèle de fréquence. On note Ni le
nombre de sinistres de l’individu i, et on connait son exposition
notée ei .

Supposons que Ni ∼ P(λi). En spécifiant un GLM log-Poisson :

ln(E[Ni | Xi]) = log(ei) + β0 + XT
i β,

avec βT = (β1, ..., βp), et XT
i = (X i

1, ...,X
i
p).
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Dans un cas classique, X contient une information sur le lieu où se
trouve le risque (ex : lieu d’habitation).

On constituera comme dans le cadre général

un échantillon d’apprentissage pour construire du modèle,

un échantillon de validation pour valider le modèle.

On peut procéder par échantillonnage stratifié (sur l’expo. par ex. :
2/3 de l’expo dans l’éch. d’apprentissage et 1/3 ds validation) :
l’idéal est d’avoir une exposition uniformément répartie sur le
territoire (parfois utopique !).

Stratégie pour construire un zonier : ne pas intégrer le facteur
de risque géographique dans la calibration du modèle, puis
travailler sur les résidus pour faire ressortir cet effet.
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Les méthodes de zonage consistent à mesurer le niveau de risque
par “région”⇒ on obtient une partition en zones de risque
homogène.

Point de vocabulaire : on distingue dans les méthodes de zonage
deux types de données :

les données laticielles : données observées sur une partition
du territoire (ex : exposition par commune) ;

les données ponctuelles : données géocodées (ex : ensemble
de sinistres à des lieux précis).
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MANQUE D’INFORMATION

Une des principales problématiques concerne le manque
d’information.
Exemple : si la “région” considérée est une commune, on peut ne
pas disposer d’information à ce niveau.

Comment mesurer alors le risque relatif à cette commune?

Cela dépend du type de zonier que nous construisons :
avec un zonier administratif, il faudrait considérer une “région”
plus grande, et accentuer ainsi la mutualisation. Cela induit :

- une perte de précision dans le zonier,
+ un gain dans la robustesse de la mesure du risque car on a

plus de données ;
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procéder par lissage spatial (on mutualise les risques
proches, ex : Boskov-Verrall (1994), Taylor (2001)). Cela induit
notamment :

+ une extraction des petites fluctuations aléatoires du risque
pour en révéler la structure spatiale sous-jacente.

- une difficulté de calibration pour les paramètres de lissage,
difficulté d’arbitrer dans le niveau de précision du zonage.

procéder par introduction de variables externes prédictives du
risque géographique (sociodémographiques, topographiques,
de population, ...). Cela induit :

+ on peut extrapoler le niveau de risque d’une région non
exposée à partir de ses caractéristiques,

- choix complexe dans la multitude des indicateurs potentiels
pour la construction du modèle.
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CONTEXTE

Principe du zonier administratif : le zonier administratif correspond
à un zonage par agrégation territoriale.

On prendra ici l’exemple d’un zonier fréquence (mais il existe des
zoniers de coût aussi !).

Evidemment, il existe d’autres facteurs de risque que la région
expliquant la fréquence⇒ trouver une mesure du niveau de risque
d’une région qui ne dépende que du facteur spatial (isoler
l’influence du facteur géo. toutes choses égales par ailleurs).

Rappelons que

Ni = ei × eβ0 × eβ1X i
1 × ... × eβpX i

p + εi
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FACTEUR DE RISQUE SPATIAL

Soit X1 le critère géographique, alors β1 est le facteur spatial.

1 On modélise N sans X1 ⇒ on obtient β̂2, ..., β̂p (si GLM) ;
2 → Lorsque l’exposition est différente de 0, on pose :

Ri =
Ni

ei × eβ̂2X i
2 × ... × eβ̂pX i

p
= eβ0 × eβ1X i

1 ×
eβ2X i

2

eβ̂2X i
2

× ...×
eβpX i

p

eβ̂pX i
p
.

Sous l’hyp. β̂2 = β2, ..., β̂p = βp , on définit le risque spatial par

Ri = eβ0eβ1X i
1 + ε

′

;

→ Lorsque l’exposition est nulle, on prend Ri = 0.
On appelle Ri le risque spatial résiduel.
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Rq : dans la suite, k est une “région”. En pratique, on aura
donc déjà agrégé les observations des assurés par “région”.
Rq 2 : on aurait aussi pu considérer Ni − N̂i plutôt que Ni / N̂i .

3 Admettons que nous travaillons au niveau commune ici. On
peut déduire l’estimateur r̂i de Ri pour chaque assuré :

r̂i =
ni

offseti eβ̂2X i
2 ...eβ̂pX i

p

où ni est le nombre de sinistres observés pour l’assuré i.
On peut maintenant définir l’estimateur du risque spatial
résiduel au niveau de la commune k par

r̂c
k =

∑Ik
i=1 ei r̂i∑Ik
i=1 ei

,

avec ei l’exposition, Ik nb assurés ds la commune k .
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4 On créé une nouvelle base de données où chaque ligne est
une commune, avec :

un code commune fourni par l’INSEE par exemple,
l’exposition ek de cette commune k ,
le risque résiduel spatial r̂c

k ,
le nombre de sinistres prédits, n̂c

k .

5 Enfin, on procède à l’agrégation territoriale au besoin.
→ Si le niveau choisi est trop fin (pas d’exposition), on agrège
alors au niveau d’au-dessus (ici le département par exemple).

Idée générale : la statistique de risque spatial résiduel doit pouvoir
être considérée robuste. Elle doit donc excéder un certain seuil
d’exposition minimal, noté e dans la suite.
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CHOIX DU SEUIL D’EXPOSITION MINIMALE

On se rend compte que le risque spatial résiduel de chaque
commune k peut correspondre :

soit à son propre risque spatial résiduel évalué comme décrit
précédemment,

soit au risque spatial résiduel du niveau d’agrégation
au-dessus (si l’exposition était trop faible),

soit au risque spatial résiduel du niveau d’agrégation encore
au-dessus si cette dernière exposition n’était pas suffisante,
et ainsi de suite...
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On stocke pr chq commune les niveaux de risque spatiaux
possibles suivant niveau d’agrégation (commune, canton, ...).

⇒ On se sert de ce tableau pour définir le seuil d’exposition
minimale, noté e dans la suite.

En résumé donc, on procède comme suit :
1 sur la base d’apprentissage A , construire GLM puis calculer le

niveau spatial résiduel par commune r̂A
k (rc

k précédemment) ;
2 sur la base de validation, on estime également le niveau de

risque spatial résiduel r̂T
k par commune ;

3 pour trouver le seuil d’expo. minimale e, on optimise

min
e

 n∑
k=1

e (r̂T
k (e) − r̂A

k (e))2


avec n le nombre de communes.
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En pratique, suivant la valeur de e, r̂A
k et r̂T

k diffèrent.

Pour tester , valeurs de e, on se définit une grille de valeurs
possibles (par ex. de l’exposition minimale à l’exposition maximale
avec un certain pas).

Si ek > e, on conserve les risques spatiaux résiduels courants r̂A
k

et r̂T
k . Sinon, on prend les valeurs pour l’agrégation d’au-dessus.
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CLASSIFICATION PAR ZONE

Une fois e déterminé, on ré-affecte le bon niveau de risque spatial
résiduel pour chq commune (celui de la commune si ek > e, sinon
au niveau d’agrégation supérieur tel que expo > e).

Cette affectation est réalisé pour l’ensemble des données
(apprentissage et validation).

Les niveaux de risque par commune ont maintenant été calculés :
il faut regrouper les communes avec niveau de risque similaire afin
d’avoir un zonier.

En fonction du nombre de zones voulu (disons Z zones), on peut
faire une classification en Z classes.
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En général, cette classification se fait par quantile d’exposition : on
veut créer Z classes avec même niveau d’exposition.

Notons a l’exposition de chacune des classes créées, ainsi

a =
expo totale

Z
.

En pratique, on veut satisfaire le critère “avoir au moins a en
termes d’exposition”.

Concrètement, la 1ère classe contient l’ensemble des communes
avec plus faible niveau de risque spatial dont la somme des
expositions soit au moins égale à a, et ainsi de suite.

On obtient ainsi la carte du zonier avec Z couleurs...
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DIFFERENCE PRINCIPALE DE LA METHODE

L’approche par lissage spatial ([J. Besag and Mollie, 1991],
[Boskov and Verrall, 1994], [Taylor, 2001], ...) a toujours pour but
d’estimer le facteur de risque spatial d’une région.

Ici le zonier ne correspond pas à une découpe administrative.

Le principe de base est de considérer la sinistralité liée à un lieu
ainsi que celle des “régions” alentours.

Hypothèse implicite de cette approche : 2 régions proches ont des
facteurs de risque spatiaux similaires.
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MODELE BAYESIEN DE BOSKOV-VERRALL
[Boskov and Verrall, 1994]

Modèle de référence pour ceux voulant mettre en oeuvre une
approche basée sur l’expérience (mise à jour paramètres).

On reprend les notations et le modèle précédent :

N = (N1,N2, ...,Nr) = (Ni)1≤i≤r ;

Ni : nb sinistres ds “région” i, ni est la version observée ;

i ∈ {1, 2, ..., r} : il y a r “régions” ;

ei est l’exposition de la région i,

un modèle GLM log-Poisson pr le nb de sinistres :

Ni = eln(ei) × eηi+µi+νi .
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LES TERMES DU MODELE

On peut donner une interprétation aux différents termes du modèle
de Boskov et Verrall.

Signification de chacun des termes de la modélisation :

ηi représente les facteurs de risque non spatiaux (âge, ...) ;

µi est l’effet du risque spatial ;

νi sont les résidus du modèle.

Ainsi, on décompose les différents effets en fonction de leur aspect
spatial ou non.
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ETAPES DE MODELISATION

On liste ici les étapes nécessaires à la mise en place du modèle
de Boskov-Verrall, dont voici un résumé.

1 On estime un GLM log-Poisson sans µi , le facteur de risque
spatial. On obtient ainsi η̂i .

2 Il reste deux quantités aléatoires dans le modèle d’origine :
µi pour l’effet du risque spatial,
νi pour les résidus du modèle.

On doit maintenant spécifier des distributions de probabilités
a priori pour ces 2 quantités (pour utiliser la théorie
bayésienne).
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3 Supposons que :

l’effet spatial µi est lissé, en introduisant une dépendance
spatiale entre les régions voisines.

Notons δi l’ensemble des régions dans le voisinage de la
région i.

Une loi possible peut être

µi ∼ Ui ∼ L(τ), avec f(µi ; τ) ∼ τ−1/2 e−
1
2τ

∑
j∈δi

(µi−µj)
2
,

(Ressemble à un noyau gaussien centré sur la région i)

⇒ Seuls les voisins ont donc une influence sur la densité (on
pourrait même introduire une dépendance en fonction de la
distance entre “région”).
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Pour trouver la loi du vecteur, on tient compte de cette
dépendance.

Donc

f(µ; τ) = f((µ1, µ2, ..., µr ); τ)

= f(µr | µ1, ..., µr−1; τ)f((µ1, ..., µr−1); τ)

= f(µr | µ1, ..., µr−1; τ)f(µr−1 | µ1, ..., µr−2; τ)f((µ1, ..., µr−2); τ)

= ...

= f(µr | µ1, ..., µr−1; τ) ... f(µ2|µ1; τ)f(µ1; τ)

= τ−r/2 e−
1
2τ

∑
i∼j(µi−µj)

2

où i ∼ j désigne l’ensemble des couples (i, j) voisins.
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les résidus νi sont indépendants, centrés, et de type
gaussien, i.e.

νi ∼ Vi ∼ L(λ), avec f(νi ; λ) ∼ λ−1/2 e−
1

2λ ν
2
i .

On obtient donc

f(ν; λ) =
∏

i

f(νi ; λ) ∼ λ−r/2 e−
1

2λ
∑r

i=1 ν
2
i .

la loi a priori des paramètres est donnée par

(τ,Λ) ∼ L(ξ), avec f(τ, λ; ξ) = e−
ξ

2τ−
ξ

2λ ,

avec ξ > 0 et petit.
C’est une distribution dite “peu informative” (donne peu
d’information sur la distribution du paramètre a priori).
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4 On sait que Ni | ηi , µi ∼ P(ei × eηi+µi ).

Donc N ∼ L(Θ) avec Θ = (U,V , τ,Λ).

5 Détermination de la loi a posteriori des paramètres.
Pour prédire le nombre de sinistres, on cherche la loi de

N | (U,V , τ,Λ).

Notons (U,V) = ((µ1, ν1), (µ2, ν2), ..., (µr , νr))

P(N|(U,V)) =
P(N, (U,V))

P(U,V)
=

P((U,V)|N)P(N)

P(U,V)
=

P((U,V)|N)P(N)∑
n P((U,V)|N)P(N)

Ce qui nous amène à devoir connaitre la loi de (U,V) |N (ou
(U,V , τ,Λ) |N puisque (U,V) dépend de (τ,Λ)...)
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Problème : (U,V , τ,Λ) |N n’a pas de forme connue.

En effet,

f(µ, ν, τ, λ | n) ∼ P(N1 = n1, ...,Nr = nr |U = µ,V = ν, τ = τ,Λ = λ) f(µ, ν, τ, λ)

= P(N1 = n1, ...,Nr = nr | µ, ν, τ, λ) f(µ, ν | τ, λ) f(τ, λ)

= P(N1 = n1, ...,Nr = nr | µ, ν, τ, λ) f(µ | τ = τ) f(ν |Λ = λ) f(τ, λ)

=
r∏

i=1

P(Ni = ni | µi , νi , τ, λ) f(µ | τ = τ) f(ν |Λ = λ) f(τ, λ)

=
r∏

i=1

e−θi
θ

ni
i

ni!
f(µ | τ = τ) f(ν |Λ = λ) f(τ, λ) (forme inconnue !)

⇒ On a besoin d’une méthode type Monte Carlo Markov Chain
(MCMC).
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RESUME DU RAISONNEMENT

Voici donc les étapes qui conduisent au résultat :

1 On spécifie les lois a priori :
couple de paramètres (τ,Λ) (loi peu informative) ;
la dépendance spatiale via la loi de µi ∼ Ui ∼ L(τ) ;
le bruit (résidus) via la loi de νi ∼ Vi ∼ L(λ) ;
le nombre de sinistres via la loi de N ∼ L(Θ) avec
Θ = (τ,Λ,U,V), plus précisément

N ∼ P(E[N]) ∼ P(exposition × eη̂+U+V )

2 On cherche la loi a posteriori des paramètres via
l’échantillonneur de Gibbs (méthode MCMC, algo. de
metropolis-Hastings).
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ECHANTILLONNEUR DE GIBBS

On utilise l’échantillonneur de Gibbs car :

les lois ne sont pas conjuguées : loi a posteriori , loi a priori
(pas seulement mise à jour des param.) ;

on connait les densités univariées conditionnelles ;

il n’est pas possible de trouver explicitement la loi a posteriori.

L’échantillonneur de Gibbs va permettre de déterminer un
échantillon de la densité a posteriori.

Principe : exploiter les densités conditionnelles (simu d’1 fonction
multivariée décomposable en +sieurs simus fonctions univariées) :
https://www.youtube.com/watch?v=ER3DDBFzH2g
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Donnons nous un vecteur pour nos variables aléatoires :

X = (τ,Λ, µ1, µ2, ..., µr , ν1, ν2, ..., νr ,N)

de densité conditionnelle f(τ, λ, µ, ν | n) (densité a posteriori).

On a donc observé un nombre de sinistres n, et on cherche
l’information que cela peut nous amener sur les autres paramètres.
L’échantillonneur de Gibbs permet d’obtenir des réalisations
de X .

C’est une procédure itérative où l’on va fixer tous les paramètres
sauf un : celui-ci est tiré au sort avec la distribution associée, puis
on actualise !
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ALGORITHME : MISE EN PRATIQUE

A partir de l’étape k , on tire pour l’étape (k + 1) :

1 τ(k+1) ∼ f(τ | λ(k), µ(k), ν(k), n)

2 λ(k+1) ∼ f(λ | τ(k+1), µ(k), ν(k), n)

3 µ
(k+1)
1 ∼ f(µ1 | λ

(k+1), τ(k+1), µ
(k)
−1 , ν

(k), n), où µ(k)
−1 =

(µ
(k)
2 , ..., µ

(k)
r )

...
µ

(k+1)
r ∼ f(µr | λ

(k+1), τ(k+1), µ
(k+1)
−r , ν(k), n)
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4 ν
(k+1)
1 ∼ f(ν1 | λ

(k+1), τ(k+1), µ(k+1), ν
(k)
−1 , n)

...
ν

(k+1)
r ∼ f(νr | λ

(k+1), τ(k+1), µ(k+1), ν
(k+1)
−r , n)

Il faut donc fixer des valeurs initiales en définissant un vecteur X (0).

Après l’étape k , l’étape (k + 1) se finit quand les (2r + 2) valeurs
ont été simulées, donnant

X (k+1) = (τ(k+1), λ(k+1), µ
(k+1)
1 , ..., µ

(k+1)
r , ν

(k+1)
1 , ..., ν

(k+1)
r , n).

On vient donc d’obtenir un nouvel état de la chaine de Markov.
Ce nouvel état est un nouveau jeu de paramètres, donc une
nouvelle observation de la densité a posteriori.
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Cette chaine de Markov converge vers une distribution stationnaire
f(τ, λ, µ, ν | n) après quelques centaines / milliers d’itérations.

La valeur des états qui suivent cette convergence permettent de
construire la densité empirique conditionnelle recherchée.
La chaine simulée à K états s’écrit alors{

(τ(0), λ(0), µ(0), ν(0), n), ..., (τ(K), λ(K), µ(K), ν(K), n)
}

En supposant que cette chaine de Markov atteint son état
stationnaire après T itérations, l’estimateur de la densité sera
donné par une approximation Monte Carlo, i.e.

X̂ =
1

K − T

K∑
T+1

X (k).
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On remarque cependant que la simulation des densités
conditionnelles univariées nécessite de les connaitre !

Par exemple,

µ
(k+1)
i ∼ f(µi | τ

(k+1), λ(k+1), µ
(k+1)
−i , ν(k), n)

Avec les choix faits ici pour les lois a priori, les densités
conditionnelles univariées sont fournies dans
[J. Besag and Mollie, 1991].

Par exemple, la loi qui permet de mettre à jour le paramètre τ est
explicite (loi du χ2).

Dans les cas où on ne peut les déterminer, elles sont alors
évaluées via l’algorithme Adaptive Rejection Sampling (ARS).
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CONSTRUCTION D’UN ZONIER PREDICTIF

Comme dans le cadre du zonier administratif, on isole l’effet du
risque géographique via la construction en amont d’un GLM ne
contenant pas de facteur de risque géographique...

Logiquement, on procède ensuite de la manière suivante :

1 on récupère les résidus du modèle,

2 on essaie de construire un modèle prédictif de ces résidus
(par ex. un autre GLM) avec des variables explicatives
pertinentes.
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Question clef : choix des variables explicatives du risque
géographique.

Inconvénient : si le choix n’est pas judicieux...

Avantage : on peut effectuer des prévisions pour de nouvelles
zones non exposées et sur lesquelles on ne détient pas
d’historique de sinistralité...
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CONCLUSION

Il existe 3 grandes manières de construire un zonier.

Les modèles décrits ici ne sont pas exhaustifs et certains
acteurs en utilisent des variantes (par ex. classifier
directement suivant la taille des résidus après la première
modélisation).

Certains modèles nécessitent une maitrise technique
importante (lissage spatial de Boskov et Verrall), ou une
connaissance du risque affinée pour le choix des paramètres
(lissage spatial de Wittaker).
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IMPORTANCE DU CALCUL DES PSAP

Arthur CHARPENTIER - Provisionnement en assurance non-vie

Le calcul des PSAP, motivation(s)

5
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BILAN SOLVABILITE 2 ET PROVISION

Interactions actif-passif⇒ BEL/PM varie !
SCR provision lié à la variation du BEL d’un exercice sur l’autre.
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DECOMPOSITION DE LA CHARGE D’UN SINISTRE

Éric GETTLER – Mémoire d’actuariat                              14 

Ces provisions se répartissent de la manière suivante : 
 
- Provisions dossier/dossier (D/D, ou F/F en anglais pour File/File ou encore RBNS : 

Reported But Not Settled). Ces provisions sont estimées au cas par cas par l’équipe de 
gestionnaires des sinistres qui est spécialisée par branche d’activité et qui est experte en 
ce qui concerne les différents cas de figure qui peuvent survenir au cours du cycle de vie 
du sinistre. 

- Provisions IBNR (Incurred But Not Reported) : elles-mêmes subdivisées en : 
� Provisions IBNeR (Incurred But Not enough Reported) : provisions visant à 

compléter (positivement ou négativement) les provisions dossier/dossier, 
� Provisions IBNyR (Incurred But Not yet Reported) : provisions servant à couvrir 

les sinistres survenus mais non encore déclarés à l’assureur. 
 

On appelle généralement PSAP, pour Provisions pour Sinistres À Payer, la somme des 
toutes ces provisions techniques. 

 
 
 

 

Fig. 3 : Décomposition de la charge ultime d’un sinistre 

 

1.3) Triangles de charge 

 

Un grand nombre de méthodes actuarielles d’estimation des provisions de sinistres se basent 
sur des triangles agrégés de montants cumulés de sinistres. Ils sont bien souvent le point de 
départ, la première étape indispensable, pour pouvoir appliquer ces méthodes. On comprend 
ainsi aisément qu’il est primordial de pouvoir constituer ces triangles de données sensibles en 
s’assurant d’une certaine qualité, d’un certain contrôle, en maîtrisant entre autres, leur origine et 
la manière dont ils sont constitués. 
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TECHNIQUES DE PROVISIONNEMENT

Il y a 2 grandes approches pour calculer les provisions.

1 Modèles sur données agrégées (ex : Chain Ladder) :
macrolevel reserving.

Travail sur paiements stockés par période de survenance i et
délai de réglement j.
Hypothèse sous-jacente : stationarité.

2 Estimation par sinistre : microlevel reserving !
Utilisation des caractéristiques des sinistres pour les sinistres
en cours de paiement.
Anticipation des tardifs (non encore déclarés).
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CAS DE MODELES SUR DONNEES AGREGEES

Au 31/12/I, les données sont stockées dans un triangle de
liquidation :

Année de Années de développement
survenance 0 1 . . . j . . . J − i . . . J − 1 J

0 x0,0 x0,1 . . . x0,j . . . . . . . . . x0,J−1 x0,J

1 x1,0 x1,1 . . . x1,j x1,J−1
...

...
... . . .

... . . .
. . .

i . . . . . . . . . xi,j . . . xi,J−i
...

...
...

...

I − j . . . . . . . . . xI−j,j
...

I − 1 xI−1,0 xI−1,1

I xI,0
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EXEMPLE : CHAIN LADDER SUR DONNEES CUMULEES

Année de Années de développement
survenance 0 1 2 3 4 5

1988 3209 4372 4411 4428 4435 4456
1989 3367 4659 4696 4720 4730
1990 3871 5345 5398 5420
1991 4239 5917 6020
1992 4929 6794
1993 5217

Ce qui donne les facteurs communs de développement

j 0 1 2 3 4
(0-1) (1-2) (2-3) (3-4) (4-5)

fj 1.38 1.01 1.0043 1.0018 1.0047
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Et les cadences cumulées de règlement :

j 0 1 2 3 4 5
pcj 70.8 97.8 98.9 99.3 99.5 100

On en déduit le triangle inférieur de liquidation et les provisions

Exercice i 0 1 2 3 4 5 Provisions
1988 0 4456 0
1989 1 4730 4752 22
1990 2 5420 5430 5456 36
1991 3 6020 6046 6057 6086 66
1992 4 6794 6872 6902 6914 6947 153
1993 5 5217 7204 7287 7318 7332 7367 2150

Total 2427

Rq : dernière prov. représente 89% de la prov. globale (short-tail).
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EXTENSIONS

On dénombre bc de méthodes dérivant du modèle déterministe de
Chain Ladder, afin d’intégrer une dimension stochastique :

le modèle de Mack, avec hypothèse sur les 2 premiers
moments,

le modèle de Merz-Wüthrich, pour une vision à un an plutôt
qu’à l’ultime,

les approches GLM-bootstrap, pour obtenir une distribution
complète de la provision.

Tous ces modèles ont déjà été vus en cours... On aborde dans la
suite une vision bayésienne du provisionnement.
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RETOUR SUR LE CONTEXTE BAYESIEN

On stipule un modèle qui régit les observations, X ∼ f(θ).

Connaissant un échantillon observé x,

les statisticiens fréquentistes testent θ = θ0 ;

alors que les bayésiens calculent la distribution a posteriori
(Θ |X ) du paramètre, notée f(θ | x), étant donné une
distribution a priori Θ ∼ π. Ainsi, ils cherchent

f(θ | x) =
f(x | θ) π(θ)∫

ν
f(x | ν) π(ν) dν

.

Question : comment choisir l’a priori Θ ?⇒ non-informative prior...
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CALCUL NUMERIQUE : LE PB DE LA DIMENSION

Imaginons que le paramètre θ est multidimensionnel, de dimension
n avec n grand (ex : n est le nb de facteurs de développement).

Soit X les observations, par ex. les données du triangle. Ainsi,

f(θ | x) =
f(x | θ) π(θ)∫

ν1
...

∫
νn

f(x | ν) π(ν) dν

avec

f(x | θ) est la vraisemblance de X sachant Θ = θ,

π(θ) est l’a priori sur θ,

f(θ | x) est l’a posteriori sur θ.

Le calcul de l’intégrale multidimensionnelle est très complexe...
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SIMULATION ET CHAINE DE MARKOV

Issue de "Sampling Based Approach to Calculating Marginal
Densities", Gelfand and Smith, JASA (1990).

Une chaine de Markov satisfait

P(Xt = y |Xt−1 = xt−1, ...,X1 = x1) = P(Xt = y |Xt−1 = xt−1).

L’état courant ne dépend que de l’état précédent !

La théorie ergodique stipule, sous certaines conditions, l’existence
d’une mesure stationnaire, g, telle que

P(Xt = y |Xt−1) −→
t→+∞

g(y)

Interp. : pour T grand, {XT+n}
N
n=1 est un N-échantillon de loi g(X).
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ALGORITHME DE METROPOLIS-HASTINGS

L’algorithme de Metropolis-Hastings est une chaine de Markov
fondamentale.

Il se décompose en les étapes suivantes :
1 soit f(θ? | x) la densité de Θ |X ;
2 au temps t = 1 : fixer une position initiale θ1 dans l’espace

des paramètres ;
3 fixer une distribution p(θ | θt−1) permettant de proposer une

nouvelle valeur du paramère connaissant la précédente
valeur ;

4 à partir de t = 2, répéter jusqu’à convergence de la chaine :
à l’étape t , simuler une proposition θ? ∼ p(θ | θt−1) ;
simuler U ∼ U(0, 1) ;
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calculer

R =
f(θ? | x)

f(θt−1 | x)

p(θt−1 | θ
?)

p(θ? | θt−1)

Si U < R, alors θt = θ?. Sinon θt = θt−1.

Astuce : en considérant ce ratio, l’intégrale multidimensionnelle
disparait ! En effet,

R =

f(x | θ?) π(θ?)∫
ν1
...

∫
νn

f(x | ν) π(ν) dν

f(x | θt−1) π(θt−1)∫
ν1
...

∫
νn

f(x | ν) π(ν) dν

p(θt−1 | θ
?)

p(θ? | θt−1)

et les termes se simplifient...

Rq : le Gibbs sampler est un cas particulier en dim. 1 de l’algo.
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UTILITE ET NAISSANCE DE LA METHODE MONTE
CARLO MARKOV CHAIN (MCMC)

Il suffit donc pour implémenter cet algorithme de disposer de

la distribution conditionnelle f(x | θ),

la distribution a priori π(θ).

On obtient une distribution limite (après CV de la chaine de
Markov) qui est la distribution a posteriori.
En pratique, elle est donnée par un échantillon de réalisations !

Théoriquement,

la distribution limite est la même, ∀p(θ | θt−1) !

pas de limite sur le nb de paramètres,

les conditions d’application de l’algorithme sont satisfaites
dans le cadre du provisionnement.

221 / 283



3 Provisionnement
Problématique du provisionnement
Données agrégées et triangle de liquidation
Provisionnement stochastique MCMC

Algorithme de Metropolis-Hastings
Modèle CRC

Mise en lumière des limites de ces modèles
Provisionnement ligne-à-ligne (microlevel reserving)

Idée du provisionnement par arbre de décision
Formalisation : construction de l’arbre
Extension de CART aux données censurées

Illustrations de l’intérêt de la méthode sur des cas pratiques
Application 1 : comparaison aux prévisions d’experts
Application 2 : assurance de revenus

222 / 283



PROVISIONNEMENT : EXEMPLE DU MODELE CRC

Idée : on se base sur la réalité des données dont on dispose.
En l’occurence,

volume de primes récolté par survenance,

on a une idée du Loss-Ratio attendu,

on dispose du triangle de liquidation historique.

On propose d’ajuster les sinistres par un modèle à facteurs :

Cwd ∼ lognormal(µwd , σd),

avec un facteur dépendant de l’année de survenance, et un facteur
dépendant du délai de réglement.
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QUANTITES DU MODELE CRC

Dans le modèle CRC (CRoss-Classified), on spécifie les
paramètres ainsi :

Cwd : montant cumulé de sinistres pr l’année "w" et délai "d",

µwd : moyenne de la distribution lognormale de l’année "w"
avec délai "d",

σd : l’écart-type de la distribution lognormale pour le délai "d",
avec la contrainte :

σ2
1 > σ

2
2 > ... > σ

2
d

Rq : contrainte logique car + délai↗, + proportion connue de la
sinistralité↗, et donc plus la variance↘.
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PARAMETRAGE POUR FAIRE DU BAYESIEN

En réalité, on spécifie la moyenne de la loi lognormale comme

µwd = log(Premiumw) + log(ExpectedLossRatio) + αw + βd .

On a besoin de spécifier une loi a priori sur (triangle taille 10 × 10)

log(ExpectedLossRatio) ∼ N(−0.4,
√

10) ;

αw ∼ N(0,
√

10) pour w = 2, ..., 10, avec α1 = 0 ;

βd ∼ N(0,
√

10) pour d = 1, ..., 9, avec β10 = 0 ;

la variance de la lognormale (en satisfaisant la contrainte) :

σ2
d =

10∑
i=d

ai , avec ai ∼ U(0, 1).

225 / 283



RESULTATS PAR MCMC

En sortie du calibrage, on obtient N (ex : N = 10000) réalisations
de la loi a posteriori des paramètres.

Puis on calcule pour chaque état après convergence de la chaine
de Markov (= chaque simulation) :

1 {µw,10}
10
w=1 = {log(ExpectedLossRatio)}+ {αw}+ {β10}

2 ce qui permet de resimuler les ultimes :

{Cw,10}
10
w=2 ∼ {lognormal(µw,10, σ10)}10

w=2,

3 reconstruire le total des charges ultimes {
∑10

w=1 Cw,10} ;

On peut ensuite calculer les statistiques d’intérêt sur la charge
ultime globale, par exemple : moyenne({

∑10
w=1 Cw,10}), ...
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COMMENTAIRES

L’avantage est de pouvoir enrichir le paramétrage des modèles à
partir de données historiques, avec mise à jour...

De nombreuses extensions du modèle CRC ont été proposées, en
particulier

1 pour gérer des corrélations entre survenance et
développement,

2 pour gérer des corrélations entre plusieurs triangles,
3 ...

Cf TP !
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AVANTAGES ET INCONVENIENTS

Chain Ladder :
+ données simples/compactes, facile à implémenter,
− ne se sert pas des informations précises sur les sinistres,
− nécessite des hypothèses (très) fortes...

Micro-level reserving :
+ utilise les données individuelles sur les sinistres : prise en

compte de l’hétérogénéité, de la vie du sinistre ;
+ adapté potentiellement à des branches longues,
− plus difficile à implémenter,
− nécessite de gérer à part les IBNyR.
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GESTION DE L’HÉTÉROGÉNÉITÉ

Etant donné que l’on “mélange” toutes les données en vision
agrégée, la qualité de l’estimation de la provision repose sur la
qualité et la stabilité des données... Il faut identifier :

1 Les facteurs internes qui pourraient impacter la provision :
évolution du portefeuille,
politique de souscription, tarification et réassurance,
politique de gestion des sinistres (cadence de réglement).

2 Et les facteurs externes :
pratiques de marché, cycles économiques, inflation,
évolution de la sinistralité (fréquence, sévérité),
modifications réglementaires et comptables.
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NON PRISE EN COMPTE DE LA VIE DU SINISTRE

MILLIMAN WHITE PAPER 

The future of (individual) reserving 2 April 2017
  

as well as the closing time. This modelling framework can be 
made flexible enough to take into account line-of-business 
specificities, such as recoveries and re-opening.  

FIGURE 1: TYPICAL INDIVIDUAL CLAIMS PATHS 

 

 

 

 

Continuous time modelling provides the most precise 
description of the portfolio time pattern. The mathematical tools 
at the core of the model specification lie in the family of 
continuous-time stochastic processes, known as marked point 
processes and multi-state dynamics, which model all kinds of 
events related to claims history. It is interesting to note that 
stochastic models for unpaid claims reserving appeared at 
around the same time for both individual-based and triangle-
based models. To our knowledge, Norberg (1993) and 
Hesselager (1994) are among the earliest papers which 
introduced a proper probabilistic setting for individual claims 
reserving, recently applied by Antonio and Plat (2014), 
whereas Mack (1993) proposed in his seminal paper a 
stochastic model underlying the triangle-based chain ladder 
technique. To date, we suspect that the greater success of the 
triangle-based models could be driven by their comparative 
ease of use and the lack of inexpensive computing power in 
the early days of these models. 

In order to estimate the parameters for an individual claims 
model, a calibration procedure is performed based on 
likelihood maximisation. Deriving the likelihood associated with 
the observed claims dataset is a challenging step, as reported 
but not settled (RBNS) claims are only partly observed, while 
the so-called IBNyR claims are not observed at all. This 
introduces a sampling bias in the observation process which, 
from a statistical perspective, relates to censoring and 
truncation. As the individual claims model involves a 
reasonable number of parameters, often lower than in a 
triangle-based approach, and as the number of individual 
claims records is large in comparison, the likelihood 
maximisation provides an efficient procedure which estimates 
the model parameters almost instantaneously.  

As an added bonus, estimated parameters typically show 
natural explanatory powers (e.g., occurrence and reporting 
frequencies, average settlement delays, etc.), and separate 
payment distribution specifications can provide information on 
the building blocks of the overall claim development path. This 
way, the parameters allow for a detailed monitoring of key risk 
indicators which, with triangle-based approaches, are hidden in 
aggregate development factors and related volatilities.

As for forecasting, simulation procedures draw on stochastic 
paths of the future development of RBNS and IBNyR claims, as 
well as new claims which will occur in the future. The 
procedure allows the user to forecast future events in a very 
efficient way, whereas the patterns in terms of claims arrival 
and time-to-event frequencies (as reporting and settlement 
delays) can be set as general as possible. Moreover, the 
simulation procedure can explicitly include anticipated changes 
in parameters (e.g., product mix, frequency trends, etc.), which 
helps avoid potential biases in the forecast. In its standard 
parameterisation, the model also allows for closed-form 
formulas which provide overall unpaid claim estimates and the 
related confidence intervals in a straightforward way. The key 
components of the individual reserving methodology are 
illustrated in Figure 2. 

FIGURE 2: INDIVIDUAL RESERVING METHODOLOGY 

 
 

Step-by-step implementation of an 
individual reserving process 
Our team has developed individual claims models as a new way 
for actuaries to efficiently measure and manage risks. Individual 
claims reserving models are very promising. To meet the 
associated challenges, we designed an integrated reserving 
process covering data needs, modelling and risk monitoring: 
� Data collection and preparation: Organise a 

standardised collection strategy focusing only on the 
claims data used by the individual claims model and 
perform the data transformation needed to feed the 
individual claims model 

� Model specification and calibration: Specify the model 
components according to the line(s) of business to be 
addressed and the transformed data and estimate the 
parameters of the individual claims model using 
advanced optimisation procedures combined with 
goodness-of-fit analysis

Time 

Occurrence Reporting Payments Closing 

Elle a un impact majeur sur la provision à constituer... Notamment,

la durée de vie du sinistre, s’il a été ré-ouvert ou non,

la typologie du risque sous-jacent (ex : assurance
construction décennale),

le nombre de paiements...
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ATOUTS DES MODELES DE REGRESSION

Etre capable de gérer l’hétérogénéité des données :
du fait du temps de développement du sinistre,
de ses caractéristiques (type de risque, ex : construction), ...

Utiliser des techniques d’apprentissage statistique pour
privilégier un estimateur non-paramétrique :

flexibilité de la forme de dépendance entre T et X ;
ici on prend les arbres CART sur lesquels on retravaillera.

Disposer de résultats de convergence des estimateurs :
[Lopez et al., 2016] : Tree-based censored regression with
applications in insurance, EJS.
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CENSURE ET PROVISIONNEMENT

Objectif : estimer les montants (ou durées) de sinistres individuels
T sachant les caractéristiques X, en utilisant un arbre CART.

On observe parfois seulement le montant payé jusqu’à aujourd’hui,
Y : censure droite !

Si le sinistre est censuré :

le sinistre est encore ouvert et a commencé à être payé (il
n’est pas clos⇒ IBNeR).

le montant total final T reste inconnu : on a payé Y ≤ T .

Rq : le sinistre est aussi parfois tronqué à gauche.

235 / 283



CLUSTERING PAR ARBRE SUR DONNEES COMPLETES

Pour estimer notre quantité d’intérêt, on considère un modèle de
segmentation fourni par un arbre de décision où :

1 la racine : population entière (montants) à segmenter⇒ point
initial ;

2 les branches : règles de segmentation ;

3 les feuilles : sous-populations homogènes⇒ donne
l’estimation de la réponse.

Une référence en actuariat→ [Olbricht, 2012] (tables de mortalité).
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EXEMPLE CART : prévoir propriétaire | revenu et taille
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PARTITION ET ARBRE
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But : créer des partitions d’homogénéité maximale.
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Voici l'arbre complet. On a représenté par des cercles les noeuds qui ont des successeurs. Les 
nombres à l'intérieur des cercles sont les valeurs de division et le nom de la variable choisie 
pour la division à ce noeud est écrit sous le noeud. Les nombres sur la fourche gauche à un 
noeud de décision ont des valeurs inférieures ou égales à la valeur de division tandis que le 
nombre de la fourche droite montre un nombre qui a une valeur plus grande. 
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ARBRE DE RÉGRESSION : Y TOTALEMENT OBSERVEE

π0(x) = E0[T |X = x] (1)

→ Lien le plus utilisée : relation linéaire entre T et X ⇒ EQM.
→ En pratique, on ne peut pas considérer ts les estimateurs
possibles de π0(x)⇒ CART est une autre classe d’estimateurs :

π̂(x) := π̂L (x) =
L∑

l=1

γ̂l Rl(x) (2)

L : nombre de feuilles de l’arbre, l leur indice,

Rl(x) = 11(x ∈ Xl) : appartenance à partition Xl ,

γ̂l = En[Y | x ∈ Xl] : moy. empirique de T dans la feuille l.
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CONSTRUCTION DE L’ARBRE : CRITERE DE DIVISION

→ Doit être adapté à notre objectif.
→ Pour résoudre (1), MCO utilisés car solution donnée par

π0(x) = arg min
π(x)

E0

[
φ(T , π(x)) |X = x

]
(3)

où φ(T , π(x)) = (T − π(x))2 (φ fonction de perte)

→ Conduit à minimiser la variance intra-noeud à chaque étape /
maximiser la variance inter.

→ Si T est totalement observé, construire l’arbre avec ce critère
donne un estimateur convergent ([Breiman et al., 1984]).
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ELAGUER : PENALISER PAR LA COMPLEXITE

Principe de l’algorithme CART : ne pas arrêter la segmentation,
construire l’arbre “maximal” (taille K(n)), puis l’élaguer.

→ On obtient une suite d’estimateurs (π̂K (x))K=1,...,K(n).

Eviter surapprentissage⇒ sélectionner le meilleur sous-arbre de
l’arbre max., arbitrage entre adéquation et capacité prédictive :

Rα(π̂K (x)) = En[ Φ(Y , π̂K (x)) ] + α (K/n).

α coût de complex., K nb de feuilles ([Gey and Nedelec, 2005]).
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RAPPEL : DONNEES ET OBJECTIF

On observe un échantillon iid de v.a. (Yi , δi ,Xi)1≤i≤n de distribution
(Y , δ,X), où {

Y = inf(T ,C)
δ = 1T≤C

Montant courant Y , sinistre ouvert : δ = 0.
C : variable de censure.

On cherche T∗ = E [T | δ = 0,Y ,X].

But : trouver un estimateur de T∗, sachant que l’on n’a pas
d’observations iid de T ⇒ pas de LGN, ...
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COMMENT GÉRER LES SINISTRES OUVERTS?

Mauvaise solution : ne considérer que les sinistres clos pour
construire l’arbre de décision afin d’estimer la réponse.
→ On sous-estimera montants finaux, dc la provision.

Cependant, les sinistres ouverts donnent également une
information biaisée⇒ à corriger !

Une solution possible : surpondérer les sinistres clos avec
dével. long pour compenser leur sous-représentation...

⇒ Question : quels poids?
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INGREDIENTS : ESTIMATEUR KAPLAN-MEIER ET IPCW

L’algorithme CART peut être adapté ([Lopez et al., 2016]) avec les
outils suivants. Hypothèse : T est indépendant de C.

Soit F̂(t) = 1 −
∏

Yi≤t

(
1 − δi∑n

j=1 1Yj≥Yi

)
.

→ Cet estimateur tend vers F(t) = P(T ≤ t).

Version additive : F̂(t) =
∑n

i=1 Wi,n1Yi≤t , avec les poids
Kaplan-Meier

Wi,n =
δi

n[1 − Ĝ(Yi−)]
,

où Ĝ(t) est l’estimateur Kaplan-Meier de G(t) = P(C ≤ t).

Voir aussi cours du premier semestre de Data Sciences.
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MONTANT ULTIME SUR SINISTRES CENSURÉS

On cherche E [M | δ = 0,X ,Y ,N], avec M le montant du sinistre.

But : revenir à des quantités conditionnées uniquement par X !

E [M | δ = 0,X = x,Y = y,N = n] = E [M |M ≥ n,T ≥ y,X = x]

=
E

[
M 1M≥n,T≥y |X = x

]
P(T ≥ y,M ≥ n |X = x)

.

Soient Φ1(t ,m) = m1m ≥n,t≥y et Φ2(t ,m) = 1t≥y,m≥n.

On veut dc estimer le ratio des 2 quantités suivantes⇒ 2 arbres !

(1) E[Φ1(T ,M) |X = x] sur (2) E[Φ2(T ,M) |X = x].
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EXTRAIT DES DONNEES

Assurance RC médicale aux US : 648 sinistres et leurs
caractéristiques (specialité, lieu, statut de réouverture, ...).

Claim.entry Indemn.res ALAE.res (..) Cens. Already.paid Reserved
47 2000-07-14 0 0.00 1 3456 0
48 2000-07-24 5000 13880.25 0 138435 18880
49 2000-07-31 5000 11304.60 0 7300 16305
50 2000-07-31 5000 103471.31 0 118136 108471
51 2000-08-04 0 0.00 1 46587 0
52 2000-08-14 0 0.00 1 3083 0
53 2000-08-15 0 0.00 1 0 0
54 2000-08-28 0 0.00 1 980 0

> summary(myData$Observed.total)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 2644 41760 18500 1557000
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STATISTIQUES DESCRIPTIVES BASIQUES
Weighted CART algorithm for censored data 2705

Table 7
Statistics on the information selected for our application.

Statistical indicators
Type Median Mean Std. Min. Max. # categories

Insurance type categorical 2
Specialty categorical 41
Class categorical 19
Report date date N N+7
Area categorical 30
Closed without payments boolean 2
Closed without indemnity boolean 2
Time before opening (days) continuous 1164 1223 614 2 4728
Time before declaration continuous 734 724 560 0 4657
Reopen status boolean 2
Cancel status boolean 2
Reserves continuous 0 44170 138867 0 1062000
Development time continuous 419 606 506 0 2249
Observed payments continuous 2617 41810 152319 0 1557000

is, the time between its issue date and the claim settlement date. The consor-
ship Ci is the delay between the claim issue date and the extraction date of the
database, and Mi is the total amount of the ith claim. The latter is observed
only if the claim has been fully settled (32% of the observations are censored). In
this setting, it is reasonable to assume that Ci does not depend on (Mi, Ti,Xi),
but this would clearly be wrong in the case of covariates depending on the claim
issue date. Table 7 summarizes some descriptive statistics about the covariates
that are used when running the weighted CART algorithm to explain the re-
sponse Mi. As could be expected in this type of business, the data are highly
skewed; for instance, many declared claims are assigned no payments because
the company is still waiting for a court decision before paying. A parametric
model would then be quite difficult to fit, which emphasizes the interest of using
such techniques.

As we have already mentioned, a key issue is to predict the future coming
expenses related to claims that are still under payment. Typically, computing

M∗(Ni, Yi, δi,Xi) := E[Mi | Ni, Yi, δi, Xi],

would give the best L2-approximation of the amount Mi based on the infor-
mation available on claim i. Our aim is then to produce an estimator M̂ of
this ideal (but unattainable) predictor. Of course, M∗ is known if δi = 1, that
is, M∗(m, y, 1,x) = m, but the key issue is to predict it for unsettled claims
(δi = 0). For such claims, rewrite

M∗(m, y, 0,x) = E[M | M > m, T > y,X = x]

=
E[M 11(M > m, T > y) |X = x]

P(M > m, T > y |X = x)
, (5.1)

and introduce Z1(m, y) = 11(M > m, T > y), and Z2(m, y) = M Z1.
In view of (5.1), we have to estimate the quantities πm,y

0,1 (x) = E[Z1|X = x]
and πm,y

0,2 (x) = E[Z2|X = x]. Each of these are estimated using the CART pro-

→ Données très hétérogènes : beaucoup de montants
provisionnés à 0 à cause d’attente de décision judiciaire...
→ Taux de censure important : environ 33%;

⇒ Un modèle paramétrique serait difficile à estimer !
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PRÉVISIONS DE LA QUANTITÉ E[M1(M>n,T>y) |X = x]
ARBRE ELAGUÉ To add

|County=c

T.decla>=276

T.decla>=730.5

T.decla< 729.5

Class=bc

T.decla< 681.5

T.decla>=692.5

T.decla< 181.5

Specialty=b

T.decla>=259.5

T.decla< 244.5

1.058e+04
n=290

4.071e+04
n=152

7.404e+04
n=51

1.171e+05
n=36

1.898e+05
n=4

9.113e+05
n=1

4.171e+05
n=4

1.658e+05
n=29

8853
n=3

2.714e+05
n=2

9.25e+05
n=9

1.481e+06
n=2
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PRÉVISIONS DE LA QUANTITÉ P(M > n,T > y |X = x)
RESULTATS NUMERIQUES

Error of the tree:

> (1.0 - (confusion.matrix[1,1]+confusion.matrix[2,2]) / sum(confusion.matrix))*100
> cat("The test sample estimate of the prediction error in the pruned tree is", error.estimate, "%\n")
The test sample estimate of the prediction error in the pruned tree is 18.6%

Predicted probabilities for the denominator:

(..) Censure Already.paid Reserved Observed.total KM.weight Proba.censorship
1 24 0 24 0.0017 0.1496063
1 1844 0 1844 0.0017 0.1496063
1 444 0 444 0.0017 0.1935484
1 0 0 0 0.0017 0.1496063
1 3907 0 3907 0.00176 0.2307692
0 0 81000 0 0 0.7500000
0 1061 42139 1061 0 0.7400000
0 1061 79939 1061 0 0.2307692
0 1061 12439 1061 0 0.7400000
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RATIO (1)/(2) ET COHÉRENCE AVEC OPINIONS
D’EXPERT

> #########################################################################################
> ## Final prediction of total claim amount for censored claims.
> #########################################################################################
> ## Comparison b/w predictions from the tree and the one from the expert.

Censure Already.paid Reserved Adj.predicted.claims Expert.prediction
0 0 81000 70752.37 81000
0 0 71600 10585.00 71600
0 0 0 10585.00 0
0 0 13500 10585.00 13500
0 0 52700 55008.11 52700
0 0 2500 10585.00 2500
0 0 55500 70752.37 55500
0 0 62100 55008.11 62100
0 0 81000 54274.67 81000
0 1061 42139 55008.11 43200
0 4266 57834 70752.37 62100
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Intérêt : faire des économies en évitant de consulter les experts...
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ASSURANCE DU RISQUE INCAPACITÉ - INVALIDITÉ

Nous disposons d’un historique de 6 ans d’un portefeuille couvrant
le risque incapacité avec les informations suivantes :

83 547 sinistres ;

cause de l’arrêt (maladie ou accident), sexe, CSP, age, durée
d’incapacité (censurée ou non), réseau de distribution ;

le taux de censure vaut 7.2%;

durée moyenne en incapacité : 100 jours.

But : trouver une segmentation pour prédire la durée en
incapacité, le remboursement étant forfaitaire.
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VISUALISATION DES DONNEES

> dim(myData)
[1] 83547 20

> summary(myData)
Sex TypeEmployee ContractNumber TYPE_ARRET SurvDate BegIndDate EndIndDate Cause ComNet BegAnc EndAncInd BegAge
F:65557 CAD: 3074 0725235: 1524 Maladie :71563 Min. :2006-01-01 Min. :2006-01-31 Min. :2006-02-03 Accident:10890 Net_A:36369 Min. : 0.000 Min. : 1 Min. :18.04
M:17990 ENP: 5879 0J98706: 879 Acc. Travail :10644 1st Qu.:2007-05-11 1st Qu.:2007-06-10 1st Qu.:2007-09-23 Sickness:72657 Net_B: 6065 1st Qu.: 3.000 1st Qu.: 37 1st Qu.:32.68

ETA: 713 0232097: 684 Maladie Hospi.: 1035 Median :2008-08-23 Median :2008-09-22 Median :2009-01-05 Net_C:41113 Median : 3.000 Median : 62 Median :41.42
NCA:73290 0237127: 591 Maternite : 179 Mean :2008-07-25 Mean :2008-08-24 Mean :2008-12-15 Mean : 9.943 Mean : 120 Mean :40.36
TNS: 591 0184638: 553 Longue Maladie: 54 3rd Qu.:2009-10-20 3rd Qu.:2009-11-19 3rd Qu.:2010-03-10 3rd Qu.:15.000 3rd Qu.: 126 3rd Qu.:48.49

0448817: 530 Maladie Serv. : 23 Max. :2010-11-30 Max. :2010-12-30 Max. :2012-09-24 Max. :30.000 Max. :1605 Max. :55.00
(Other):78786 (Other) : 49

EndObsW NonCensure SPC BegAgeClass BegAgeClassT
Min. : 1.00 Mode :logical Employee:79882 1:21563 1:18685
1st Qu.: 15.00 FALSE:5991 Manager : 3074 2:19039 2:11014
Median : 42.00 TRUE :77556 Misc : 591 3:20496 3:14589
Mean : 99.98 NA’s :0 4:22449 4:15570
3rd Qu.: 106.00 5:23689
Max. :1578.00
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Sex TypeEmployee ContractNumber TYPE_ARRET SurvDate BegIndDate EndIndDate
23 F NCA 0154496 Acc. Travail 2010-10-12 2010-11-11 2011-01-31
24 F NCA 0154509 Maladie 2009-09-14 2009-10-14 2011-02-27
33 F NCA 0154670 Maladie 2010-02-11 2010-03-13 2011-09-30
44 F NCA 0156555 Maladie 2010-08-24 2010-09-23 2011-04-16
62 F NCA 0161383 Maladie 2010-03-19 2010-04-18 2012-02-29
68 F NCA 0161581 Maladie 2010-11-09 2010-12-09 2012-06-24
88 F NCA 0331202 Maladie 2010-02-12 2010-03-14 2011-04-30
103 F NCA 0385996 Maladie 2010-11-10 2010-12-10 2012-06-26
136 F ENP 0725234 Maladie 2010-01-11 2010-02-10 2012-07-16
140 F ENP 0725235 Maladie 2010-08-23 2010-09-22 2011-01-01

Cause ComNet BegAnc EndAncInd BegAge EndObsW NonCensure SPC
Accident Net_C 0 80 47.29363 50 FALSE Employee
Sickness Net_C 3 470 41.81246 443 FALSE Employee
Sickness Net_A 3 320 39.40041 293 FALSE Employee
Sickness Net_A 3 126 50.62286 99 FALSE Employee
Sickness Net_C 3 284 46.41752 257 FALSE Employee
Sickness Net_A 3 49 51.05544 22 FALSE Employee
Sickness Net_C 24 298 52.73374 292 FALSE Employee
Sickness Net_A 26 25 45.89733 21 FALSE Employee
Sickness Net_C 3 351 51.79466 324 FALSE Employee
Sickness Net_A 3 127 54.63107 100 FALSE Employee
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ARBRE ÉLAGUÉ : L’AGE EST CLEF!

La réglementation préconise de calculer les provisions techniques
liées à cette durée en fonction de l’âge...Good news !
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QUALITÉ DU MODÈLE : COURBE ROC DYNAMIQUE
POUR LA CLASSIFICATION À UNE DATE FUTURE

Idée : les courbes ROC donnent une idée du pouvoir prédictif du
classificateur. Elles comparent les faux et les vrais positifs de
différents modèles, étant donné un seuil de proba. pour
l’affectation.

Adaptation : ici le but est de comparer la prévision du modèle à la
réalité (sur un échantillon test) à une certaine durée. On veut
notamment voir si le modèle détecte les événements déjà
survenus à cette date.
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POUVOIR PRÉDICTIF : DÉTECTION DES ÉVÉNEMENTS
2704 O. Lopez et al.

Fig 3. Dynamic ROC curves at t = 15, 100, 110 (from left to right). The dotted line corre-
sponds to the CART model and the black line to the Cox model.

Table 6
Dynamic Area Under Curve AUC(t).

t 15 40 100 110
AUC(t) CART 0.787 0.802 0.824 0.839

Cox 0.518 0.531 0.576 0.585

covariates and capturing potential nonlinearity. Table 6 gives the value of the
AUC (Area Under Curve) at various time points, corresponding to previous
durations to which were added the median of observed lifetimes. The tree ap-
proach seems significantly better than the Cox one at predicting lifetime, with
an excellent mean AUC of 80%. Once again and in this more general framework,
these results prove the interest of using trees as opposed to the Cox model for
prediction, whatever the duration threshold under study.

5.2. Reserving in third-party liability insurance

This real-life database was extracted in the 2000s by an international insurance
company, and reports about 650claims related to medical malpractice insurance
during seven successive years. The initial dataset contains information about
various dates concerning the claims (date for reporting, opening or closing the
case, etc.), contract features, and some data on associated payments. These pay-
ments encompass indemnity payments and ALAE (Allocated Loss Adjustment
Expenses), where ALAE are assignable to specific claims and represent fees paid
to outside attorneys used to defend the claims. After some pre-processing, one
can compute useful quantities for our purposes, especially (potentially censored)
development times and total payments. Here Ti is the “lifetime” of a claim, that
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GESTION DES DONNÉES
PROVISION À DATE D’ARRÊTÉ

> head(myData, n = 6)
Sex TypeEmployee ContractNumber TYPE_ARRET SurvDate BegIndDate EndIndDate Cause ComNet BegAnc EndAncInd BegAge EndObsW NonCensure SPC BegAgeClass BegAgeClassT X2006.01.01 X2006.04.01 X2006.07.01

1 F NCA 0001591 Maladie 2007-11-03 2007-12-03 2007-12-21 Sickness Net_C 3 45 47.69884 0.1971 TRUE Employee 3 5 NA NA NA
2 F NCA 0001591 Maladie 2008-02-04 2008-03-05 2008-08-31 Sickness Net_C 3 206 47.43053 1.9603 TRUE Employee 3 4 NA NA NA
3 M NCA 0006192 Maladie 2006-12-24 2007-01-23 2007-04-30 Sickness Net_C 3 124 46.06982 1.0623 TRUE Employee 3 4 NA NA NA
4 M NCA 0006192 Maladie 2009-11-18 2009-12-18 2010-10-01 Sickness Net_C 3 314 48.97194 0.1533 FALSE Employee 4 5 NA NA NA
5 F NCA 0024191 Maladie 2006-03-20 2006-04-19 2006-09-03 Sickness Net_A 30 137 43.63313 1.5003 TRUE Employee 3 4 NA 91.3125 45.68364
6 F NCA 0024251 Maladie 2008-06-21 2008-07-21 2010-07-31 Sickness Net_A 3 767 46.30801 5.7933 FALSE Employee 3 4 NA NA NA

X2006.10.01 X2007.01.01 X2007.04.01 X2007.07.01 X2007.10.01 X2008.01.01 X2008.04.01 X2008.07.01 X2008.10.01 X2009.01.01 X2009.04.01 X2009.07.01 X2009.10.01 X2010.01.01 X2010.04.01 X2010.07.01 X2010.10.01
1 NA NA NA NA 17.99769 NA NA NA NA NA NA NA NA NA NA NA NA
2 NA NA NA NA NA 91.3125 87.68739 NA NA NA NA NA NA NA NA NA NA
3 NA 91.3125 5.688769 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
4 NA NA NA NA NA NA NA NA NA NA NA NA 13.99821 NA NA NA NA
5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
6 NA NA NA NA NA NA NA 91.3125 91.3125 91.3125 91.3125 91.3125 72.43821 NA NA NA NA

> dim(learning.sample)
[1] 42523 37

> head(learning.sample)
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Sex TypeEmployee ContractNumber TYPE_ARRET SurvDate BegIndDate EndIndDate
1 F NCA 0001591 Maladie 2007-11-03 2007-12-03 2007-12-21
2 F NCA 0001591 Maladie 2008-02-04 2008-03-05 2008-08-31
3 M NCA 0006192 Maladie 2006-12-24 2007-01-23 2007-04-30
5 F NCA 0024191 Maladie 2006-03-20 2006-04-19 2006-09-03
9 F NCA 0038268 Maladie 2006-05-02 2006-06-01 2006-07-03
10 M NCA 0064365 Maladie Hospi. 2006-10-30 2006-11-29 2007-02-17

Cause ComNet BegAnc EndAncInd BegAge EndObsW NonCensure SPC
Sickness Net_C 3 45 47.69884 0.1971 TRUE Employee
Sickness Net_C 3 206 47.43053 1.9603 TRUE Employee
Sickness Net_C 3 124 46.06982 1.0623 TRUE Employee
Sickness Net_A 30 137 43.63313 1.5003 TRUE Employee
Sickness Net_A 30 32 35.49897 0.3504 TRUE Employee
Sickness Net_A 3 107 37.32786 0.8761 TRUE Employee

> KM.weights <- unlist(aft.kmweight(Y = matrix(data=learning.sample$EndObsW, nrow = nrow(learning.sample), ncol=1), delta = matrix(data = learning.sample$NonCensure, nrow = nrow(learning.sample), ncol=1)), use.names=F)
> sum(KM.weights)
[1] 1

> head(learning.sample)
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Sex TypeEmployee ContractNumber TYPE_ARRET SurvDate BegIndDate EndIndDate
35 F NCA 0154699 Maladie 2008-04-10 2008-05-10 2008-05-11
173 F ENP 0729486 Maladie 2006-02-27 2006-03-29 2006-03-30
240 F NCA 0149036 Maladie 2006-05-18 2006-06-17 2006-06-18
295 F NCA 0637995 Maladie 2006-06-12 2006-07-12 2006-07-13
299 F NCA 0637995 Maladie 2007-12-12 2008-01-11 2008-01-12
468 F NCA 0179261 Maladie 2007-02-01 2007-03-03 2007-03-04

Cause ComNet BegAnc EndAncInd BegAge EndObsW NonCensure SPC KM.weight
Sickness Net_C 3 28 50.54346 0.011 TRUE Employee 2.351669e-05
Sickness Net_A 3 28 39.60849 0.011 TRUE Employee 2.351669e-05
Sickness Net_A 3 28 54.24778 0.011 TRUE Employee 2.351669e-05
Sickness Net_B 1 30 52.67077 0.011 TRUE Employee 2.351669e-05
Sickness Net_B 1 30 51.94524 0.011 TRUE Employee 2.351669e-05
Sickness Net_A 30 1 44.00000 0.011 TRUE Employee 2.351669e-05

> library(rpart)
> formula <- as.formula("EndObsW ~ Sex + TypeEmployee + TYPE_ARRET + Cause + ComNet + BegAge + SPC")
> maximal.tree <- rpart(formula, data = learning.sample, weights = KM.weight, method = "anova", control = rpart.control(minsplit=2, minbucket=1, maxcompete=2, maxsurrogate=0, usesurrogate=2, xval=10, cp=0))
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COÛTS ULTIMES (CENSURÉS OU NON)

> dim(validation.sample)
[1] 21261 17

> head(validation.sample)

Sex TypeEmployee ContractNumber TYPE_ARRET SurvDate BegIndDate EndIndDate Cause ComNet BegAnc EndAncInd BegAge EndObsW NonCensure SPC BegAgeClass BegAgeClassT
4 M NCA 0006192 Maladie 2009-11-18 2009-12-18 2010-10-01 Sickness Net_C 3 314 48.97194 0.1533 FALSE Employee 4 5
6 F NCA 0024251 Maladie 2008-06-21 2008-07-21 2010-07-31 Sickness Net_A 3 767 46.30801 5.7933 FALSE Employee 3 4
7 F NCA 0037157 Maladie 2009-09-17 2009-10-17 2009-10-30 Sickness Net_A 30 13 47.93703 0.1424 TRUE Employee 3 5
14 F NCA 0099654 Maladie 2006-08-17 2006-09-16 2006-09-20 Sickness Net_A 3 31 38.71047 0.0438 TRUE Employee 2 3
16 F ENP 0119466 Maladie 2007-05-23 2007-06-22 2007-06-24 Sickness Net_C 3 29 38.80630 0.0219 TRUE Employee 2 3
19 F NCA 0154321 Maladie 2006-09-01 2006-10-01 2006-10-08 Sickness Net_C 3 34 46.58179 0.0767 TRUE Employee 3 4

> predictions.validationSample <- predict(final.tree, newdata = validation.sample)

> proba.nonCensure <- length(which(validation.sample$NonCensure == TRUE)) / nrow(validation.sample)
> proba.nonCensure
[1] 0.9244626
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> ## E[T|X] = E[T|delta = 1,X] P(delta=1) + E[T|delta = 0,X] P(delta=0)
> predictionsMoy.sinistresOuverts <- (mean(predictions.validationSample) - mean(predictions.validationSample[which(validation.sample$NonCensure == TRUE)]) * proba.nonCensure) / (1-proba.nonCensure)
> provisionMoyenne <- predictionsMoy.sinistresOuverts * prestation.timeStep * nrow(myData.sinistresEnPaiement)
> provisionMoyenne
[1] 181022.9

> ## To be compared with:
> backtest.provisions.validationSample
[1] 179236.8

> ## Erreur de provision moyenne en pourcentage, backtesting:
> (abs(backtest.provisions.validationSample - provisionMoyenne) / max(c(provisionMoyenne, backtest.provisions.validationSample))) * 100
[1] 0.9866959
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ET DANS LE CAS DE CHAIN LADDER?

> triangle.cumule

dev1 dev2 dev3 dev4 dev5 dev6 dev7 dev8 dev9 dev10 dev11 dev12 dev13 dev14 dev15 dev16
2006-01-01 44860 62511 72745 80289 85893 90337 93632 96355 98507 100076 101222 101695 101695 101695 101695 101695
2006-04-01 55982 76905 90518 101090 108863 115069 120081 123873 126825 129345 131256 132265 132265 132265 132265 NA
2006-07-01 49982 71709 84793 93874 100775 106524 110839 114411 117507 119784 121235 121941 121941 121941 NA NA
2006-10-01 71692 101671 120151 133815 143029 149423 154704 158843 161888 164097 165802 166547 166625 NA NA NA
2007-01-01 63976 89524 104879 116125 123886 130064 135364 139655 143139 145725 147455 147974 NA NA NA NA
2007-04-01 62908 87738 102469 113509 121848 128148 132965 136765 140138 143179 144420 NA NA NA NA NA
2007-07-01 57010 81126 96728 109027 118942 126480 132670 137549 141393 142766 NA NA NA NA NA NA
2007-10-01 73432 102235 119236 131857 141478 149142 155474 160262 162374 NA NA NA NA NA NA NA
2008-01-01 69086 95648 111961 123578 131871 138414 143565 145966 NA NA NA NA NA NA NA NA
2008-04-01 67486 93500 109196 120165 127846 133534 135821 NA NA NA NA NA NA NA NA NA
2008-07-01 62748 88588 102430 112289 119677 122728 NA NA NA NA NA NA NA NA NA NA
2008-10-01 77569 107101 124141 136047 140492 NA NA NA NA NA NA NA NA NA NA NA
2009-01-01 66986 92879 107428 112450 NA NA NA NA NA NA NA NA NA NA NA NA
2009-04-01 69909 96281 104723 NA NA NA NA NA NA NA NA NA NA NA NA NA
2009-07-01 58504 70612 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2009-10-01 45583 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

> CL.model <- chainladder(triangle.cumule)
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> fact.dev <- sapply(CL.model$Models, coef) # a comparer avec ’fact.dev.CL’ calcules a la main...
x x x x x x x x x x x x x x x

1.384294 1.163524 1.102059 1.067753 1.049660 1.037865 1.029157 1.022532 1.016758 1.011448 1.005176 1.000149 1.000000 1.000000 1.000000

> rectangle.cumule
dev

origin dev1 dev2 dev3 dev4 dev5 dev6 dev7 dev8 dev9 dev10 dev11 dev12 dev13 dev14 dev15 dev16
2006-01-01 44860 62511.00 72745.00 80289.00 85893.00 90337.00 93632.00 96355.00 98507.00 100076.0 101222.0 101695.0 101695.0 101695.0 101695.0 101695.0
2006-04-01 55982 76905.00 90518.00 101090.00 108863.00 115069.00 120081.00 123873.00 126825.00 129345.0 131256.0 132265.0 132265.0 132265.0 132265.0 132265.0
2006-07-01 49982 71709.00 84793.00 93874.00 100775.00 106524.00 110839.00 114411.00 117507.00 119784.0 121235.0 121941.0 121941.0 121941.0 121941.0 121941.0
2006-10-01 71692 101671.00 120151.00 133815.00 143029.00 149423.00 154704.00 158843.00 161888.00 164097.0 165802.0 166547.0 166625.0 166625.0 166625.0 166625.0
2007-01-01 63976 89524.00 104879.00 116125.00 123886.00 130064.00 135364.00 139655.00 143139.00 145725.0 147455.0 147974.0 147996.1 147996.1 147996.1 147996.1
2007-04-01 62908 87738.00 102469.00 113509.00 121848.00 128148.00 132965.00 136765.00 140138.00 143179.0 144420.0 145167.5 145189.1 145189.1 145189.1 145189.1
2007-07-01 57010 81126.00 96728.00 109027.00 118942.00 126480.00 132670.00 137549.00 141393.00 142766.0 144400.4 145147.8 145169.5 145169.5 145169.5 145169.5
2007-10-01 73432 102235.00 119236.00 131857.00 141478.00 149142.00 155474.00 160262.00 162374.00 165095.1 166985.2 167849.4 167874.5 167874.5 167874.5 167874.5
2008-01-01 69086 95648.00 111961.00 123578.00 131871.00 138414.00 143565.00 145966.00 149254.95 151756.2 153493.6 154288.0 154311.0 154311.0 154311.0 154311.0
2008-04-01 67486 93500.00 109196.00 120165.00 127846.00 133534.00 135821.00 139781.17 142930.76 145326.0 146989.8 147750.5 147772.6 147772.6 147772.6 147772.6
2008-07-01 62748 88588.00 102430.00 112289.00 119677.00 122728.00 127375.09 131089.00 134042.73 136289.0 137849.3 138562.8 138583.5 138583.5 138583.5 138583.5
2008-10-01 77569 107101.00 124141.00 136047.00 140492.00 147468.81 153052.71 157515.31 161064.49 163763.6 165638.5 166495.8 166520.6 166520.6 166520.6 166520.6
2009-01-01 66986 92879.00 107428.00 112450.00 120068.87 126031.47 130803.65 134617.53 137650.77 139957.5 141559.8 142292.5 142313.7 142313.7 142313.7 142313.7
2009-04-01 69909 96281.00 104723.00 115410.90 123230.38 129349.99 134247.82 138162.12 141275.22 143642.7 145287.2 146039.2 146061.0 146061.0 146061.0 146061.0
2009-07-01 58504 70612.00 82158.73 90543.75 96678.40 101479.43 105321.95 108392.85 110835.19 112692.6 113982.7 114572.7 114589.8 114589.8 114589.8 114589.8
2009-10-01 45583 63100.28 73418.67 80911.69 86393.73 90684.03 94117.78 96861.99 99044.52 100704.3 101857.2 102384.4 102399.7 102399.7 102399.7 102399.7
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> cbind(Provision.parExercice)
[1,] 0.000000e+00
[2,] 0.000000e+00
[3,] -7.275958e-11
[4,] -8.731149e-11
[5,] 2.209210e+01
[6,] 7.691398e+02
[7,] 2.403482e+03
[8,] 5.500488e+03
[9,] 8.345020e+03
[10,] 1.195160e+04
[11,] 1.585549e+04
[12,] 2.602862e+04
[13,] 2.986374e+04
[14,] 4.133798e+04
[15,] 4.397777e+04
[16,] 5.681669e+04
> (Provision.globale <- sum(Provision.parExercice))
[1] 242872.1

> ## Erreur de calcul de provision moyenne par Chain Ladder, backtesting:
> (abs(backtest.provisions.validationSample - Provision.globale) / max(c(Provision.globale, backtest.provisions.validationSample))) * 100
[1] 26.20117
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COMPARER L’EFFICACITE DES METHODES DE
PROVISIONNEMENT?

Utiliser le backtesting ! Préparer les données comme ceci :
1 ne considérer que des sinistres clos : montant final connu ;
2 introduire une censure (administrative par ex.) pour faire

apparaitre artificiellement des sinistres ouverts ;
3 définir un éch. d’apprentissage et un éch. de validation :

apprentissage : construire notre arbre par CART pondéré ;
validation : pour comparer les prévisions de provision données
par l’arbre avec la vraie observation.

4 évaluer la provision relative aux sinistres encore ouvert
uniquement : E[T |T > y,X] ;

5 faire le différentiel.
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PROVISIONS À DIFFERENTES DATES D’ARRETE

On a pris ici une date d’arrêté (01/10/2009) qui excède la durée
max. du risque (3 ans)⇒ impact de la censure limité...

Plaçons nous maintenant à des dates d’arrêté intermédiaires
successives, plus proches du début de la période d’observation...
Voici l’algorithme à implémenter : pour chaque durée atteinte k ,

1 sélectionner sinistres (censurés ou non) avec Y ≥ k ;
2 estimer les poids KM depuis les données ;
3 construire CART pondéré pour estimer E[T − k |T > k ,X ] ;
4 élaguer l’arbre ;
5 prévoir la durée de vie résiduelle
6 accroitre k et revenir à l’étape 1.
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CONSTRUCTION DE LA BASE

On découpe par période les paiements...

Figure 1: Three claims with their pattern of payments, showing how we build the database.

since the claim was settled and all payments were made (57$). That is why this observation

is never censored and prediction from the weighting CART algorithm is useless, whatever

the quarter under consideration.

The second policyholder, with a total sickness lifetime of 419 days, is an interesting

example since it will typically enable us to backtest our future predictions. Indeed, the

censorship indicator changes as time flies. The global censorship indicator indicates that

this observation is fully observed in 12/31/2011 (the claim was settled on 07/29/2010).

However, this is not the case when looking for instance on 12/31/2009. At that time,

this employee is considered a censored observation: 209 days were already paid, but

the claim is not closed. Backtesting shows that there are still 210$ to pay for, whereas

weighted CART algorithm predicts that nearly 240$ should be reserved. One quarter

later, i.e. on 03/30/2010, updates are made: actual payments were increased by 90$

(three months), and CART prediction equals 226$ for this individual reserve. Six months

later (09/30/2010), the observation gets uncensored for the first time. There is thus no

further prediction to provide, but this information is used by our algorithm (updating the

KM weights given to other uncensored observations to perform the estimation).

Finally, the third example remains censored from the beginning to the end of the period

where reserves are calculated (quarters from 12/31/2009 to 12/31/2010). Moreover, the

claim is still open on 12/31/2011, and total payments exceed 950$ (990$ exactly). In

this case, which seems to correspond to an extreme observation (recall the mean duration

equals 100 days, and that the maximum equals 1095), notice that the weighted CART

algorithm anticipates that there are still about 200$ to reserve, knowing that 625$ have

already been paid. This statement reveals that our algorithm somewhat captured this

extreme situation, which is all the more interesting that most expensive claims are often

the longest ones in practice.

8
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RESULTATS

Observation dates:

01/01/08 04/01/08 07/01/08 10/01/08 01/01/09 04/01/09 07/01/09 10/01/09

Quantities of interest:

(1) Size of the learning set (backtest data) 20 542 23 370 26 214 28 740 31 962 34 796 37 700 40 344

(2) Size of the validation set (backtest data) 10 271 11 686 13 107 14 371 15 982 17 399 18 850 20 172

(3) Corresponding censoring rate in learning set 16.11% 13.94% 12.9% 11.37% 11.97% 10.36% 9.55% 8.65%

(4) Corresponding censoring rate in validation set 16.24% 13.66% 12.8% 11.4% 11.89% 10.32% 9.27% 8.25%

(4bis) Number of backtested claims : (4) ⇥ (2) 1688

Application of Section 4.3.1: 1$ a day

(5) Total paid amount at observation date 818 079 955 809 1 115 449 1 259 591 1 448 942 1 608 799 1 771 356 1 955 760

(6) Paid amount (censored claims) at observ. date 278 230 286 354 323 982 336 883 378 083 388 346 387 616 399 445

(7) Final backtested paid amount (censored claims) 657 047 650 253 708 685 719 172 778 448 780 152 768 116 741 743

(8) Exact global reserve (backtested) : (7) � (6) 378 817 363 899 384 703 382 289 400 365 391 806 380 500 342 298

(9) Global reserve by Chain Ladder (CL) 151 017 166 614 193 593 207 677 243 701 242 688 254 947 259 834

(10) Error of CL : ((9) � (8))/(8) -60.1% -54.2% -50% -45% -39% -38% -33% -24%

(11) Global reserve by weighted CART (wCART) 211 357 227 088 263 030 312 400 402 398 384 361 387 525 374 133

(12) Error of wCART : ((11) � (8))/(8) -44,2% -42% -31.6% -18.3% 0.5% -1.9% 1.8% 9.3%

Application of Section 4.3.2: strategy B)a)

(5) Total paid amount at observation date 8 157 609 9 724 388 11 053 695 12 425 504 14 390 123 15 986 849 17 641 882 19 326 041

(6) Paid amount (censored claims) at observ. date 2 778 589 2 967 605 3 203 789 3 296 583 3 780 187 3 789 264 3 842 500 3 903 522

(7) Final backtested paid amount (censored claims) 6 471 048 6 746 031 6 951 471 7 166 368 7 824 329 7 762 801 7 561 100 7 264 920

(8) Exact global reserve (backtested) : (7) � (6) 3 692 460 3 778 426 3 747 682 3 869 785 4 044 142 3 973 537 3 718 600 3 361 398

(9) Global reserve by Chain Ladder (CL) 1 511 052 1 706 201 1 887 548 2 029 240 2 560 189 2 369 313 2 504 260 2 585 153

(10) Error of CL : ((9) � (8))/(8) -59% -54.8% -50% -48% -37% -40% -32% -23%

(11) Global reserve by weighted CART (wCART) 1 692 220 1 592 819 1 839 394 1 799 866 2 109 508 2 058 585 2 001 526 2 013 342

(12) Error of wCART : ((11) � (8))/(8) -54.2% -57.8% -50.9% -53.5% -47.8% -48.2% -46.2% -40.1%

Table 1: Quarterly evolution of the portfolio and reserves estimations, between 01/01/2008 and 04/01/2010.

10
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REMARQUES FINALES

+ Technique particulièrement intéressante pour les secteurs à
développement long.

+ Résultats théoriques de convergence.

+ Pouvoir discriminant des facteurs de risque.

+ Extensions possibles en travaillant sur la fonction de perte de
l’algorithme.

* Possibilité de remplacer cette technique de provisionnement
par tt modèle sur risques individualisés (modèle de Cox, ...)

- Instabilité : typique des CART (random forests, ...).
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CONCLUSION GENERALE DU COURS

En décomposant pour chaque grand thème du cours :

1 tarification :
modèles de tarification a priori (type GLM) permettent de tenir
compte des caractéristiques individuelles des assurés, à
l’inverse des modèles de crédibilité ;
modèles de crédibilité permettent d’intégrer dans le tarif un
historique de sinistres, au contraire des modèles a priori ;
questionnement sur les données récoltées est primordial pour
une bonne mise en place des modèles (hétérogénéité,
surdispersion, exposition au risque, franchise, recours,
réassurance, inflation, forfait, ...) ;
il est essentiel d’être rigoureux lors de l’étape de statistiques
descriptives et d’optimisation des modèles pour trouver le bon
niveau de segmentation ;

277 / 283



2 zonier :
ils représentent la vision géographique du risque ;
ils n’incluent pas la quantification du risque lié aux autres
facteurs de risque (âge, ...) ;
peuvent être bayésien ou fréquentiste ;
s’ajustent au niveau de découpage géographique voulu par
son utilisateur ;

3 provisionnement :
d’autres méthodes que les méthodes classiques (Mack, ...)
permettent d’étendre la gestion de problématiques complexes
(corrélation, ...) dans les triangles de liquidation ;
les techniques bayésiennes offrent de la flexibilité en termes
de modélisation et d’hypothèses, au prix d’une complexité
accrue en termes d’implémentation ;
le provisionnement individuel, en plein essor, repose sur une
vision individuelle de chaque risque ;
ce dernier type de provisionnement nécessite de travailler à
part sur les IByR...
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