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PLAN DU COURS

0 Tarification a priori - concepts avancés
e Construction d’un zonier

@ Provisionnement
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ORGANISATION DU COURS

@ 21h de cours magistral : 7 séances de 3h (2 séances en FC);
@ cours 1 - introduction : slide 1-25

cours 2 - : slide 26-45

cours 3 - slide 46-61

cours 4 - slide 62-84

cours 5 - slide 85-90 + début zonier

cours 6 - Fin zonier et début microlevel reserving

@ cours 7 - microlevel reserving

@ 16h de travaux dirigés en salle machine (prenez vos
ordinateurs pour chague seance) : 8 séances de 2h.

Objectif : confronter la théorie a la pratique !
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a Tarification a priori - concepts avancés
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e Tarification a priori - concepts avanceés
@ Introduction

@ Modéles de tarification
@ Problématiques opérationnelles pour tarifer
@ Résumeé
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CONTRAT D’ASSURANCE ET TARIFICATION

Une police d’assurance est un contrat entre deux parties :
— [l'assuré, détenteur du contrat ;
— l'assureur, pourvoyeur du contrat.

En échange de la couverture d’un risque par I'assureur, 'assuré
verse une prime d’assurance.

En cas de sinistre, le bénéficiaire du contrat recgoit le montant
contractuel prévu en cas de survenance du sinistre.

Ainsi le risque économique initialement supporté par I'assuré est
transféré vers I'assureur.
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La mutualisation induite par la souscription de nombreux contrats
au sein d’'une compagnie d’assurance permet I'utilisation grossiere
de la loi des grands nombres.

En effet,

— un portefeuille d’assurance couvre un risque en particulier :
les pertes sont considérées étre de méme loi de probabilité...
= !

— les contrats sont a priori indépendants les uns des autres.

Ces propriétés doivent permettre a 'assureur de prédire avec une
précision relative les pertes encourues pour une période donnée.
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Soit un portefeuille d’assurance contenant I polices. Notons la loi
du i®™M® contrat S; (perte), et la loi des pertes agrégées S,.

La LFGN stipule la CV presque slre de la moyenne empirique de
pertes i.i.d., notée S; = 172,’-:1 Si, vers I'espérance de la loi :

8 = E[S] = .

Ou encore : P(Ilim S = ,u) =1.

Ce résultat est a I'origine du principe général de tarification : la
prime vaut au moins u, aussi appelée prime pure du contrat. C'est
cette prime que nous modéliserons.
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DANGERS D’UNE MAUVAISE TARIFICATION

Se tromper dans la tarification d’un produit peut avoir plusieurs
conséquences dommageables :

@ comme cela est souvent lié a la segmentation, il y a un risque
de composition du portefeuille (bons et mauvais risques) ;

@ investir dans 1 politique de vente (marketing, ...) mal adaptée;
@ impact néfaste sur la concurrence, déficit d'image ;

@ mauvaise évaluation de la marge de risque, et donc in fine du
provisionnement : (pour rappel, S; = 3; Sj)

VaR,(S)) = inf{se RT : P(S;>s) < (1 -a)}
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RESTRICTIONS DUES A LA REGLEMENTATION

— La législation a également un impact en termes de
segmentation et de tarification.

Lexemple récent le plus célébre (pas le cas en provisionnement) :
Primes unisexe : “Les compagnies d’assurances ne pourront plus,
a partir du 21 décembre 2012, prendre en considération le critere
du sexe pour calculer les primes et prestations d’assurances dans
leurs contrats.” a jugé la Cour de justice de 'UE.

— Explication du tarif en assurance : directive DDA (distribution en
assurance : éclairage notamment sur marges / commissions).
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PRIME COMMERCIALE

En pratique I'assureur applique des chargements a cette prime,
car mathématiquement sa ruine est certaine a horizon infini dés
lors que la tarification respecte le strict principe d’équivalence.

La prime d’assurance I1; se décompose donc en +sieurs parties :

— la prime technique (provisions techniques dans le bilan
économiqgue SlI) : comporte la prime pure (modéles vus ici)
E[Si]+ chargements techniques; ou les chargements
techniques sont issus des principes de prime (cf plus loin).

— la prime d’inventaire composée de la prime technique plus les
frais :

e d’acquisition,
e d’administration et gestion du contrat,
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— la prime commerciale (prime finale) intégre a la prime
d’inventaire la rémunération d’'intermédiaires (courtiers, ...).

La stratégie de la compagnie peut également jouer sur la hauteur
de ces chargements.

Objectif de I’'assureur :
Mettre en place une tarification segmentée tout en conservant le

principe de mutualisation.

En effet, nous savons que
— E[S] = E[E[S|X]]
— ce qui se dérive empiriquement 1 3,5, ~ 1 3.x(X;)
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MARGE POUR RISQUE (RM)

C’est une notion différente du chargement technique.

Elle dépend du risque couvert, et n’entre pas dans le tarif. En
revanche, elle fait partie des provisions techniques (BE + RM).

Elle représente le colt du capital appliqué aux flux de SCR futurs
actualisé :

SCR;

RM = CoCxZ e

Rq : RM = colt d'immobilisation du capital pr I'activité (CoC =~ 6%),

ou colt de portage du risque (ex : lors d’'un rachat du portefeuille).
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0 Tarification a priori - concepts avancés
@ Introduction

@ Chargements techniques et principes de prime

16/283



PRINCIPE DE LESPERANCE MATHEMATIQUE

Notons [T la prime, S le montant cumulé des sinistres de la police.

Le principe de la prime pure donne | 1(S) = E[S].

Le principe de 'espérance mathématique donne

IN(S)=(1+pE[S, >0

— Chargement trés simple, mais n’apporte aucune information sur
les fluctuations de S autour de sa moyenne...

Difficulté de ce principe : choix de S.
Remarque : pour des risques dégénérés (P(S = s) = 1), on
devrait avoir [1(S) = s ce qui n’est pas vrai ici.
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Pour évaluer son risque de perte, I'assureur peut utiliser la théorie
des grandes déviations et le lemme de Chernoff.

Lemme. (Chernoff). Soient Sy, S», ..., Sy, des v.a.p. indépendantes et
de méme loi que S telles que E[e’S] < o pour un t > 0. Posons
Xi = Si— (1 + B)E[S]]. Alors

n n
1
P[E X,-ZO]Sp” et nlimﬁlogP[E X,-ZO):Iogp,
i=1 i=1

ol p=infMx(t) <1 et Mx(t) = exp(~t(1+B)E[S]) Ms(1).

Preuve. En utilisant I'inégalité de Bienaymé-Tchebischev, on déduit

P(i X; > o) =P (&' 251 % > 1) < B[e' 2 X] = (B[e™])" = (Mx(t))".
i=1
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Linégalité est vraie Yt > 0, donc en particulier pour celui qui vérifie
le minimum de Mx(t).

Remarque :

- La dérivée M, (0) est négative car E[X]] = -BE[S]] < 0, alors
méme que Mx(0) = 1.
- D’autre part, P(X; > 0) > 0, donc tlim Mx(t) = +oo.

D’ou I'existence d’un minimum < 1 (théo. valeurs intermédiaires).

Ainsi, si 'assureur souhaite majorer par ¢ la probabilité d’un
résultat négatif sur la période, donc

n
P(Z Xi > 0) <e
i=1

il choisira g tel que

P(B) = €

(ex:S ~ &) = p=eP(1 +p)).
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PRINCIPE DE LA VARIANCE

Le principe de la variance donne

N(S) =E[S] +BVar(S), p>0.

Inconvénient : symétrie par rapport a I'espérance.

— On comptabilise les valeurs négatives de la v.a. (S — E[S]),
pourtant favorables a 'assureur.

Conséquence : on augmente trop les chargements techniques.
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i) Application du principe a la réassurance proportionnelle.

Cherche une couverture pour une prop. A € [0, 1] du risque S :
N(AS) = E[AS] + B Var(1S) = AE[S] + 128 Var(S) < AT(S).

Donc I'assuré aurait intérét a diviser son risque initial en n
parties égales car il paierait moins cher : en effet,

nTl (%) <T(S).

ii) Principe de la variance et agrégation de risques indépendants.

Si on considéere deux risques indépendants S; et Sp, on a

N(S1 + Sp) = N(S1) + N(S) ],

ce qui implique que I'accumulation de risques indépendants ne
conduit pas au principe de diversification.
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PRINCIPE DE LECART-TYPE

Le principe de I'écart-type donne

IN(S) =E[S] +80(S), p>0.

A l'inverse, le découpage du risque ici ne conduit pas a une
diminution de la prime :
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PRINCIPE EXPONENTIEL

Le principe exponentiel donne

n(s) = :—yln(E[e“S]).

Le parametre a est appelé coefficient d’aversion au risque.

D’aprés l'inégalité de Jensen, la prime technique est supérieure a
la prime pure :
n(s) > E[S].

En effet, si a est proche de 0, en utilisant les propriétés de la
transformée de Laplace :
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nes) = j;m (1 + oE[S] + %E[Sz] - O(afz))

 2a

— E[S]+ g Var(S) + o(a)

_ :—I(Q}E[S] + %ZE[Szl) 1 (aE[S] + %ZE[S])2+0(Q)

On retrouve le principe de la variance...

Si
— a — 0 : principe de la prime pure;
— «a — oo : principe de la perte maximale,

MN(S) — supf{s : P(S<s)<1}=rs.
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PRINCIPE D’ESSCHER

Le principe d’Esscher préconise de choisir une prime égale a

aS
nes) = If’é;is]].

On peut montrer que I1(S) > E[S] puisque Cov(S, e*°) > 0.

Cette prime est I'espérance mathématique calculée avec la
nouvelle f.d.r. G définie par
e dFs(x)

Iy edFs(x)’

dG(x) =

qui est la transformée d’Esscher de Fs.

25/283



PRINCIPE DE WANG (Proportional hazard transform)

Le principe de Wang s’appuie sur la définition

n(s) = fo " (Fs(x))" dx.

ol Fs = 1 - Fs (survie), etr € [0,1]. Ona M(S) > E[S].

Ce principe est trés utilisé en réassurance.

En effet, la transformée de Wang permet de calculer tres
simplement les primes des traités en excédent de sinistre.
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Par exemple, pour un traité (noté dans la pratique : hXSa)
@ de priorité a,
@ de portée h,

ona:
0 si 0<S<a

hXSa={ S—-a si a<S<a+h
h si a+h<$8

La prime vaut

I
o [\
+
>
—~
|
'
—
>
N—r
~—
=
£

N(hXSa) = fh(Fs(x + a))" dx
0
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PRINCIPE DU FRACTILE

Dans le principe du fractile, on adopte la prime I qui vérifie

N(S) = inf (p| Fs(p) > 1-€) = inf (p|P(S > p) < ). |

C’est donc la plus petite prime telle que la probabilité que le
sinistre dépasse la prime est au plus de e.

Par exemple,
— si e = 1/2, alors la prime est la médiane de la distribution;
— si e =0, alors la prime suit le principe de la perte maximale.
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PROPRIETES SOUHAITABLES DES PRINCIPES

Un assureur utilisant une mesure de risque donnée attend d’elle
un ensemble de propriétés “naturelles” censées refléter la réalité...

@ La prime vaut au moins la prime pure : [1(S) > E[S].
On peut ajouter que si P(S = s) = 1, alors 1(S) = s.
Ceci implique qu’il n’y ait pas de chargement injustifié. Parfois,
le chargement peut méme étre négatif suivant les conditions
de marché (concurrence, ...).

@ Invariance par translation : [(S + ¢) = ¢ + MN(S), Yc > 0.

c est une constante, et en particulier [1(0) = 0.
Tout risque déterministe est tarifé a sa propre valeur.
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© Additivité : |_|(81 + Sg) = |_|(81) + n(Sg),
si S1 et S, sont indépendants.

Cependant, cette propriété ne vérifie pas le principe de
diversification des risques. On lui préfére la propriété

MN(Sy + S2) < N(Sy) + N(Sz).

Rappelons au passage que le principe de la variance est
additif, alors que celui de I'écart-type est sous-additif.

Cette propriété induit un gain de diversification, qui profite
+ soit a I'assuré (prime plus faible),
+ soit a I'assureur (probabilité de ruine moins élevée).
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© Homogénéité : M(AS) = AMN(S), Ya > 0.

= invariance par changement de numéraire, elle est
essentielle pour la réassurance proportionnelle.

Propriété remise en cause par quelques auteurs lorsque A est
grand (M(AS) > A11(S)).
e [térativité : I'I(S1) = I'I(I'I(S1 |82))
On peut calculer la prime du risque S en deux étapes :
— on applique d’abord la prime I a la distribution de S;
conditionnelle a S, ;

— on obtient une v.a.r., fonction de S,, a laquelle on applique de
nouveau le principe de prime.
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Exemple.

Le nombre annuel d’accidents d’un chauffeur est modélisé
par une loi de Poisson (). Le profil de risque A est inconnu
et différent pour chaque chauffeur, donc la réalisation d’'une
v.a.r. A. La loi du nombre d’accidents conditionnelle a A = A
est de Poisson, et si A ~ Gamma alors la loi est une binomiale
négative.

Convexité : (181 + (1 = 2)S2) < AN(Sy) + (1 - )N(S2),
YA€ [0,1] et Sy, Ss.
Cette propriété est utile pour la recherche de décisions

optimales dans le choix de contrat d’assurance ou de
réassurance.
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RESUME DES PROPRIETES DES PRINCIPES

Propriétés
Principes Prime pure Trans. Addit. Itérat. Homog.
Prime pure + + + + +
Espérance + - + - +
Variance + + + - -
Ecart-type + + - - +
Exponentiel + + + + -
utilité + + e e -
Valeur moyenne + e e + -
Esscher + + + - -
Fractile + + + + -
+ : la propriété est vérifiée ; — :la propriété n’est pas vérifiée;

e : vérifiée en considérant les fonctions u et f qui nous permettent
de retomber sur les principes exponentiel et prime pure.
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0 Tarification a priori - concepts avancés
@ Introduction

@ Segmentation et partage du risque
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PRINCIPE DE PARTAGE DE VARIANCE DU RISQUE

Source : A. Charpentier.

Aucune segmentation, aucun transfert de risque.
— Tout la partie risquée (contenu dans la variance) est conservée
par 'assureur.

No risk classification, identical premium

Insured  Insurer
Loss E[S] S—-E[S]
Average Loss | E[S] 0
Variance 0 Var[S]
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SEGMENTATION ET INFORMATION COMPLETE

Source : A. Charpentier.

Information compléte sur les facteurs de risque.

Perfect classification, (ultra) personalized premium

Variance

Insured Insurer
Loss E[S|€2] S — E[S|€]
Average Loss E[S] 0

Var [E[sm]] Var [s - E[syﬂﬂ

Var[S] = E[Var[sm]} + Var [E[sm]} .

—insurer

Car Var(S - E[S|Q]) = E[Var(S|Q)]

—insured
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SEGMENTATION ET INFORMATION INCOMPLETE

Source : A. Charpentier.

Imperfect classification, personalized premium

Variance

Insured Insurer
Loss E[S|X] S — E[S|X]
Average Loss E[S] 0

var[]E[S|X]} ]E[Var[S|X]]

Var[§] = E[Var[S|X}]+Var[E[5|X]]

= E[Var[5/Q2)] +E[Var [E[S\Q}‘X“ + Var|E[$|X]]

pooling

solidarity

—insured

—rinsurer
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e Tarification a priori - concepts avanceés
@ Introduction
@ Modeéles de tarification

@ Problématiques opérationnelles pour tarifer
@ Résumeé
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APPROCHE INDEMNITAIRE

Idée : colits dépendent de I'occurrence éventuelle d’un sinistre (au
plus un sinistre dans la période) et du montant qui en résulte.

0 Sil,'ZO

b sili=1
S’_:{ Y

ou l; ~ Bernouilli B(p;) (occurrence du sinistre), et b déterministe.

- E[S,] :E-[/,'] X b
— Var(S)) = Var(l;) x b?

Exemple : colt en sinistre d’'un contrat d’assurance vie sur un an.
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APPROCHE FORFAITAIRE

Idée : S; est définie par 2 composantes. Une masse en 0, et une
composante continue pour le co(t si un sinistre survient.

Y sili=1,
Si = I.I
0 SI/,'ZO

ou I; ~ Bernouilli B(pj) (occurrence du sinistre), et Y 1L ;.

— E[S] = pi E[Y], Var(S;) = E[l]]Var(Y) + Var(l;)E[Y]?
— FS,(S) =qi+ p,‘Fy( ) (S > 0).
— Ms,(t) = M (In(My(1)))

Exemple : le colt en sinistres pour le contrat santé i sur un an.
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APPROCHE FREQUENCE - COUT MOYEN
La 4+ souvent utilisée en IARD.

Idée : S; est fonction de 2 aléas, N; et Y, respectivement le
nombre de sinistres et les montants unitaires associés.

o _ [ i siNi>o0,
"o SiN; =0

ou N; est une v.a. discréte, N; et Y sont L et les Y sont i.i.d.
— E[Si] = E[Ni] E[Yik],
Var(S;) = E[Nj]Var(Yi) + Var(N,)E[Yi]?
Ms,(t) = Mn,(In(My,(t)))
Fs(s) =P(N; = 0) + X751 Fvi+..+vin(8) X P(Ni = m)
— e m

inconnu

Ll
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MODELE CLASSIQUE DE PRIME PURE

Soit S; la somme annuelle des sinistres du contrat i.
Le nb N; de sinistres est une v.a. considérée 1. des colts Yi,
eux-méme i.i.d. :

s,_{o siN=0 Si—iyik

Yi+...+Yn siN=n “

Ainsi, Ep[Sj| = Ep[Nj] x Ep[Yi].

En réalité, N; est souvent conditionnellement 1. a Y}, donc
Ep[Si| Xi] = Ep[N;1Xi] . Ep[Yik | Xi],

ou X; est un ensemble d’informations.
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APERCU D’UNE BASE DE DONNEES

> head(myData, n=16)
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Le principe de la tarification est d’approcher X par un proxy
(variables tarifaires).
Ce proxy correspond aux info. indiv. —

= c’est le contexte des modéles de régression.

Supposons que I'assureur dispose de J facteurs explicatifs du
risque, notés {Xi,..., X;}, on obtient alors la formule

Ep[S|X1.....XJ] = Bp[N|X1.....X)] . Be[Y [ X1..... XJ].

Le probléeme est donc d’obtenir (tarification a priori, VS a
posteriori en crédibilité)

@ Ep[N| Xi,...,Xy] : estimation de la loi de N.
@ Ep[Y|Xi,...,Xy] :idem.
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En économétrie, on cherche a estimer Ex[Z | X;,..., X)| par une
fonction des facteurs explicatifs notée ®( Xy, ..., X)).

En économétrie linéaire, on a coutiime de supposer que
ZIX,.. Xy~ N(Bo+B1 X1+ ...+ BuXy, o).
En notant X = (1, Xy,..., XJ)T le vecteur des facteurs de risque

et 8 = (Bo.fB1.-...84)" les coefficients de régression, on peut
simplifier cette écriture sous forme matricielle :

ZIX ~ NX'8, o).

: le modéle linéaire est rarement adapté en assurance...
: besoin de supposer relations non-linéaires = GLM.
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ETAPES STATISTIQUES DE TARIFICATION

@ Statistiques descriptives univariées et bivariées ;

© Modélisation de la fréquence par un GLM adapté (choix d’'une
loi pour la réponse, intégration des covariables), cela donne

E[N|X] = f;(XB)

© Modélisation du colt par un autre GLM adapté, on obtient
E[Y|X] = (XB)

© Synthése pour en déduire la prime (pure) :

E[Si|X,X] = E[N|X] x E[Y|X]
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PROPAGATION D’ERREUR ?

En construisant deux modeles (1 pour la fréquence et 1 pour la
sévérité), on prend le risque de

Parfois il vaut mieux essayer de construire un unique modele qui
rende compte a la fois de la fréquence et de la sévérité : cela
dépend de la qualité d’adéquation de la loi de fréquence
notamment.

En réalité dans cette ultime approche, on perd I'info sur le nb de
sinistres et on s’intéresse a la charge totale par contrat. La masse
en 0 (contrats non-sinistrés) induit des difficultés de calibration, ce

qui explique la décomposition fréquence - co(it moyen en pratique.
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° Tarification a priori - concepts avancés

@ Modéles de tarification

@ Modéles paramétriques : les GLM
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EXEMPLES CLASSIQUES D’APPLICATION

Lusage des GLM est ancré depuis longtemps dans les moeurs.
On peut citer parmi les domaines concernés :

@ assurance santé : remboursements soins, frais
d’hospitalisation ;

@ assurance auto / moto : dommages matériels, vol, ...;

@ assurance Multi-Risques Habitation (MRH) : incendie, vol,
dégats des eaux, ...

@ assurance Responsabilité Civile (RC) : dommages a autrui.

Les cas de la RC, de 'assurance CATNAT et de la réass. IARD
sont un peu # car font intervenir des montants CAT en général.
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APPLICATIONS EN VIE

On se sert aussi des GLM en Vie, notamment en

@ épargne : essentiellement du risque comportemental sur les
produits en taux garantis (euro) ou non (UC);

@ prévoyance : DC, LTC (Long-Term Care : dépendance), Cl
(Critical lliness : maladies redoutées), incap/inval. ;

@ réassurance vie : méme remargue qu’en non vie.

Remarque : de par la nature des contrats, il y a souvent une
dimension temporelle dans la modélisation en Vie qui A en non-vie
— modeles de durée.
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RISQUE DE LONGEVITE [Lee and Carter, 1992]

C’est le modéle le plus utilisé en mortalité (longévité) :

log(ux(t)) = ax + Bxk(t) + e(t)

@ x estI'age, t 'année;

@ ux(t) est le taux de mortalité instantané I'année t a I'age x;
@ «ay : structure de la mortalité en fonction de I'age;

@ «(t) : vitesse d'amélioration de la mortalité (série temp.);

@ By :la vitesse d’amélioration a des impacts # selon I'age;
@ les résidus &(t) ~ N(0,02).
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RISQUE DE MORTALITE : MODELE DE BRASS
[Brass, 1964], [Brass and Macrae, 1984]

C’est un modele relationnel basé sur la régression logistique :

[ e i) |

R R ey

ou
@ x est I'age de la personne, t est le facteur temporel,
@ g™ est une table de mortalité de référence,
@ g°¥ est la table de mortalité d’expérience.

Calibre les coef. (a, b) pour établir le passage d’1 table a l'autre,
par ex. d’'une population nationale a une population d’assurés.
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INTERET DES GLM

Les GLM permettent de
@ modéliser des réponses diverses € R, R*, N, [0,1], ...;

@ intégrer toute type d’information exogene susceptible d’influer
sur la variable dépendante (réponse Y),

@ quantifier 'impact des facteurs de risque X (sens/intensité),
@ résidus hétéroscédastiques (la loi varie par profil).

lls nécessitent d’introduire deux hypothéses fondamentales :

@ les individus Y] sont L entre eux (rq : si les indiv. étaient
corrélés, cela résulterait aussi a avoir — d’indiv., donc n \);

@ les variables explicatives X sont 1 deux a deux.
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POURQUOI CES HYPOTHESES ?

Vision géométriqgue du modéle linéaire, voir I'article Econometrie et
Machine Learning d’Antoine Ly et Arthur Charpentier pour
expliquer la nécessité d’'indépendance entre les X;...
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ATTENTION A LA NOTION DE CORRELATION

d plusieurs mesures de dépendance, e.g. corrélation de rang
(Kendall, Spearman). La + répandu est Pearson,

_ Gov(X.Y) _ E[(X - pmx)(Y ~py)]
pX,Y - O'XO'Y - O'XO'Y ’

ol ux = E[X] et ox est I'écart-type de X.

Mesure la corrél. linéaire. En effet, considérons la v.a. X telle que
X ~ N(0,1). Ainsi ux = 0, et uys = 0. Notons Y = X2, on a

E[(X —ﬂx)(X2 — pixe)] _ Hx3 T HXHx2
O X0 x2 TXO x2

PXY = =0.
Corrélation nulle alors que X et X? parfaitement corrélées |
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COMPOSANTS D’UN GLM [McCullagh and Nelder, 1989]

Pour l'individu i...
@ La loi de la réponse aléatoire Y; : par hyp. elle € a une
distribution de la famille exponentielle.

© Le prédicteur n; = Z/{1 [ Xij, linéaire et déterministe :
les facteurs de risque explicatifs le constituent.

© La fonction de lien g : monotone, dérivable, inversible. En
pratique, n'importe quelle FdR, t.q.

g(E[YiIXi]) = ni.

Ex. du modele linéaire : g = Id  ni = XL, BX;  Yi ~ N(mi, o?).
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LOI DE LERREUR / FONCTION DE LIEN

Adapter le lien en fonction du domaine de définition de Y.

Loi Lien naturel Moyenne Utilisation
N(u,0?) Id:p=u u=XB Rég. lin.
P _ _exp(Xp)

B(u) logit : 7 = /”(1/%#) 1= Trep(XB) Taux

P(u) log : n = In(u) u=-exp(XB) Fréquence
G(a,B) inverse:n = u=(xp)™" Sévérité

IN(p. ) inverse? iy = - u=(Xp)? Sévérité
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COEFFICIENTS ESTIMES ET IMPACTS

En général, on interpréte les résultats de la maniére suivante :
@ 3> 0: 7 du facteur de risque X; provoque " de g(E[Y|Xi]);

@ j3j < 0: / du facteur de risque X; provoque \, de g(E[Y | X]]);
@ f3; = 0 : effet nul de la variation dudit X;.

Evidemment, cela dépend aussi du type de modélisation!
@ Pour des modeles a effets additifs, la valeur de réf. sera 0;

@ Pour des modeles multiplicatifs, la valeur de référence sera 1
(a une transformation pres parfois, cf modele log-Poisson).
Pour connaitre le type d’effet, on réécrit le modéle sous la forme

E[Y|X] = g7 (X"B).
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RAPPORT DE COTE (ODD-RATIO ou OR)

En souscrivant en ligne, vous pouvez par ex. avoir une idée de la

calibration de certains assureurs pour certains facteurs de risque :

comparer le tarif en faisant évoluer 1 seule caractéristique (ex :
age, ancienneté du permis, couleur de la voiture, ...)

Cela correspond a I'odd-ratio, un rapport sur la quantité d’intérét :

E[Y|X = x; + 1]
e

avec h une fonction a déterminer.

Exemple log-poisson : Y ~ P(1), donc 1 = eX'# = h(B;) = .
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VALIDATION D’UN GLM - ETAPES

@ Construction de 2 échantillons 1L par tirage aléatoire : un
d’apprentissage (construction) et un de validation;

© Validation de la significat. globale du modéle (déviance,
LRT) : déviance 2(InL(Y|Y) = InL(a|Y)) ~x?(n-p—1)

© Validation de la significativité des coef. de régression un a un;

© Résidus : homoscédasticité (pour un segment donné), doit
étre aléatoire (test des signes ? on ne connait pas la loi des
résidus dans un cas général a cause du lien...);

@ Confrontation “modélisé / empirique” sur I'éch. de validation.
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COMPARAISON MODELE - EXPERIENCE

Pour le dernier point mentionné précédemment, on peut recourir
par exemple a :

@ Ex :indice de Gini a minimiser (aire), montants sinistres en
fonction des primes, tout normalisé entre 0 et 1 par la

; X—min
transformation ——="--).

@ Q-Q plot (par ex. sévérité Gamma) doit se faire par segment
car les lois sont conditionnelles...(si Y|X ~ G(«, 1), alors Y
n’est pas Gamma).
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LIMITES DE LA GAUSSIENNE

Lutilisation d’'une loi Normale est encore trés répandue... Mais cela
implique des erreurs fondamentales de raisonnement, notamment

@ la densité de la loi est symétrique,
@ sa queue de distribution est fine,
@ support non adapté a des charges sinistres = P(Y < 0).

y
Al=A4
A2=A3

Al+A2=12

Al

a u a
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EFFETS DES FACTEURS DE RISQUE

Inutile de modéliser sans réflexion préalable sur les données...

En ce sens, il est essentiel de faire des statistiques descriptives
afin de déterminer I'intérét éventuel de

@ discrétiser une variable continue : par des stats descriptives
bivariées, par des arbres CART, par des modéles GAM
(optimisation faite par méthode semi-paramétriques de
lissage, par ex. les splines, cf [Pouna Siewe, 2010]), ...

@ rendre continue une variable catégorielle (ordonnée) : si I'effet
est monotone en fonction des modalités.

C’est la vision "ingénieur" couplée a la vision statisticien!
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TRANSFORMATION DU PREDICTEUR?
Il peut étre utile d’'introduire une transfo. dans le prédicteur sur
certaines covariables en fonction du type d’impact sur Y.

Cette transformation sera choisie en fonction de I'effet du facteur
de risque sur Y lors de la visualisation des statistiques desc.

Prenons un ex. concret : supposons que I'adge x a un impact
exponentiel sur le taux de mortalité gx, mais que la CSP joue de
maniere linéaire. Ainsi on posera un modeéle de la forme

In(gx) =a+ bx+In(cCSP) & qgx = A xexp(bx)xcCSP
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LES RESIDUS

Lexemple ci-dessous montre que le modele Gamma est bien
mieux adapté que le modele lognormal dans cet exemple...

residuals(regGamma)
residuals(regLN)
4000 6000 8000
L

2000

0

e o

2000

T T T T T T T T
0600 1e+05 2405 30405 4405 0e+00 1e+05 20405 3e+05 46405

Dans le cas d’une loi continue (co(t moyen), on peut tester ces
résidus grace au test des signes.
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TWEEDIE or not TWEEDIE ? [Boucher and Danail, 2011]

La densité est donnée par

0i00.0) = a(y.0) &0 3 [1000 - 6]

uP . urP ;

— sip#1 5— Sip#2
Ou) =1 P . k(0(u)) =1 2P .

log u sip=1 log u sip=2

Dans cette formalisation, E[Y] = u et Var(Y) = yuP = yE[Y],
avec ¥ un parametre de dispersion > 0.
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Lordre p € R™ (paramétre d’indice), choisi (en fonction de
I'application) avant d’estimer u et ¢, définit le type de distribution :

— p < 0:réalisations dans R; p = 0 : loi gaussienne,
— 0 < p < 1:pas de distribution (pas de modele Tweedie),
p =1 avec ¢ = 1 : loi de Poisson,

ﬁ
— 1 < p < 2:loi composée Poisson-Gamma (réalisations > 0),
— 2 < p < 3oup > 3:positive stable distributions (x > 0),

ﬁ

p = 2 :loi Gamma, p = 3 : loi inverse gaussienne.
En pratique, 1 < p < 2 pour modéliser fréq. et colt en mm tps!

: mémes var. explicatives prises en compte dans les
lois de fréq. et de colt, or les praticiens savent qu’elles sont #.
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0 Tarification a priori - concepts avancés

@ Modéles de tarification

@ Modeéles non-paramétriques
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AVANTAGES

Lavantage essentiel des modeéles non-paramétriques réside dans
la flexibilité de la forme de dépendance entre la réponse Y et les
facteurs de risque X.

lls permettent naturellement de traiter :
@ les effets de seul,

@ les effets non-monotones,

@ la dépendance entre les variables explicatives.

Il sont donc une excellente alternative aux GLM.
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ILLUSTRATION AVEC UN ALGORITHME GBM

Gradient Boosted Trees (GBM) : effets seuil, non-monotones!
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INCONVENIENTS

La difficulté de la manipulation de ces modéles réside dans :

@ le manque d’interprétabilité,

@ la gestion du surappentissage qui parfois est complexe.

En effet, certaines modélisations nécessitent de bien maitriser le
choix des parametres de tuning, qui peuvent en nombre assez
grand (GBM par exemple).
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TYPES DE MODELE

Parmi les approches non-paramétriques, on peut notamment
utiliser :

@ les arbres de décision CART,
@ les modéles ensemblistes de type bagging ou boosting,

@ les modeéles a effet additif GAM.

Quelques reférences intéressantes :
- mémoire |A de C. Dutang sur les GAM,
- de nombreux mémoires A sur le bagging et le boosting.
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e Tarification a priori - concepts avancés
@ Introduction
@ Modéles de tarification
@ Problématiques opérationnelles pour tarifer

@ Résumé
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CREATION DE POCHES D’ASSURES

La segmentation amene a créer des poches d’assurés ayant les
mémes caractéristiques. Il y a un arbitrage naturel entre

@ une segmentation “grossiére” : peu de tarifs #;

@ une segmentation précise : beaucoup de profils de risque
considérés #, des tarifs tres personnalisés.

La question essentielle liée a la segmentation est I'exposition :

— Remise en cause du principe de mutualisation (LFGN)...

— Attention pour les GLM (MLE asymptotique), voire méme pour
le calcul de la sinistralité globale en espérance par agrégation...
— Bc segmenter ne fait pas forcément \ tarif car prime de risque
(composant la prime technique)  (incertitude des estimateurs).

74/283



MODELE PARCIMONIEUX

On a tjs 2 effets inverses en modélisation (cf théorie de Vapnik) :

@ adéquation du modeéle : + la dimension du modéle est grande,
+ 'adéquation aux données est bonne;

@ qualité prédictive : + la dimension du modéle est grande, + sa
capacité prédictive est mauvaise (bruit au lieu du signal).

Lidée est donc de rechercher un arbitrage dans la dimension qui
permette d’obtenir un bon compromis dans ces 2 objectifs.

[C’est ce qu’on appelle un modeéle parcimonieux.]

Critéres de sélection de modéles emboités : AIC, BIC, ...
Econométrie : pénalité ex-post / Machine-learning : pénalité dans
I'optimisation (LASSO, ...).
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PENALITES EX-POST ET EX-ANTE

Usuellement, on utilise des pénalisations a posteriori...

Bien que conduisant potentiellement a des estimateurs biaisés, on
peut préférer au regard d’un critéere d’erreur quadratique moyenne
des estimateurs pénalisés ex-ante : cf article Econométrie et
Machine Learning p.15!

@ monde paramétrique : régressions pénalisées (pénalisations
ex-ante)

@ monde Machine Learning : gestion des parameétres de tuning
(pénalisations ex-ante)
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GLM : DIFFICULTES D’ESTIMATION

Il arrive souvent en pratique que des coefficients de régression

calibrés ne soient pas significatifs. Cela correspond au test :
Ho: Bj=0 VS Hi:fp#0.

But : rejeter Hp a un certain niveau de confiance a, en se basant
sur le test de Fisher (ou Wald) (8;/0(5)))? (~ x?(1)).

Lorsque I'exposition est faible dans une poche, la calibration des
coefficients de régression affectés a cette poche devient ardue...

Cela est di au fait que le MLE est asymptotiquement gaussien :

BME ~ N(B. 1/1(B)).
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= La variance de I'estimateur peut devenir grande si I'information
de Fisher est faible (quantité d’'info contenue dans les données,
petite dans le cas de trop peu d’individus).

La technique consiste alors a regrouper certaines modalités de
covariables qualitatives (ou catégorielles). La démarche
statistique “propre” s’y rapportant :

@ calibration du modéle complet,

pour le test de chaque coef. associé aux covariables, repérer
la pire “p-valeur” au-dessus du seuil «,

(2]

© agréger la modalité correspondante avec une autre
“intelligemment”;

o

recalibrer le modéle, et revenir a I'étape 2 tant que le modele
n’est pas satisfaisant.
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POURQUOI PARTIR DU MODELE COMPLET ?

Lors de I'étape de sélection de modele, on conseille généralement
de partir du modéle complet, puis d’en chercher un sous-modéle
optimal. Cela est di au théoreme de Frish-Waugh (voir aussi
article Econométrie et Machine Learning d’Antoine Ly et Arthur
Charpentier, section 2.9).

En effet, imaginons les 2 cas suivants :
@ underfit, i.e. le vrai modéle (inconnu en pratique) s’écrit

Yi =Bo+ X{ 1+ xJ B2 + €
et que l'on estime

Yi = Bo + X{ B1 + 1.
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Alors
Br = (X[ X)Xy = B1 + (X]X0) T X XoB2 + (X Xe) T X[ €
Etdonc E[B1] =1+ E[(X]X1) ' X[ XoB2] # i (biais)).
overfit, i.e. le vrai modéle (inconnu) s’écrit
yi =Bo+X{B1 + €

et que I'on estime

Yi = Bo + X{ B1 + X B2 + 1.
Alors E[B4] = 1,

mais perte d’efficacité car overfitting ! D’ou pénalisation par
complexité du modéle.
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DISTRIBUTION DE SINISTRALITE PAR POCHE

Au final, une question importante est d’identifier les poches pour
lesquelles la modélisation marche bien ou non : il vaut mieux
se tromper sur certains profils que sur d’autres...

Pour cela, on confronte la densité théo. construite par GLM a la
densité empirique du profil et on espére une bonne adéquation
(ex : rootogram) !
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° Tarification a priori - concepts avancés

@ Problématiques opérationnelles pour tarifer

@ Surdispersion pour la loi de fréquence
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PRATIQUE COURANTE

Dans les compagnies d’assurance, on penche souvent pour la loi
de Poisson dans la modélisation de la fréquence des sinistres
lorsqu’on adopte une modélisation de type fréquence-co(t.

En effet,
@ la survenance des sinistres est considérée sans mémoire,,
@ la Poisson ne dépend que d’'un parameétre donc est simple

@ cela simplifie le calcul global de sinistralité a I'’échelle du
portefeuille : loi Poisson composée stable par addition.

Souvent la variance empirique du nombre de sinistres est bien

supérieure a sa moyenne empirique : cela va a I'encontre de la
propriété fondamentale de cette loi = pas adapté !
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SURDISPERSION : BINOMIALE-NEGATIVE

Elle peut étre construite comme un mélange de lois de Poisson :
(NIN=2) ~P(1) et A~g@Ga(ad).
La densité jointe de N et A vaut

/ln 60/1(1—1 e—(i/l
fua(n, ) = fyaca(n) (D) = et = —"——"— (1,a,6>0,neN).
NA(N, A) = fnja=a(n) fa(Q) T a) (4,6 > )

N\ est continue et N discréte : la distribution marginale de N est
00 00 An 60&0—16—61
P(N=n) = fua(n, A)da = el — ———_ —di
(N=r) = [ mardr= e TS

e 0 L 6*T(a + n)
_ 9 et o=+ g —
nT(a) fo © M= @) G 1)
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Posons ensuite p = et g=1-p= % Alors

-

Ma+n)
niT(e)

@ ~N

P(N=n) =

Lav.a. N ~ NB(«; p) prend ses valeurs dans {0, 1,2, ...}.

Remarques :

@ La queue de distribution est plus épaisse que celle d’'une loi
de Poisson.

@ Sa variance est plus grande qu’une loi de Poisson : loi utilisée
en cas de des observations.
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AUTRES LOIS SURDISPERSEES

Une autre loi potentiellement utille pour traiter le phénomene de
surdispersion est la loi de Borel-Tanner.

Elle fait partie des EDF (Exponential Distribution Functions)...donc
appartient a la famille des GLM!!
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MODELES INFLATES
[Frees, 2009], [Vasechko et al., 2009]

Mélange discret a 2 composantes (grande masse en 1 point)...

Les “0” observés viennent de loi de comptage + masse en 0 (ex :
“vrais” 0 pr pas de sinistre, et “faux” 0 provenant de recours...) :

@ deux “sources” de 0, proportion du Dirac égal a f,e0(0)

@ l'autre regroupe les obs. # 0 provenant de la loi de comptage.

7r0+(1—7r0)e‘ﬂ sik =0,
Ex: N~ ZIP(1): P(N=k) = Ak
(1—n0)e‘AF sik > 0.

Régression (N continue) (cf formation comportements chris a la
fin). mo peut resulter d’'une binomiale par ex. Offset ?

87/283



MODELES TRONQUES
[Frees, 2009], [Vasechko et al., 2009]

Mélange a 2 composantes (“hurdle-at-zero”), 1 seule source de 0 :

@ loi de type binomiale par exemple qui génere les 0 (ne
proviennent plus du tout de la loi comptage),

@ alaquelle on ajoute une loi de comptage tronquée.

fzero(o) Sl k - 0,
P(N=k) = foount(k) :
1-f 0) —————— sik > 0.
(1= Fzero(0)) 1= foount(0)
o sik =0,
Zero-trunc. P: P(N=k) = ek

(1 —ﬂo)mSik>0.
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REMARQUES

@ On pourrait voir le modele zero-inflate comme un modele dans
lequel les couts sont parfois egaux a zero a cause de recours
par exemple...alors gu’initialement ils n’étaient pas nuls!

@ Siles zéros n'ont qu’une provenance, + robuste d’utiliser un
modele hurdle concernant I'estimation statistique des param.
(car estimation isolée pour chacune des 2 parties du modéle :
logit et modele de comptage).

Ex. : data “AutoClaim” dans la librairie R ¢p/m (Yip and Yau, 2005).
Computational tools for such models (zero-altered models, ...) :
librairie mboost et countreg.

— Voir I'article Boosting actuarial regression models (IME 2019).
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° Tarification a priori - concepts avancés

@ Problématiques opérationnelles pour tarifer

@ Difficultés liées aux données d’assurance
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TYPOLOGIES DE SINISTRE

La sinistralité se décompose généralement en trois typologies de
sinistre :

@ attritionnels : haute fréquence, petite sévérité ;
@ graves : basse fréquence, grande sévérité;
@ CAT : trés basse fréquence, sévérité extréme.

Nécessité de séparer ces données car les modeéles classiques
ne fonctionnent que sur les sinistres attritionnels (a cause des
queues des distributions des lois utilisées) = écrétement.

Rq : utiliser techniques de Théorie des Valeurs Extrémes.
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DONNEES ATYPIQUES

Malgré I'écrétement des sinistres, on observe parfois de la
sinistralité un peu atypique au sein de I'échantillon...

On peut traiter ce probléme avec des approches un peu plus
sophistiquées comme celle présentée dans l'article

Computational Bayesian Credibility for GLMs, de José Garrido
(Concordia University, Montreal)

Il s’agit d’estimer la prime en 2 étapes...En moyennant 2 fois.
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DISCONTINUITE - DISTRIBUTION DES MONTANTS

On observe parfois (surtout pour les branches a développement
long) des pics de densité pour certaines valeurs de co(t de sinistre
unitaire.

Cela est di par exemple a des forfaits a I'ouverture (de sinistre),
type convention IRSA ou forfait IDA en assurance automobile.

Ces montants forfaitaires doivent étre exclus de I’'étude!

Rq : cette suppression fait souvent baisser le colt moyen,
suggérant que les forfaits d’'ouverture sont prudents.
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GESTION D’UNE HETEROGENEITE INOBSERVABLE

Une approche potentielle pour gérer 'hétérogénéité inobservable
des données consiste a considérer des modéles mélanges finis. lls
peuvent étre discrets ou continus (ex : mélange Poisson-Gamma).

Admettons que I'on observe I'échantillon x = (x4, ..., xd)T,

réalisations iid de X = (X1, ..., X4)".

La densité mélange de X s’écrit comme suit dans le cas discret :
M M
p(x;@):Zn,-f,-(x;é)j), avec Zﬂj:1, 7Tj>0.
j=1 j=1

En termes d’estimation des paramétres, on se base généralement
sur I'algorithme Espérance-Maximisation (EM).
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ILLUSTRATION

On se propose ici d’afficher I'aspect caractéristique d’une densité
de probabilité d’'une loi mélange discret.
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PRINCIPE DE LALGORITHME EM

Complétion artificielle des données pas a pas (on n’observe pas le
label Y d’appartenance des indiv. aux composantes).

Soit Z = (X, Y) les données (X est observé, au contraire du label
Y). Lalgorithme se décompose en 2 étapes a chaque itération k :

@ E-step : calcule log-vraisemblance espérée des données
fictives :
Q(9; 00 = Egu[in Le(©) | X]

@ M-step : met a jour les paramétres en maximisant Q, donc

Ok+1) — arg max Q(e; 0t

Au final : attribution de 'obs. a 'une des composantes (Bayes).
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° Tarification a priori - concepts avancés

@ Problématiques opérationnelles pour tarifer

@ Autres problématiques opérationnelles
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FRANCHISE ET EFFET DE SEUILLAGE

Franchise : impacte la loi de fréquence et de codt.

Historiquement, la franchise a été instaurée afin de

@ diminuer I'aléa moral (comportement moins prudent car
assuré) ;

@ lantisélection (délai de carence par exemple en
Prévoyance).

D’un point de vue statistique, cette approche doit étre adaptée
pour tenir compte des contraintes liées au dispositif de collecte

des données, a savoir qu'il existe un seuil de collecte des pertes.

Seules les pertes > H (ou H est la franchise) sont collectées.
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IMPACT SUR LA SEVERITE
On observe un échantillon (Xi, ..., X,) de pertes i.i.d. au dela du
seuil de collecte H.

On obtient donc une distribution modifiée par rapport a la
distribution théorique sans seuillage, donnée par

- fo(x) fo(x)
far(x) = ]P>()(:—>H)]IX>H = mﬂxm-

Estim. des parameétres 6 : méthode des moments généralisée
(minimise I'écart entre moments théo / moments empiriques), ...

99/283



EXEMPLE : X/ ~ X ~ LN (1, 7)

Besoin : au — autant de moments théo. que de param. a estimer...
En notant les moments m,(6) = E[XP | X > H] = f_O:o xP far(x) dx,

1 _ (D( In H—(H+0'2))

2
my (,u,o-) — o ey—i—a' /2
1 - (i
1_o In H—(u+202)
mo(no) = — (q,(lnz_,,) Jeztus

ou ¢ désigne la fonction de répartition d’une loi N(0, 1).

Puis on inverse le systéeme en remplacant my et mo par i, et 6,
(EMM), et on trouve t et !
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IMPACT SUR LA FREQUENCE - EXEMPLE POISSON

Souvent modélisée par la loi de Poisson (N ~ P(1)) :

/ln
_ A4
P(N=n)=e o
@ Simple (EMV = moy. empirique).

@ Calibration de la fréquence apres celle de la séverité pour
prendre en compte la présence du seuil de collecte :
W Ay
P(X >H) 1-Fy(H)

A=

En pratique donc : calculer la moyenne empirique du nb de
pertes annuel (1) et utiliser I'estimateur de 6 pour obtenir le vrai A.
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RECOURS ET REASSURANCE

Concernant les recours, il y a 2 solutions :

@ soit les recours se traitent en amont de la modélisation,

@ soit on modélise la probabilité de recours, puis combien cela
rembourse (approche PD-LGD en crédit)

La réassurance peut également intervenir dans le tarif : elle
s’'intégre apres estimation des modeéles et déduction de la prime
pure.
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PROVISION AJOUTEE AU TARIF

Idée : il manque de I'information dans la sinistralité observée dans
la base, car certains sinistres ne sont pas déclarés/clos...

Le provisionnement peut donc jouer dans la valeur de la prime, en
I'occurence la baisser si I'activité fait des bénéfices ou la monter
pour des branches a développement long.

Une maniére d’intégrer le provisionnement serait de faire d’abord
un Chain Ladder pr évaluer la charge ultime puis utiliser le volume
de prime pour en déduire un Loss-Ratio.

Ce Loss-Ratio est ensuite appliqué a la prime déterminée par
GLM.
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EXEMPLE : DOMMAGES EN RC CORPORELLE

Difficultés : consolidation médicale = rapport AGIRA par ex.
Rq : attention donc a l'inflation, notamment médicale.

Préjudice Passé Préjudice Futur

A
a I e . /Etraite ™

Accident Date de idation médical i (65 ans) Déces

n
X mois apres I'accident X mois apres la
consolidation t

Préjudice passé

1. Capitalisation au taux d’intérét légal
(intéréts compensatoires et moratoires):
3.00% en 2015 au Luxembourg

2. Table de mortalité (conversion de rente)

Préjudice futur
Taux d’actualisation
pour les cashflows aprés consolidation

2. Table de mortalité (conversion de rente)
1

1
Perte de revenu (avant et aprés consolidation)

Frais médicaux
(avant et aprés consolidation)

Assistance Tierce personne
(apres consolidation)

Source : mémoire actuariat de Nicolas Faugeére.
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VISION “AS-IF” DES MONTANTS

En principe, les données répertorie les montants de sinistre
relativement a une certaine date... qui peut étre ancienne!
Attention donc a l'inflation.

Afin de tarifer pour les années a venir, il est important de
ramener ces montants au moment de la tarification (en
ramenant ces montants a des codts “actuels”)

C’est ce qu’on appelle la mise en “as-if” : cela revient en général a
capitaliser les montants sur une ou plusieurs périodes.
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LISSAGE DU TARIF

En réalité, une refonte tarifaire améne quasi-systématiquement a
un écart de tarif significatif entre I'existant et le nouveau.

Une maniére de combler cet écart en pratique est d’estimer le
modeéle GLM sans en tenir compte, puis on compare la nouvelle et
'ancienne prime. Cela nous permet de déterminer une constante
permettant de passer d’'une prime a l'autre.

Cette constante est ensuite réintégrée dans la modélisation via un
nouvel offset; puis on re-estime le modéle avec cet offset.

N.B. : les méthodes différent suivant les compagnies...
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° Tarification a priori - concepts avancés

@ Problématiques opérationnelles pour tarifer

@ Tenir compte de I'exposition au risque
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DANS LES GLM : QU'EST CE QU’UN OFFSET ?

Loffset représente une sorte d’exposition.

C’est une constante qui va venir modifier le risque de base, donc
le risque qui n’est pas lié au profil de I'assuré en particulier.

Exemples d’offset :
@ assurance auto indiv. : nb d’années d’assurance du véhicule;
@ assurance collective auto : taille de la flotte assurée;
@ incapacité-invalidité : effectif salariés, masse salariale;
@ réassurance : taille du portefeuille, ...

Calcul du tarif : bien fixer I'offset a 1 (si unité de mesure en année,
car durée d’assurance de 1 an par défaut).
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INTEGRATION D’UN OFFSET DANS UN GLM
Tout simplement! C’est un terme commun a tous les individus,
mais dont la valeur va changer en fonction des individus.
En terme explicite, 'équation devient
g(E[Y|X = x]) = offset + x'.
@ on contraint le coefficient de I'offset a valoir 1 (c’est

pourquoi il n’apparait pas dans I'équation!) ;
@ pour la calibration, on régresse g(E[Y | X = x]) — offset = x"3.
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EXEMPLE AVEC LE MODELE LOG-POISSON

Lidée globale de I'offset est que la réponse y est proportionnelle.

Donc l'offset s’exprime sur la méme échelle que la réponse. Dans
le cas du modele log-Poisson de paramétre A, on aurait donc

In(E[Y | X = x]) = In(exposition) + x"B.

E[Y|X = x|
exposition

) =x'B.

Soit le modéle suivant a calibrer : In(

On remplace donc la fréquence (au sens nb de sinistres) par une
fréquence standardisée !
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ET DANS LES AUTRES MODELES ?

Cf TP sur le modele binomial.

Modéle CART ?
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CONTRAINDRE DES COEFFICIENTS

Si I'on veut intégrer dans le modéle des facteurs de risque dont les
coefficients ont déja une valeur (estimée par ailleurs), on peut
donc utiliser la méme idée que l'offset...

Ainsi, si 'on souhaite intégrer un zonier dans le modeéle tarifaire,
on introduira Z comme un offset. Ex : si 3 zones de risque :

@ zonel1:z=-5%
@ zone 2 :rien.
@ zone 3 :z=+5%

Ex. GLM log-Poisson : on introduit I'offset log(z), donc log(1.05)
pour la zone 3...
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° Tarification a priori - concepts avancés

@ Problématiques opérationnelles pour tarifer

@ Réponse catégorielle : sur-représentation d’'une modalité
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TAUX DE REPONSE FAIBLE

On cherche parfois a modéliser un événement binaire “rare” en
utilisant des modéles GLM.

[Quel(s) probléme(s) cela pose ?]

Difficultés énoncées précédemment sur la calibration notamment

— +sieurs poches ou on observe (trés) peu ou pas I'événement...

Exemples concrets (souvent en risque comportemental) :

@ taux de résiliation en assurance vie et non-vie (surtout en vie
ou les taux de résiliation annuels sont + faibles) ;

@ taux de conversion en assurance directe par exemple.
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SEUIL D’AFFECTATION ET COURBE ROC

Dans ce type de problématique, on a coutume d’évaluer la
performance d’un modéle grace a la courbe ROC.

Celle-ci permet également de voir que dans un tel cas, le meilleur
seuil d’affectation de la réponse a I'une ou l'autre des modalités
possibles pour la réponse ne se situe pas a une probabilité égale a
0,5...
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FORMALISATION DU CONTEXTE

Plagons nous dans le cadre de risque comportemental pour
présenter le concept (ex : taux de conversion). Cela nous améne a
considérer un modele GLM de type logistique, a savoir

In(1 P ):x,.T,B.

i

Rappelons que

() X’.T = (1,Xi1,...,XiJ) et ,BT = (,30,,31, ---,ﬁJ);
eietl,.,l: Yie{0,1} = Y,~8B(p);

En pratique, p = 17 2.i 1,—1 est de I'ordre de quelques % au +.
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UN APARTE SUR LA FONCTION DE LIEN

Dans le cadre du modeéle logistique, 3 fonctions de lien possibles.
Liées aux 3 fonctions de répartition possibles pour Y* (continue)
non observable (cf TP) :

@ FdR loi logistique (modéle logit) :

Fo) = 1rgre o) =[]

T 1te 1-p

@ FdR loi normale centrée réduite (modéle probit) :

F = o) = [ e glp) =7 (p)

@ FdR loi Gumbel Il (modéle complementary log-log) :

F(x) =1-exp(—exp(x)),  g(p) = log(-log(1 - p))-
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PROBLEMES THEORIQUES ASSOCIES
[Albert and Anderson, 1984]

@ La séparabilité : en fait, I'existence d’'un estimateur du
maximum de vraisemblance est conditionné par le probléme
de séparation. Il n"A de MLE en cas de séparation compléte.

(a) (b} fe)
ER £ 2 s

N Mo o

N
x N ° 5

x X
X \
Ty 1 £

Figure 2 Possible configuration of sample points in the case of two variables, x; and x,, and two
groups, E;, shown by circles, and E,, shown by crosses. Regions R; and R, define corresponding

allocation rule. (a) Complete separation. (b) Quasi-complete separation. (c) Overlap.
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@ La dimensionnalité (“curse of dimensionality”).
On dispose souvent de bc de covariables : la dim. de I'espace
/" vite et les données peuvent rapidement devenir “sparse”.

Pour toute procédure statistique, la sparsité est un probleme
important. On entend parfois parler de

“Small N large P”

Pour avoir un résultat fiable dans la plupart des modéles
statistiques, |a taille des données dont nous avons besoin croit
souvent exponentiellement en fonction de la dimension du modéle.

Remarque : dans le cadre de données “sparse”, on utilise plutét la
régression ridge, lasso, elastic net...
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SOLUTIONS THEORIQUES POSSIBLES

Pour éviter le probléme de sparsité ou de non-existence du MLE
pour des données qui seraient séparées (ou quasi-séparees), il
existe deux principales méthodes :

@ la vraisemblance pénalisée (penalized likelihood method);

@ la régression logistique conditionnelle exacte (exact
conditional logistic regression).

Rq : la 3¢ alternative est le response-based sampling, artifice pour
retomber sur un probléme plus facile a traiter mais qui n’est pas
applicable directement sur le probléme d’origine (cf + loin).
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UN MOT SUR LA VRAISEMBLANCE PENALISEE
[Firth, 1993]

C’est une technique adaptée au probléme de petit échantillon (peu
de réponses observées égales a 1 entre dans ce cadre).

Lidée est de corriger le biais des estimations MLE (biais en
o(n™")) d0 au manque de données. Pour corriger ce biais, on
optimise la vraisemblance pénalisée de I'information de Fisher :

LB = LB) I

Cette fonction de pénalité est appelée I'a priori de Jeffrey.
Asymptotiguement, son influence est négligeable.
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LA REGRESSION LOGISTIQUE CONDITIONNELLE
EXACTE [Mehta and Patel, 1995]

Considérons un coefficient de régression g; (j = 1, ..., J).
Introduisons la statistique exhaustive (ou suffisante) de g;

I
T = Z Yi Xij,
i=1

Linférence est basée sur la distribution exacte sous hypothése
nulle de T;, conditionnellement au vecteur de statistiques
exhaustives des autres coefficients :

T~ = (Tk)ke[1.J], ki
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On maximise ensuite la vraisemblance conditionnelle

_ exp(B; )
Yo exp(By Xi ¥ Xi)

2T = 418 Tr = 1)
ou Q) est 'ensemble des permutations y* de y telles que pour

chaque y* € €
Z yixpg =T, Yjej.
i

@ Fonctionne bien pour des données mal séparées;

@ Consommateur de ressources calcul (mal adapté si big BdD).
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VARIANCE DE LESTIMATEUR MLE
Rappel : I'erreur d’estimation de 8 est composée de 2 termes : le
biais au carré, plus la variance de I'estimateur.

Estimation classique : on estime le vecteur 8 de paramétres par
maximum de vraisemblance, ou la vraisemblance vaut

L(ﬁ'y = (y1""9y/)) = f(y1 ..... Y/)(y1""’y/;ﬁ)'

Grace a l'indépendance, L(B;y = (v1,...y1)) = [1i fv,(yi: B),
et donc
LBy)=[]p(1-p)™
i

ou B est caché dans p;.
(pi = exp(Bo +B1 Xit +... + Bk Xiy) /(1 +exp(Bo +B1 Xit + ... + Bk Xiu)))
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Ainsi, on cherche a résoudre le probléeme de minimisation

(Bo.B1,....s) = argmin (—log L(B;y))
B=(Bo---B)

avec log L(B;y) = - %; In(1 + exp((1 - 2y/)x]B)).

[Greene, 2008] montre que la variance de I'estimateur est donnée
par

-1
Var(ﬂ (Z pi(1 = pi)X; X,] .

@ La proportion de 1 intervient dans le terme f(p;) = pi(1 — pi);

@ p; =P(Y; = 1]X) est petit pour la plupart des individus;
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On peut faire quelques remarques :

o f(p;) est maximale pour p; = 0.5 ;

@ si le modéle a un pouvoir explicatif convenable, p; sera plus
grand pour les individus dont la réponse observée y; vaut 1
que pour les autres;

@ donc pi(1 — p;) sera plus grand pour ces individus (y; = 1) =
leur variance sera + faible.

Ce raisonnement explique pourquoi augmenter la proportion de

réponses égales a 1 améliore I'estimation des coefficients de
régression.
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BIAIS DU MLE SUR DONNEES DESEQUILIBREES
[McCullagh and Nelder, 1989]

Aprés avoir vu I'expression de la variance de I'estimateur, on peut
en estimer le biais (évidemment ces 2 quantités sont a minimiser).

Rappel : pour un estimateur 3 de 8, on définit le biais comme

biais(3) = E[B-p] = E[p]-5.

Dans le cadre du MLE dans le modele logistique, il est estimé par
la quantité

O XTwe

S XTWX

ou W et £ sont liés aux poids des observations et aux p.

biais(3"-E)

127/283



De maniére plus précise, on a
@ w; est le poids accordé a I'observation i;
@ p; est I'estimation fournie par la modélisation ;
0 & =05%xQix[(1+w)pi—w];
o W est la matrice telle que W = diag(p; (1 - pi) wi);
@ Q est la matrice donnée par

xXXT _
XTWX'
@ Qj sont les éléments diagonaux de la matrice Q;
Rq : dans le cadre de petits échantillons avec peu de “succes”

(yi= 1), cest . Par propagation, tous
les j3j sont ensuite affectés.
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EXEMPLE DE BIAIS [King and Zeng, 2001]

exp(Bo + B1X1)
1 +exp(,80 +ﬁ1X1).

Considérons la modélisation suivante : p; =

Dans ce cas, on peut approximer le biais de 3, par

B-05

E[Bo—Bo] = B —p)

Clairement, le biais sera donc négatif car p est petit dans notre cas
= on aura tendance a systématiquement sous-estimer S !

En revanche, ce biais diminue a la vitesse n~"...
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PROPAGATION DU BIAIS

Le biais dans I'estimation des paramétres induit automatiquement
un biais dans I'estimation des probabilités p;. On montre que la
proba. p; est sous-estimée dans le contexte du modele logistique
(avec peu de succes observés), et que le biais peut étre estimé par

pi=P(Y;=1IX) = pi+C
ou le facteur de correction C; vaut
Ci = (0.5-pi) pi (1 - pi) X Var(B"F) X

— C;j > 0 car p; petit : on sous-estime systématiquement p;;
— biais \, si la variance de I'estimateur diminue, ou si p; ...
= Lien entre biais de la proba estimée et variance de I'estim. S.
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REECHANTILLONNAGE

Les 2 approches théo. de correction du biais (vraisemb. pénal. /
reg. log. cond. exacte) étant difficiles & mettre en oeuvre, on opte
en pratique pour la méthode de type “importance sampling”.

Nous avons au départ un jeu de données dont le taux de
conversion vaut 7 (ex : T = 2%).

Pour éviter les pb de calibration avec ces données, on rééquilibre
I'échantillon en termes de nb d’événements d’intérét observés.

C’est la response-based sampling method (ou choice-based
sampling method). Notons 7¢ le nv taux de conversion (7€ > 7).
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TYPE RESPONSE-BASED SAMPLING

Nous devons donc construire un response-based dataset.
Cette méthode souléve 2 questions sans réponse évidente :

@ si nous changeons la proportion des modalités observés dans
I'échantillon d’apprentissage, le modéle construit sera
différent. Comment ensuite retrouver des résultats cohérents
pour la population d’origine ?

@ lors du rééchantillonnage, il faut choisir un taux arbitraire de
représentation des modalités de la réponse. Par ex., on choisit
30% (7°) de contrats souscrits. Comment fixer ce taux ?
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FORMALISATION DU CONTEXTE

On dispose des données et du probleme suivant :
@ | est la taille de I'’échantillon initial ;
o Yi~B(p) = Vye{01};
® Xi = (Xy, ... Xuy) e RY;
@ on note fx la densité de X, et fy celle de Y.

On cherche a estimer le paramétre p, de la loi de Y, aprés avoir
supposé un modeéle paramétrique (logistique) :

fy(y 1x) = fy(y X, po).

Notons que f(y,x) = fy(y X, po) fx(x) (Bayes).
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AUTRES TECHNIQUES DE REECHANTILLONNAGE

@ Simple random sampling : vraisemblance d’1 seule obs. :

L¥(p; (y,x)) = f(y,x) = fy(y 1%, p) ix(x).

— Propriétés estimateur identiques que sur la population
globale (maximise la méme forme de vraisemblance).

@ Exogenous stratified sampling : stratifie 'échantillon sur x.
On a dc une nvelle densité g(x), et la vraisemblance s’écrit

L% (p; (v.x)) = f(y.x) = fy(y1x,p) g(x).

— Adapté pour sur-représenter des catégories de personnes.
— Ne modifie pas le maxim. de la vraisembl. (se fait sur p).
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RESPONSE-BASED SAMPLING ET MODELE LOGIT
[Xie and Manski, 1989]

Stratification sur la réponse Y : on modifie le taux d’occurence
de I'événement de la population d’origine. | désigne la taille de
I'échantillon, fy la densité de Y dans la population d’origine.

Y € {0, 1} : notons 1 — 7° le taux moyen (dans le nouvel échantillon)

de non occurence de I'événement, et ¢ son complémentaire.

On y associe le nb d’événements (ou pas événement) |y et /1 t.q.
1-7¢=(lo/l) et 7°=(h/l).

Rappelons que fy désigne la densité de la réponse Y. On a

b RYIXERE)

P fe ey 1% p)fx(x) ax |

L™ (p; (y.x)) = f(x]y)
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Ici l'optimisation est modifiée, contrairement a précédemment ou la
vraisemblance a optimiser était directement une fonction de p a
travers le noyau fy(y | x, p).

Ainsi le paramétre d’intérét p sur lequel optimiser intervient
différemment dans le noyau qui devient
f(x.y) fr(y 1%, p)fx(x)

fy) — [i fr(y1x p)fx(x) dx’

Ici, la densité marginale de Y (au dénominateur) dépend de p : on
va donc modifier p en maximisant la vraisemblance (estimation de
p) et obtenir un estimateur qui n’est pas robuste pour la population
globale.

Comment le rendre donc robuste ?
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METHODE 1 : WEIGHTING METHOD
[Manski and Lerman, 1977]

Il suffit de pondérer la vraisemblance avant de I'optimiser sur
I'échantillon response-based.

lls définissent ainsi la weighted maximum likelihood estimation,
basée sur la log-vraisemblance

/

log Lu(p; (v.X)) = ) w(yi) In(f(yi ;. p))
i=1

avec ¢ ( )
_ Iyly
)= Uiy
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On conserve au final I'estimateur

I“)MLE = arg max log Ly(p; (¥, X)).
p

Remarque : les poids font intervenir
@ la quantité (1,/l) : proportion de 0-1 dans la popu. créée.
— Directement observable a partir des données.

o fy(y) = fx fy(y 1%, p)fx(x) dx : choix crucial si proportion du
phénomeéne non-observée en pratique.
— issu en général d’'une connaissance / information
extérieure (survey, ...) si non-observée (mais prop. observée
pr nous ds la pop. globale car classif. supervisée).

Rq : méthode qui fonctionne glq soit le lien (logit, probit, ...).
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EN PRATIQUE

Ona

~ fy(y)
YW= Ty

Au numérateur, il s’agit de la proportion de 1 (respectivement 0)
dans la population d’origine. Au dénominateur, il s’agit de la
proportion de 1 (respectivement 0) dans la pop. response-based.
Donc

° yi =1 :les poids sont w(1) = & < 1

° yi = 0 : les poids sont w(0) = -=

= > 1

On surpondére les observ. égales a 0 : logique puisque I'échant.
response-based contient bien moins de 0 que celui d’origine...
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ECART DE TARIF

Ce biais peut rapidement mener a une sous-estimation importante
de la sinistralité dans le cas de gros portefeuille...

Prenons par ex. le portef. avec caractéristiques suivantes :
@ 1000 000 d’assurés,
@ une fréquence moyenne de survenance des sinistres de 10%,
@ un colt moyen du sinistre de 2000 euros.

Admettons que le biais de la probabilité de survenance soit de 1%,
donc sous-évaluée a 10% plutdt que 11%.

Grossiérement, il faudrait donc ajouter 10 000 sinistres dans
'année, soit une charge totale de

10000 x 2000

soit 20 000 000 d’euros a payer en plus!
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METHODE 2 : PRIOR CORRECTION
[Xie and Manski, 1989]

Uniguement dans le cas du modeéle logit (lien logit et bonne
spécification du modeéle). Estimer par MLE sur I'éch. response
based conduit a bien estimer ts les coef. de régr., excepté So.

On “corrige” donc I'estimation 3, de 8, comme suit :

,30:[30—“1(1;7- T )

1—-7¢
avec 1 la prop. de 1 ds la pop., et 7€ celle ds I'éch. response-based.

Ainsi, on estime coef. par max de vrais. sur I'échantillon response

1-— c
based en introduisant avant un offset valant In ( il 3 il C).
T -7

141/283



JUSTIFICATION DE LA CORRECTION

Soit Cq I'événement Y = 1 et Cy I'événement Y = 0.

P(C1 |X)

P(xIC1)P(Cy)

P(x|C1)P(C1) + P(xICo)P(Co)

1

(x1Co)P(Co)

P
1+ Bienp(en)
1

P(x1Co)P(Co)
1+ e (n (GRS )

1

P(ICHP(CY)
1+exp (‘ In (—P(;cbp(c;)

1

1+ exp (—=(Bo + B1 X X))

)
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Or,
(P(XIC)P(Cy)
Pot Prxx = '”(P(xwo)P(co))’

donc les parametres de régression sont estimés sous I'hyp. que
les probabilités a priori de chaque classe sont équilibrées voire
égales... On peut ainsi re-introduire le odd-ratio a priori dans
l'intercept comme ceci :

P(C1) — In P(X|C1)P(C1) N P(C1)
B°+ﬁ1x"+'”(f°(co)) = (P(cho)P(Co))+| (P(Co))
P(Cy) B P(x|C1)P(Cy) P(Cy)
ﬁ”'“(P(co))*W" - ln(P(cho)P(Co))+|n(P(Co))

D'ott Bo = Bo + In (,igg;g)_
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o Tarification a priori - concepts avancés
@ Introduction
@ Modéles de tarification
@ Problématiques opérationnelles pour tarifer
@ Résumé
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RESUME DES ETAPES DE CREATION D’UN TARIF

On résume ici les principales étapes a exécuter dans une optique
de tarification.

Dans l'ordre :

@ Importation des données et premiers traitements (données
aberrantes, valeurs manquantes, transformation de types, . ..)

©@ Extraction des bases par garantie assurée

@ Traitement des données (nettes de franchises, recours, forfait
type IDA, mise en as-if pour l'inflation, dvp des sinistres pour
prise en compte de provision ds tarif, réass. a répercuter ?)
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o

©6e 6 000 00

Statistiques descriptives (exposition, fréquence et cout moyen
par variable explicative, tests de corrélation, ...) et premiers
choix de travail sur les modalités

Extraction des seuils et écrétement : isolement des extrémes
Détermination de I'individu de référence (si GLM);

Création d’échantillons d’apprentissage et de validation;;
Modélisation (hypothése, adéquation aux lois choisies, . ..);

Optimisation du modéle et travail manuel sur les variables et
les modalités;;

Validation du modéle (résidus, comparaison a I'empirique sur
I'échantillon de validation) ;

Détermination des primes;
Viabilité des primes segmentées définies.
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CONCLUSION

De nombreux écueils a la mise en place opérationnelle d’'une
tarification en assurance...

Principalement :

@ travail sur les covariables (regroupement de modalités,
catégorisation) en amont de la modélisation / optimisation ;

@ la segmentation et ce qu’elle induit (attention a ne pas trop
segmenter!);

@ le choix paramétriques éventuels (lois, liens, ...);

@ la calibration des modeles (convergence MLE, bornitude
vraisemblance, initialisation de I'algo. Newton-Raphson, ...);
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@ la validation d’'un modéle;
@ la gestion de la surdispersion des données;
@ la potentielle (trés) faible sinistralité...

Il est primordial de bien étre conscient de ces limites.

La qualité du tarif peut étre apprécié par une courbe de Lorenz (en
abscisses : % population triée par primes estimées classées par
ordre décroissant, en ordonnées les pertes cumulées empiriques
correspondantes...= loi du 20-80 : 20% des contrats engendrent
80% de la perte globale)

Une alternative serait d’adopter une approche non-paramétrique
= Machine Learning ([Paglia and Phelippe-Guinvarc’h, 2011],
[Aouizerate, 2012], [Leroy and Planchet, 2016]...)
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e Construction d'un zonier
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DEFINITION D’UN ZONIER

Définition (Larousse) du mot “Zonier, zoniere”. Adj, nom.
Relatif a la zone autour de Paris ; habitant de cette zone.

Il semble que ce ne soit pas trés adapté... En revanche, zonaire
(adj.) est affecté a un nom et désigne un ensemble qui présente
des zones.

Remarque importante : un véhiculier peut étre rapproché d’'un
zonier : on explique la sinistralité spécifique par le type de
véhicule. Par exemple, un certain modéle de moto est trés présent
dans les motos école. La fréquence de sinistre observée sera
alors plus grande, cela est di a I'utilisation du véhicule.
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OBJECTIF PRINCIPAL

A la base, le zonier en assurance a été introduit essentiellement
pour des raisons commerciales.

Objectif : éviter des “sauts” de tarif sur deux zones géographiques
voisines, tous critéres égaux par ailleurs.

= Vente par les agents rendue plus facile... Moins de plaintes des
assures.

Autre avantage : création de classes de risque géographiques.
On diminue le nombre de modalités par rapport a si I'on avait
introduit la variable comme facteur de risque dans un modéle.
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TYPES DE ZONIER

Le zonier administratif :

EECfd00DODEENE
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LISSAGE SPATIAL

Le zonier par lissage spatial :

EEEO0O0O0OOEE
S OmNO O W =

o
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ZONIER PREDICTIF

Le zonier prédictif :

EEEO0000COEN
S OO NO O A WN =

o

156/283



CARACTERISTIQUES D’UN ZONIER

Les zoniers se construisent en général par garantie!

Exemples :
@ garantie vol,
@ garantie CAT NAT (zonier inondation, sécheresse),

@ zonier santé (prix de la santé assez différent en fonction des
régions),
° ..

Idée sous-jacente : le risque de vol est fortement lié au lieu
d’habitation.
Agrégation de zoniers : question délicate !
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e Construction d'un zonier
@ Introduction

@ Données a disposition
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SYSTEME D’INFORMATION GEOGRAPHIQUE (SIG)

Ensemble de données repérées ds I'espace (référence) : ex,
@ données géographiques : un code postal, ...;
@ données localisées : nb de sinistres dans ce code postal.

On a des référentiels de données géographiques :

@ Code Officiel Géographique (COG) : codification communes,
cantons, arrondissements, départements, ..., DOM-TOM;

@ Référentiel GEOFLA : géré par Institut Géog. Natio. (IGN);

@ Reéférentiels postaux : Hexaposte, Hexavia, Hexaclé,
Hexaligne3, Cedexa;

@ Norme AFNOR : pour normaliser les adresses pour I'Europe.

159/283



9 Construction d'un zonier
@ Introduction

@ Pré-modélisation : une étape commune
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STRATEGIE GENERALE

En commun de toutes les techniques de zonage, il existe une
étape préliminaire permettant d’“isoler” I'effet du risque
géographique.

Considérons par exemple un modéle de fréquence. On note N; le
nombre de sinistres de I'individu i, et on connait son exposition
notée e;.

Supposons que N; ~ P(4;). En spécifiant un GLM log-Poisson :
In(E[N; | X]]) = log(ei) + Bo + X/ B

avec BT = (B1....8p), et X[ = (X]. ... X}).
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Dans un cas classique, X contient une information sur le lieu ou se
trouve le risque (ex : lieu d’habitation).

On constituera comme dans le cadre général
@ un échantillon d’apprentissage pour construire du modele,
@ un échantillon de validation pour valider le modéle.

On peut procéder par échantillonnage stratifié (sur I'expo. par ex. :
2/3 de I'expo dans I'éch. d’apprentissage et 1/3 ds validation) :
l'idéal est d’avoir une exposition uniformément répartie sur le
territoire (parfois utopique !).

Stratégie pour construire un zonier : ne pas intégrer le facteur
de risque géographique dans la calibration du modéle, puis
travailler sur les résidus pour faire ressortir cet effet.
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Les méthodes de zonage consistent a mesurer le niveau de risque
par “région” = on obtient une partition en zones de risque
homogene.

Point de vocabulaire : on distingue dans les méthodes de zonage
deux types de données :

@ les données laticielles : données observées sur une partition
du territoire (ex : exposition par commune) ;

@ les données ponciuelles : données géocodées (ex : ensemble
de sinistres a des lieux précis).
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MANQUE D’INFORMATION

Une des principales problématiques concerne le manque
d’'information.

Exemple : si la “région” considérée est une commune, on peut ne
pas disposer d’information a ce niveau.

Comment mesurer alors le risque relatif a cette commune ?

Cela dépend du type de zonier que nous construisons :

@ avec un zonier administratif, il faudrait considérer une “région”
plus grande, et accentuer ainsi la mutualisation. Cela induit :
- une perte de précision dans le zonier,
+ un gain dans la robustesse de la mesure du risque car on a
plus de données;
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@ procéder par lissage spatial (on mutualise les risques
proches, ex : Boskov-Verrall (1994), Taylor (2001)). Cela induit
notamment :

+ une extraction des petites fluctuations aléatoires du risque
pour en révéler la structure spatiale sous-jacente.

- une difficulté de calibration pour les paramétres de lissage,
difficulté d’arbitrer dans le niveau de précision du zonage.

@ procéder par introduction de variables externes prédictives du
risque géographique (sociodémographiques, topographiques,
de population, ...). Cela induit :

+ on peut extrapoler le niveau de risque d’une région non
exposée a partir de ses caractéristiques,

- choix complexe dans la multitude des indicateurs potentiels
pour la construction du modéle.
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CONTEXTE
Principe du zonier administratif : le zonier administratif correspond
a un zonage par agrégation territoriale.

On prendra ici 'exemple d’un zonier fréquence (mais il existe des
zoniers de co(t aussi ).

Evidemment, il existe d’autres facteurs de risque que la région
expliquant la fréquence = trouver une mesure du niveau de risque
d’une région qui ne dépende que du facteur spatial (isoler
linfluence du facteur géo. toutes choses égales par ailleurs).

Rappelons que

N = e x % x 5% x ... x X 4 ¢
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e Construction d'un zonier

@ Zonier administratif
@ Etapes de 'agrégation territoriale
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FACTEUR DE RISQUE SPATIAL

Soit Xi le critere géographique, alors 1 est le facteur spatial.

@ On modélise N sans X; = on obtient o, ..., 3, (si GLM);
© - Lorsque I'exposition est différente de 0, on pose :

N; eﬁzxi eﬁpri’

— &P x P x

R =

Sous I'hyp. B2 = B, ... Bp = Bp, on définit le risque spatial par
Ri = eh b +€;

— Lorsque I'exposition est nulle, on prend R; = 0.
On appelle R; le risque spatial résiduel.

= — — XX ——.
e x €°2% x ... x ePrXp ehX; %o
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Rq : dans la suite, k est une “région”. En pratique, on aura
donc déja agrégé les observations des assurés par “région”.
Rq 2 : on aurait aussi pu considérer N; — N; plutét que N; / N;.

Admettons que nous travaillons au niveau commune ici. On

peut déduire I'estimateur ; de R; pour chaque assuré :

n n;j
r’ = A Xi 3 Xi
offset; eP2%z...ePr*p

ou nj est le nombre de sinistres observés pour I'assuré i.

On peut maintenant définir I'estimateur du risque spatial
résiduel au niveau de la commune k par

Z’k et
. i i
re = 1

k
Z 1el

avec e; I'exposition, Ik nb assurés ds la commune k.
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© On créé une nouvelle base de données ou chaque ligne est
une commune, avec :
@ un code commune fourni par 'INSEE par exemple,
o I'exposition e, de cette commune Kk,
o le risque résiduel spatial ¢,
e le nombre de sinistres prédits, .

@ Enfin, on procéde a 'agrégation territoriale au besoin.
— Si le niveau choisi est trop fin (pas d’exposition), on agrege
alors au niveau d’au-dessus (ici le département par exemple).

Idée générale : la statistique de risque spatial résiduel doit pouvoir
étre considérée robuste. Elle doit donc excéder un certain seuil
d’exposition minimal, noté e dans la suite.
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e Construction d'un zonier

@ Zonier administratif

@ Agrégation territoriale : choix du seuil d’exposition minimale
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CHOIX DU SEUIL D’EXPOSITION MINIMALE

On se rend compte que le risque spatial résiduel de chaque
commune k peut correspondre :

@ soit a son propre risque spatial résiduel évalué comme décrit
précédemment,

@ soit au risque spatial résiduel du niveau d’agrégation
au-dessus (si I'exposition était trop faible),

@ soit au risque spatial résiduel du niveau d’agrégation encore
au-dessus si cette derniére exposition n’était pas suffisante,
et ainsi de suite...
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On stocke pr chg commune les niveaux de risque spatiaux
possibles suivant niveau d’agrégation (commune, canton, ...).

= On se sert de ce tableau pour définir le seuil d’exposition
minimale, noté e dans la suite.

, on procéde comme suit :

@ surla base d’apprentissage A, construire GLM puis calculer le
niveau spatial résiduel par commune ?,ﬁ‘ (r¢ précédemment);

@ sur la base de validation, on estime également le niveau de
risque spatial résiduel ?kT par commune;

@ pour trouver le seuil d’expo. minimale e, on optimise
n
min | ), e (ii(e) = 7 (e))?
e
k=1

avec n le nombre de communes.
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En pratique, suivant la valeur de e, 7} et 7] différent.

Pour tester # valeurs de e, on se définit une
(par ex. de I'exposition minimale a I'exposition maximale
avec un certain pas).

Si ex > e, on conserve les risques spatiaux résiduels courants ?,f‘
et ?kT. Sinon, on prend les valeurs pour I'agrégation d’au-dessus.
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e Construction d'un zonier

@ Zonier administratif

@ Zones de risque spatial : classification
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CLASSIFICATION PAR ZONE

Une fois e déterming, on ré-affecte le bon niveau de risque spatial
résiduel pour chq commune (celui de la commune si ex > e, sinon
au niveau d’agrégation supérieur tel que expo > e).

Cette affectation est réalisé pour 'ensemble des données
(apprentissage et validation).

Les niveaux de risque par commune ont maintenant été calculés :
il faut regrouper les communes avec niveau de risque similaire afin
d’avoir un zonier.

En fonction du nombre de zones voulu (disons Z zones), on peut
faire une classification en Z classes.
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En général, cette classification se fait par quantile d’exposition : on
veut créer Z classes avec méme niveau d’exposition.

Notons a I'exposition de chacune des classes créées, ainsi

__expo totale
= > .

En pratique, on veut satisfaire le critére “avoir au moins a en
termes d’exposition”.

Concrétement, la 1ére classe contient 'ensemble des communes
avec plus faible niveau de risque spatial dont la somme des
expositions soit au moins égale a a, et ainsi de suite.

On obtient ainsi la carte du zonier avec Z couleurs...
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DIFFERENCE PRINCIPALE DE LA METHODE

Lapproche par lissage spatial ([J. Besag and Mollie, 1991],
[Boskov and Verrall, 1994], [Taylor, 2001], ...) a toujours pour but
d’estimer le facteur de risque spatial d’'une région.

Ici le zonier ne correspond pas a une découpe administrative.
Le principe de base est de considérer la sinistralité liée a un lieu

ainsi que celle des “régions” alentours.

Hypothése implicite de cette approche : 2 régions proches ont des
facteurs de risque spatiaux similaires.
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e Construction d'un zonier

@ Zonier par lissage spatial
@ Le modéle de Boskov et Verrall
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MODELE BAYESIEN DE BOSKOV-VERRALL
[Boskov and Verrall, 1994]

Modele de référence pour ceux voulant mettre en oeuvre une
approche basée sur I'expérience (mise a jour paramétres).

On reprend les notations et le modéle précédent :
o N= (N1, N2, . N,—) = (Ni)1sisr;
@ N;: nb sinistres ds “région” i, n; est la version observée;
@ je{1,2,..,r}:ilyar“régions”;
@ ¢; est I'exposition de la région i,
@ un modele GLM log-Poisson pr le nb de sinistres :

N; = gln(ei) s gnituitvi
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LES TERMES DU MODELE

On peut donner une interprétation aux différents termes du modéle
de Boskov et Verrall.

Signification de chacun des termes de la modélisation :

@ 7; représente les facteurs de risque non spatiaux (age, ...);
@ u; est I'effet du risque spatial ;

@ v sont les résidus du modéle.

Ainsi, on décompose les différents effets en fonction de leur aspect
spatial ou non.
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ETAPES DE MODELISATION

On liste ici les étapes nécessaires a la mise en place du modéle
de Boskov-Verrall, dont voici un résume.

@ On estime un GLM log-Poisson sans y;, le facteur de risque
spatial. On obtient ainsi #;.

@ Il reste deux quantités aléatoires dans le modéle d’origine :
e u; pour l'effet du risque spatial,
@ v; pour les résidus du modéle.
On doit maintenant spécifier des distributions de probabilités
a priori pour ces 2 quantités (pour utiliser la théorie
bayésienne).
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© Supposons que :

o l'effet spatial y; est lissé, en introduisant une dépendance
spatiale entre les régions voisines.

Notons ¢; 'ensemble des régions dans le voisinage de la
région i.

Une loi possible peut étre

pi~ Ui~ L(7),  avec f(u;; 1) ~ 712 673 Do lm)
(Ressemble a un noyau gaussien centré sur la région i)
= Seuls les voisins ont donc une influence sur la densité (on

pourrait méme introduire une dépendance en fonction de la
distance entre “région”).
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Pour trouver la loi du vecteur, on tient compte de cette
dépendance.

Donc

fu;t) = (11, o2y or tr); )
f(lur|Iu1,...,/,lr_1;T)f((,u1,...,/lr—1);7')
Fper |ty ooes ptr—1; T (=t L5 ooos =2 TF((115 oo fhr—2); T)

= FQur |15 coos pr—1; T) o F(uizls; 7) (e 7)
7112 g3 (i)

ou i ~ j désigne I'ensemble des couples (i, ) voisins.
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e les résidus v; sont indépendants, centrés, et de type
gaussien, i.e.

vi~ Vi~ L(1), avec f(vi;d) ~ A2 e 2.
On obtient donc
f(v; 1) = l_[ f(vi; A) ~ A2 @721 2
i
e la loi a priori des parameétres est donnée par
(r,\) ~ L(&), avecf(r,1;¢€) = ez a,
avec ¢ > 0 et petit.

C’est une distribution dite “peu informative” (donne peu
d’information sur la distribution du parameétre a priori).
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@ Onsait que N;|ni,pui ~ P(ejx emithi),
Donc N ~ £(©) avec © = (U, V, 1, \).
©@ Détermination de la loi a posteriori des paramétres.
Pour prédire le nombre de sinistres, on cherche la loi de
N|(U,V,,N).

Notons (U, V) = ((u1,v1), (2, v2)s ... (tr> vr))

PIN.(U.V))  PU(UVIN)P(N)  P((U, V)IN)P(N)
PINUY = =B0vy = V)~ 5, P((0. VIIN)P(N)

Ce qui nous améne a devoir connaitre la loi de (U, V)| N (ou
(U, V,7,N)|N puisque (U, V) dépend de (7, A)...)
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Probléme : (U, V,7,A\)| N n’a pas de forme connue.

En effet,

f(u,v,t,Aln)  ~ PNy =n1,..Ne=n|U=pnV=vr=1,A=2)f(uv,7,1)
= PNy =n1,.. N =nlpv, 1, Q) f(u, v, A) (1, )
( Nty e Np = 0l v, 7, A) f(ul = 1) f(vIA = 2) (1, )

-

= P(N,':n,'|y,',v,',‘[',/l)f(;1|‘r:T)f(V|/\:/l)f(T,/l)
i=1
wi

.
A
= n el # flulr =7)f(vIA = 2)f(z,4) (forme inconnue )
i=1 "

= On a besoin d’'une méthode type Monte Carlo Markov Chain
(MCMC).
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RESUME DU RAISONNEMENT

Voici donc les étapes qui conduisent au résultat :

@ On spécifie les lois a priori :

couple de parametres (7, A) (loi peu informative) ;
la dépendance spatiale via la loi de y; ~ Ui ~ £(7);
le bruit (résidus) via la loi de v; ~ V; ~ £(1);

le nombre de sinistres via la loi de N ~ £(©) avec
© = (1,A, U, V), plus précisément

N ~ P(E[N]) ~ P(exposition x eU+V)

@ On cherche la loi a posteriori des parameétres via
I'échantillonneur de Gibbs (méthode MCMC, algo. de
metropolis-Hastings).

190/283



e Construction d'un zonier

@ Zonier par lissage spatial

@ Algorithme de Gibbs
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ECHANTILLONNEUR DE GIBBS

On utilise I'’échantillonneur de Gibbs car :

@ les lois ne sont pas conjuguées : loi a posteriori # loi a priori
(pas seulement mise a jour des param.);

@ on connait les densités univariées conditionnelles;

@ il n’est pas possible de trouver explicitement la loi a posteriori.

Léchantillonneur de Gibbs va permettre de déterminer un
échantillon de la densité a posteriori.

Principe : exploiter les densités conditionnelles (simu d’1 fonction

multivariée décomposable en +sieurs simus fonctions univariées) :

https://www.youtube.com/watch?v=ER3DDBFzH2g
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https://www.youtube.com/watch?v=ER3DDBFzH2g

Donnons nous un vecteur pour nos variables aléatoires :
X = (Ta /\’/-11 7/127 "'9l'[f, V1,V2, s Vr,s N)
de densité conditionnelle f(z, A, i, v| n) (densité a posteriori).

On a donc observé un nombre de sinistres n, et on cherche

I'information que cela peut nous amener sur les autres parametres.

L'échantillonneur de Gibbs permet d’obtenir des réalisations
de X.

C’est une procédure itérative ou I'on va fixer tous les parameétres
sauf un : celui-ci est tiré au sort avec la distribution associée, puis
on actualise!

193/283



ALGORITHME : MISE EN PRATIQUE

A partir de I'étape k, on tire pour I'étape (k + 1) :
o /l(k+1) - f(/l | T(k+1),,u(k), V(k), n)

Q M (g 1 Al et K 00y o k) =

(g o)

;Skﬂ) o g | A, 2l D )y

>
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o v$k+1) ~ f(v1 |A(k+1)’T(k+1)’ﬂ(k+1),V(_k1)’n)

;£k+1) ~ f(v,|/1(k+1),r(k+1),#(k+1),V(_k,+1),n)

Il faut donc fixer des valeurs initiales en définissant un vecteur X(©).

Aprés I'étape k, I'étape (k + 1) se finit quand les (2r + 2) valeurs
ont été simulées, donnant

x(k+1) — (T(k+1)’/l(k+1),'ugk+1)’ Sk+1),vgk+1),...,v£k+1),n).

On vient donc d’obtenir un nouvel état de la chaine de Markov.
Ce nouvel état est un nouveau jeu de parametres, donc une
nouvelle observation de la densité a posteriori.
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Cette chaine de Markov converge vers une distribution stationnaire
f(r, A, u,v| n) aprés quelques centaines / milliers d'itérations.

La valeur des états qui suivent cette convergence permettent de
construire la densité empirique conditionnelle recherchée.
La chaine simulée a K états s’écrit alors

(20,20, 40,0 ), (), 2(K) 1 (K) () )

En supposant que cette chaine de Markov atteint son état
stationnaire aprés T itérations, I'estimateur de la densité sera
donné par une approximation Monte Carlo, i.e.

K
¢ 1
X=—— (k).
K_TZX
T+1
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On remarque cependant que la simulation des densités
conditionnelles univariées nécessite de les connaitre !

Par exemple,

,U,(kH) ~ f(,ui|T(k“),/l(k+1),#(_!;+1),v(k),n)

Avec les choix faits ici pour les lois a priori, les densités
conditionnelles univariées sont fournies dans
[J. Besag and Mollie, 1991].

Par exemple, la loi qui permet de mettre a jour le paramétre 7 est
explicite (loi du x?).

Dans les cas ou on ne peut les déterminer, elles sont alors
évaluées via l'algorithme Adaptive Rejection Sampling (ARS).
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Zonier par lissage spatial
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CONSTRUCTION D’UN ZONIER PREDICTIF

Comme dans le cadre du zonier administratif, on isole I'effet du
risque géographique via la construction en amont d’'un GLM ne
contenant pas de facteur de risque géographique...

Logiquement, on procéde ensuite de la maniére suivante :

@ on récupére les résidus du modéle,

© on essaie de construire un modéle prédictif de ces résidus
(par ex. un autre GLM) avec des variables explicatives
pertinentes.
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Question clef : choix des variables explicatives du risque
géographique.

Inconvénient : si le choix n’est pas judicieux...

Avantage : on peut effectuer des prévisions pour de nouvelles
zones non exposées et sur lesquelles on ne détient pas
d’historique de sinistralité...
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CONCLUSION

@ Il existe 3 grandes manieres de construire un zonier.

@ Les modeles décrits ici ne sont pas exhaustifs et certains
acteurs en utilisent des variantes (par ex. classifier
directement suivant la taille des résidus aprés la premiere
modélisation).

@ Certains modéles nécessitent une maitrise technique
importante (lissage spatial de Boskov et Verrall), ou une
connaissance du risque affinée pour le choix des parametres
(lissage spatial de Wittaker).
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e Provisionnement
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IMPORTANCE DU CALCUL DES PSAP

50 Cas de faillite

40

30

20

10

o Il Clk n_ II il

) o ) ® — 3 r~ o ™ © ) o
© S ~ ~ @ [ee] [=2] [=2] () (o)} o
=) @ )} =) =) @ 153} =) =) =] =)} o
& - - - = — = - - - = I
[ Croissance rapide M Actifs surévalués 1 Autres

Provisions pour sinistres insuffisantes M Allégation de fraude

Source : A.M. Best: Best's Insolvency Study, Property/Casualty U.S. Insurers 1969-2002, mai 2004, p.34
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© Provisionnement

Problématique du provisionnement

@ Données agrégees et triangle de liquidation
@ Provisionnement stochastique MCMC

@ Mise en lumiere des limites de ces modéles
o

°

Provisionnement ligne-a-ligne (microlevel reserving)
lllustrations de l'intérét de la méthode sur des cas pratiques
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BILAN SOLVABILITE 2 ET PROVISION

BILAN Comptable
Solvabilité 1

Plus Values
latentes

Actifs

Valeur comptable
(valeur historique
amortie)

Excédent de
marge

Excédent de
marge
Solvabilité 1

BILAN économique
Solvabilité 2

Actifs

Valeur de marché

Interactions actif-passif = BEL/PM varie !
SCR provision lié a la variation du BEL d’'un exercice sur l'autre.

Capital
excédentaire

SCR

MCR
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DECOMPOSITION DE LA CHARGE D’UN SINISTRE

Provisions
IBNR

Charge
dossier/dossier

Provisions IBNeR

Provisions IBNyR

Provisions
dossier/dossier

Sinistres payés

_ PSAP

Charge ultime
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TECHNIQUES DE PROVISIONNEMENT

Il'y a 2 grandes approches pour calculer les provisions.

@ Modéles sur données agrégées (ex : Chain Ladder) :
macrolevel reserving.
o Travail sur paiements stockés par période de survenance i et
délai de réglement j.
e Hypothése sous-jacente : stationarité.

@ Estimation par sinistre : microlevel reserving !

e Utilisation des caractéristiques des sinistres pour les sinistres
en cours de paiement.
e Anticipation des tardifs (non encore déclarés).
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© Provisionnement

Problématique du provisionnement

@ Données agrégees et triangle de liquidation
@ Provisionnement stochastique MCMC

@ Mise en lumiere des limites de ces modéles
o

°

Provisionnement ligne-a-ligne (microlevel reserving)
lllustrations de l'intérét de la méthode sur des cas pratiques
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CAS DE MODELES SUR DONNEES AGREGEES

Au 31/12/1, les données sont stockées dans un triangle de

liquidation :
Année de Années de développement
survenance 0 1 j J-i oo d=1 J
0 Xo0  Xo1 ... Xo,j cee Xog-1 XoJ
1 X1,0 X1,1 .. X1, X1,d-1
I Xij XiJ-i
/—j Xi-jj
I-1 X1-1,0  Xi-1,1
i X1,0
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EXEMPLE : CHAIN LADDER SUR DONNEES CUMULEES

Année de Années de  développement

survenance 0 1 2 3 4 5
1988 3209 4372 4411 4428 4435 4456
1989 3367 4659 4696 4720 4730

1990 3871 5345 5398 5420
1991 4239 5917 6020

1992 4929 6794

1993 5217

Ce qui donne les facteurs communs de développement

il o 1 2 3 4
(0-1) (1-2) (2-3) (3-4)  (4-5)
f| 1.38 1.01 1.0043 1.0018 1.0047
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Et les cadences cumulées de réglement :

i | o 1

2

3

4 5

pCj‘?O.S 978 989 993 995 100

On en déduit le triangle inférieur de liquidation et les provisions

Exercice i 0 1 2 3 4 5 Provisions
1988 0 4456 0
1989 1 4730 4752 22
1990 2 5420 5430 5456 36
1991 3 6020 6046 6057 6086 66
1992 4 6794 6872 6902 6914 6947 153
1993 5| 5217 7204 7287 7318 7332 7367 2150

Total 2427

Rq : derniére prov. représente 89% de la prov. globale (short-tail).
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EXTENSIONS

On dénombre bc de méthodes dérivant du modéle déterministe de
Chain Ladder, afin d’intégrer une dimension stochastique :

@ le modele de Mack, avec hypothése sur les 2 premiers
moments,

@ le modele de Merz-Wiathrich, pour une vision a un an plutot
qu’a l'ultime,

@ les approches GLM-bootstrap, pour obtenir une distribution
compléte de la provision.

Tous ces modeles ont déja été vus en cours... On aborde dans la
suite une vision bayésienne du provisionnement.
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© Provisionnement
@ Problématique du provisionnement
@ Données agrégees et triangle de liquidation
@ Provisionnement stochastique MCMC

@ Mise en lumiére des limites de ces modéles
@ Provisionnement ligne-a-ligne (microlevel reserving)
@ lllustrations de l'intérét de la méthode sur des cas pratiques
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RETOUR SUR LE CONTEXTE BAYESIEN

On stipule un modele qui régit les observations, X ~ f(6).

Connaissant un échantillon observé x,

@ les statisticiens fréquentistes testent 8 = 6y ;

@ alors que les bayésiens calculent la distribution a posteriori
(©| X) du paramétre, notée f(6|x), étant donné une
distribution a priori © ~ &. Ainsi, ils cherchent

~ f(x18) =(8)
fvf(xlv) n(v) dv’

f(9]x)

Question : comment choisir I'a priori © ? = non-informative prior...
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e Provisionnement

@ Provisionnement stochastique MCMC
@ Algorithme de Metropolis-Hastings
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CALCUL NUMERIQUE : LE PB DE LA DIMENSION
Imaginons que le parameétre 6 est multidimensionnel, de dimension
n avec n grand (ex : n est le nb de facteurs de développement).
Soit X les observations, par ex. les données du triangle. Ainsi,

f(x10) n(6)
f(6]x) =
(1) fw---fvnf(XW)ﬂ(V)dV

avec
@ f(x|6) est la vraisemblance de X sachant © = 6,
o () est I'a priori sur 6,
@ f(0]x) est I'a posteriori sur 6.

Le calcul de l'intégrale multidimensionnelle est trés complexe...
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SIMULATION ET CHAINE DE MARKOV

Issue de "Sampling Based Approach to Calculating Marginal
Densities", Gelfand and Smith, JASA (1990).

Une chaine de Markov satisfait
P(Xt = ¥y Xt-1 = Xt—1, ... X1 = X1) = P(X; = y | Xt-1 = X-1).
Létat courant ne dépend que de I'état précédent!

La théorie ergodique stipule, sous certaines conditions, I'existence
d’'une mesure stationnaire, g, telle que

PXt=yIXi1) 72 90)

Interp. : pour T grand, {Xprn}ﬁ:1 est un N-échantillon de loi g(X).
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ALGORITHME DE METROPOLIS-HASTINGS

Lalgorithme de Metropolis-Hastings est une chaine de Markov
fondamentale.

Il se décompose en les étapes suivantes :
@ soit f(6* | x) la densité de O] X ;
© autemps t = 1 :fixer une position initiale §; dans I'espace
des paramétres;;

© fixer une distribution p(6|6;-1) permettant de proposer une
nouvelle valeur du paramere connaissant la précédente
valeur;
© apartirde t = 2, répéter jusqu’a convergence de la chaine :
e a l'étape t, simuler une proposition 6* ~ p(6]6;-1);
e simuler U ~ U(0,1);
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e calculer
f(0*1x) p(6i-116%)
f(6r-11x) p(6*|6;-1)

e Si U< R, alors 6; = 6*. Sinon 0; = 6;_4.

R =

Astuce : en considérant ce ratio, I'intégrale multidimensionnelle
disparait! En effet,

f(x16*) n(6™)
fv1 e fy 1Y) 7(v) av p(6:-116*)

m(
)
TC10) 70) _ p(6* 1 6iy)
fV1 fvnf(xlv) n(v) dv

et les termes se simplifient...

Rq : le Gibbs sampler est un cas particulier en dim. 1 de I'algo.
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UTILITE ET NAISSANCE DE LA METHODE MONTE
CARLO MARKOV CHAIN (MCMC)

Il suffit donc pour implémenter cet algorithme de disposer de
@ la distribution conditionnelle f(x | 8),
@ la distribution a priori 7(6).

On obtient une distribution limite (aprés CV de la chaine de

Markov) qui est la distribution a posteriori.
En pratique, elle est donnée par un échantillon de réalisations !

Théoriquement,
@ la distribution limite est la méme, Yp(6]6;-1)!
@ pas de limite sur le nb de parameétres,

@ les conditions d’application de I'algorithme sont satisfaites
dans le cadre du provisionnement.
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e Provisionnement

@ Provisionnement stochastique MCMC

@ Modéle CRC

222/283



PROVISIONNEMENT : EXEMPLE DU MODELE CRC

Idée : on se base sur la réalité des données dont on dispose.
En l'occurence,

@ volume de primes récolté par survenance,
@ on a une idée du Loss-Ratio attendu,
@ on dispose du triangle de liquidation historique.

On propose d’ajuster les sinistres par un modele a facteurs :
Cwd ~ lognormal(uwg, o4),

avec un facteur dépendant de I'année de survenance, et un facteur
dépendant du délai de réglement.
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QUANTITES DU MODELE CRC

Dans le modele CRC (CRoss-Classified), on spécifie les
parameétres ainsi :
@ Cyg : montant cumulé de sinistres pr 'année "w" et délai "d",
@ uywg : moyenne de la distribution lognormale de 'année "w"
avec délai "d",
@ o : I'écart-type de la distribution lognormale pour le délai "d",
avec la contrainte :

2 2 2
0y >05> .20y

Rq : contrainte logique car + délai ,, + proportion connue de la
sinistralité , et donc plus la variance \.
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PARAMETRAGE POUR FAIRE DU BAYESIEN

En réalité, on spécifie la moyenne de la loi lognormale comme
twd = log(Premiumy,) + log( ExpectedLossRatio) + ay + Bqg-

On a besoin de spécifier une loi a priori sur (triangle taille 10 x 10)
@ log(ExpectedLossRatio) ~ N (0.4, V10);
@ ay ~ N(0, V10) pour w = 2,...,10, avec ay = 0;
@ B4 ~ N(0, V10) pour d = 1,...,9, avec B1g = 0;
@ la variance de la lognormale (en satisfaisant la contrainte) :

10
ol = Z a, aveca; ~U(0,1).
i=d

225/283



RESULTATS PAR MCMC

En sortie du calibrage, on obtient N (ex : N = 10000) réalisations
de la loi a posteriori des parameétres.

Puis on calcule pour chaque état aprés convergence de la chaine
de Markov (= chaque simulation) :

@ {uw.10})2, = {log(ExpectedLossRatio)} + {aw} + {B10}
@ ce qui permet de resimuler les ultimes :

{Cw,101_, ~ {lognormal(pw,10, 10)}12,,

@ reconstruire le total des charges ultimes {312, Cu 10} ;

On peut ensuite calculer les statistiques d’intérét sur la charge
ultime globale, par exemple : moyenne({%.1 | Cu 10}), ...
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COMMENTAIRES

Lavantage est de pouvoir enrichir le paramétrage des modéles a
partir de données historiques, avec mise a jour...

De nombreuses extensions du modéle CRC ont été proposées, en
particulier

@ pour gérer des corrélations entre survenance et
développement,

@ pour gérer des corrélations entre plusieurs triangles,

Q ..

CfTP!
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© Provisionnement

Problématique du provisionnement

@ Données agrégees et triangle de liquidation
@ Provisionnement stochastique MCMC

@ Mise en lumiere des limites de ces modéles
o

°

Provisionnement ligne-a-ligne (microlevel reserving)
lllustrations de l'intérét de la méthode sur des cas pratiques
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AVANTAGES ET INCONVENIENTS

@ Chain Ladder :

+ données simples/compactes, facile a implémenter,
— ne se sert pas des informations précises sur les sinistres,

nécessite des hypothéses (tres) fortes...

@ Micro-level reserving :

+

utilise les données individuelles sur les sinistres : prise en
compte de I'hétérogénéité, de la vie du sinistre;

adapté potentiellement a des branches longues,

plus difficile a implémenter,

nécessite de gérer a part les IBNyR.

229/283



GESTION DE HETEROGENEITE

Etant donné que I'on “mélange” toutes les données en vision
agrégée, la qualité de I'estimation de la provision repose sur la
qualité et la stabilité des données... Il faut identifier :

@ Les facteurs internes qui pourraient impacter la provision :

@ évolution du portefeuille,
e politique de souscription, tarification et réassurance,
e politique de gestion des sinistres (cadence de réglement).

@ Et les facteurs externes :

e pratiques de marché, cycles économiques, inflation,
e évolution de la sinistralité (fréquence, sévérité),
e modifications réglementaires et comptables.
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NON PRISE EN COMPTE DE LA VIE DU SINISTRE

Occurrence  Reporting Payments Closing

I I
I I 1o I I

I I 1o I I

I I 1o I I

I I o I I _
A4 \ 4 VYV V vV VvV > Time

Elle a un impact majeur sur la provision a constituer... Notamment,
@ la durée de vie du sinistre, s’il a été ré-ouvert ou non,

@ la typologie du risque sous-jacent (ex : assurance
construction décennale),

@ le nombre de paiements...
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e Provisionnement

Problématique du provisionnement

Données agrégées et triangle de liquidation
Provisionnement stochastique MCMC

Mise en lumiére des limites de ces modéles
Provisionnement ligne-a-ligne (microlevel reserving)

lllustrations de l'intérét de la méthode sur des cas pratiques
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ATOUTS DES MODELES DE REGRESSION

@ Etre capable de gérer 'hétérogénéité des données :
e du fait du temps de développement du sinistre,

e de ses caractéristiques (type de risque, ex : construction), ...

@ Utiliser des techniques d’apprentissage statistique pour
privilégier un estimateur non-paramétrique :

o flexibilité de la forme de dépendance entre T et X;;
e ici on prend les arbres CART sur lesquels on retravaillera.

@ Disposer de résultats de convergence des estimateurs :

o [Lopez et al., 2016] : Tree-based censored regression with
applications in insurance, EJS.
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e Provisionnement

@ Provisionnement ligne-a-ligne (microlevel reserving)
@ |dée du provisionnement par arbre de décision
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CENSURE ET PROVISIONNEMENT
Objectif : estimer les montants (ou durées) de sinistres individuels
T sachant les caractéristiques X, en utilisant un arbre CART.

On observe parfois seulement le montant payé jusqu’a aujourd’hui,
Y : censure droite!

Si le sinistre est censuré :

@ le sinistre est encore ouvert et a commence a étre payé (il
n’est pas clos = IBNeR).

@ le montant total final T reste inconnu:onapayé Y < T.

Rq : le sinistre est aussi parfois tronqué a gauche.
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CLUSTERING PAR ARBRE SUR DONNEES COMPLETES

Pour estimer notre quantité d’intérét, on considére un modéle de
segmentation fourni par un arbre de décision ou :

@ la racine : population entiére (montants) a segmenter = point
initial ;

@ les branches : régles de segmentation;;

© les feuilles : sous-populations homogénes = donne
I'estimation de la réponse.

Une référence en actuariat — [Olbricht, 2012] (tables de mortalité).
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EXEMPLE CART : prévoir propriétaire | revenu et taille

Income
(3000's)

60
85.5
64.8
61.5

a7

110.1
108
828
69
a3
51
81
75
5238
64.8
432
84
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66
47.4
33
51
63

Lot Size
(000's sq. ft.)

184
16.8
216
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236

192
176
224

PR RN R R R o ca o s
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-
. . *
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20.0 ) i .
-
- e - .
- n -

15.0 1 .

-
10.0 ; ; : ;

300 50.0 70.0 90.0 1100
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PARTITION ET ARBRE

Lot Size (000's sq. ft.)

250
s

* > +

o > [ ] * P ” 3
X — T
|} o] |
. .

15.0 A n

o
10.0 T T T T

30.0 50.0 70.0 90.0 110.0

Income ($ 000's)

But : créer des partitions d’homogénéité maximale.
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Income
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e Provisionnement

@ Provisionnement ligne-a-ligne (microlevel reserving)

@ Formalisation : construction de I'arbre
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ARBRE DE REGRESSION : Y TOTALEMENT OBSERVEE

7T0(X) = Eo[T|X:X] (1)

— Lien le plus utilisée : relation linéaire entre T et X = EQM.
— En pratique, on ne peut pas considérer ts les estimateurs
possibles de mo(x) = CART est une autre classe d'estimateurs :

L
#(x) == 7 () = D 9 Ri(X) (2)
1=1

@ L :nombre de feuilles de I'arbre, [ leur indice,
@ Ri(x) = fi(x € X)) : appartenance a partition X/,
@ ¥ = Ej[Y|x € X|] : moy. empirique de T dans la feuille /.
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CONSTRUCTION DE LARBRE : CRITERE DE DIVISION

— Doit étre adapté a notre objectif.
— Pour résoudre (1), MCO utilisés car solution donnée par

mo(x) = arg min Eo|#(T. (%)) I1X = x| (3)

ot ¢(T,n(x)) = (T —n(x))?> (¢ fonction de perte)

— Conduit a minimiser la variance intra-noeud a chaque étape /
maximiser la variance inter.

— Si T est totalement observé, construire I'arbre avec ce critére
donne un estimateur convergent ([Breiman et al., 1984]).
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ELAGUER : PENALISER PAR LA COMPLEXITE

Principe de I'algorithme CART : ne pas arréter la segmentation,

construire I'arbre “maximal” (taille K(n)), puis I'élaguer.

— On obtient une suite d’estimateurs (#X(x))x—1... K(n)-

Eviter surapprentissage = sélectionner le meilleur sous-arbre de

I'arbre max., arbitrage entre adéquation et capacité prédictive :
R.(#K(x)) = Eo[®(Y,7%(x))] + a (K/n).

a colt de complex., K nb de feuilles ([Gey and Nedelec, 2005]).
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e Provisionnement

@ Provisionnement ligne-a-ligne (microlevel reserving)

@ Extension de CART aux données censurées
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RAPPEL : DONNEES ET OBJECTIF

On observe un échantillon iid de v.a. (Y}, 8;, Xi)1<i<n de distribution
(Y,8,X), ou

Y = inf(T,C)
6 = 1<
Montant courant Y, sinistre ouvert : 6 = 0.

C : variable de censure.

@ Oncherche T*=E[T|6§=0,Y,X].

@ But : trouver un estimateur de T*, sachant que I'on n’a pas
d’observations iid de T = pas de LGN, ...
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COMMENT GERER LES SINISTRES OUVERTS ?

@ Mauvaise solution : ne considérer que les sinisires clos pour
construire I'arbre de décision afin d’estimer la réponse.
— On sous-estimera montants finaux, dc la provision.

Cependant, les sinistres ouverts donnent également une
information biaisée = a corriger!

@ Une solution possible : surpondérer les sinistres clos avec
dével. long pour compenser leur sous-représentation...

= Question : quels poids ?
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INGREDIENTS : ESTIMATEUR KAPLAN-MEIER ET IPCW

Lalgorithme CART peut étre adapté ([Lopez et al., 2016]) avec les
outils suivants. Hypothese : T est indépendant de C.

LRy g — o i—
@ Soit F(t) =1 Hvist(1 2;;11v,-zv,-)'

— Cet estimateur tend vers F(t) =P(T < t).

e Version additive : F(t) = X1, W; 1y, avec les poids
Kaplan-Meier
0j

W/,n T~
n[1 - G(Yi-)]
ol G(t) est I'estimateur Kaplan-Meier de G(t) = P(C < t).
Voir aussi cours du premier semestre de Data Sciences.
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e Provisionnement

Problématique du provisionnement

@ Données agrégées et triangle de liquidation
@ Provisionnement stochastique MCMC

@ Mise en lumiére des limites de ces modeéles
°

o

Provisionnement ligne-a-ligne (microlevel reserving)
lllustrations de l'intérét de la méthode sur des cas pratiques
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e Provisionnement

@ lllustrations de l'intérét de la méthode sur des cas pratiques
@ Application 1 : comparaison aux prévisions d’experts
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MONTANT ULTIME SUR SINISTRES CENSURES

On cherche E[M|§ =0, X, Y, N|, avec M le montant du sinistre.
But : revenir a des quantités conditionnées uniquement par X!

EMI6=0X=x,Y=y,N=n = E[MIM=nTz=y,X=x|
E[M1usnrsy | X = x|
P(T>y,M>n|X=x)

SO'ent ¢1(t, m) — m1m2n’12y et q)z(t, m) - 1t2y’m2n.
On veut dc estimer le ratio des 2 quantités suivantes = 2 arbres !

(N E[®(T.M)|X =x] sur (2)E[®a(T, M)| X = x].
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EXTRAIT DES DONNEES

Assurance RC médicale aux US : 648 sinistres et leurs

caractéristiques (specialité, lieu, statut de réouverture, ...).

47
48
49
50
51
52
53
54

> summary (myData$Observed. total)
1st Qu.

Min.

2000-07-14
2000-07-24
2000-07-31
2000-07-31
2000-08-04
2000-08-14
2000-08-15
2000-08-28

0

Claim.entry Indemn.res

0
5000
5000
5000
0

0
0
0

Median
2644

ALAE.

0.00

13880.
11304.
103471.

0.00
0.00
0.00
0.00

Mean 3rd Qu.
18500 1557000

41760

res

25
60
31

1

0
0
0
1
1
1
1

Max.

3456
138435
7300
118136
46587
3083

0

980

(..) Cens. Already.paid Reserved

0
18880
16305

108471

0

0
0
0
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STATISTIQUES DESCRIPTIVES BASIQUES

Statistics on the information selected for our application.

Statistical indicators
Type Median Mean Std. Min. Max. | # categories

Insurance type categoricall 2
Specialty categorical 41
Class categorical 19
Report date date N N+7

Area, categorical 30
Closed without payments boolean 2
Closed without indemnity boolean 2

Time before opening (days)| continuous| 1164 1223 614 2 4728
Time before declaration continuous| 734 724 560 0 4657

Reopen status boolean 2
Cancel status boolean 2
Reserves continuous 0 44170 138867 0 1062000
Development time continuous| 419 606 506 0 2249
Observed payments continuous| 2617 41810 152319 0 1557000

— Données trés hétérogénes : beaucoup de montants
provisionnés a 0 a cause d’attente de décision judiciaire...
— Taux de censure important : environ 33%;

= Un modele paramétrique serait difficile a estimer!
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PREVISIONS DE LA QUANTITE E[M1 (1sn75y) | X =
ARBRE ELAGUE

County=c
T

]

1.05Je+04 T'dSCJ””S
n=290
T.declap=730.5 T.declax 181.5
4.07Je+04 T.declak 729.5 1.658e+05 Speciglty=b
n=152 n=29
Clasg=bc 4.171e+05 8853 T.declap=259.5
n=4 n=3
7.404e+04 T.declar 661.5 2.714e+05
n=51 n=2
1.171e+05 [-declap=692.5 9.256+05
n=36 n=9
1.898e+05 9.113e+05
n=4 n=1

T.declak 244.5

[ 1.481e+06

n=2
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PREVISIONS DE LA QUANTITE P(M > n, T > y|X = x)
RESULTATS NUMERIQUES

Error of the tree:

> (1.0 - (confusion.matrix[1,1]+confusion.matrix[2,2]) / sum(confusion.matrix))*
> cat("The test sample estimate of the prediction error in the pruned tree is",
The test sample estimate of the prediction error in the pruned tree is 18.6%

Predicted probabilities for the denominator:

(..) Censure Already.paid Reserved Observed.total KM.weight Proba.censorship

1 24 0 24 0.0017 0.1496063
1 1844 0 1844 0.0017 0.1496063
1 444 0 444 0.0017 0.1935484
1 0 0 0 0.0017 0.1496063
1 3907 0 3907 0.00176 0.2307692
0 0 81000 0 0 0.7500000
0 1061 42139 1061 0 0.7400000
0 1061 79939 1061 0 0.2307692
0 1061 12439 1061 0 0.7400000
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RATIO (1)/(2) ET COHERENCE AVEC OPINIONS
D’EXPERT

HERBHBRB R HHHHRHRR R R R R R R R R
## Final prediction of total claim amount for censored claims.

HERBHAR R FHFR AR RR BB BB BB R R AR A
## Comparison b/w predictions from the tree and the one from the expert.

vV V V V

Censure Already.paid Reserved Adj.predicted.claims Expert.prediction

0 0 81000 70752.37 81000
0 0 71600 10585.00 71600
0 0 0 10585.00 0
0 0 13500 10585.00 13500
0 0 52700 55008.11 52700
0 0 2500 10585.00 2500
0 0 55500 70752.37 55500
0 0 62100 55008.11 62100
0 0 81000 54274.67 81000
0 1061 42139 55008.11 43200
0 4266 57834 70752.37 62100
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Intérét : faire des économies en évitant de consulter les experts...
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e Provisionnement

@ lllustrations de I'intérét de la méthode sur des cas pratiques

@ Application 2 : assurance de revenus
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ASSURANCE DU RISQUE INCAPACITE - INVALIDITE

Nous disposons d’un historique de 6 ans d’'un portefeuille couvrant
le risque incapacité avec les informations suivantes :

@ 83 547 sinistres;

@ cause de l'arrét (maladie ou accident), sexe, CSP, age, durée
d’'incapacité (censurée ou non), réseau de distribution;

@ le taux de censure vaut 7.2%;
@ durée moyenne en incapacité : 100 jours.

But : trouver une segmentation pour prédire la durée en
incapacité, le remboursement étant forfaitaire.
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VISUALISATION DES DONNEES

> dim(myData)
[1] 83547 20

> summary (myData)

Sex TypeEmployee ContractNumber TYPE_ARRET
F:65557 CAD: 3074 0725235: 1524 Maladie 171563
M:17990 ENP: 5879 0]98706: 879 Acc. Travail :10644
ETA: 713 0232097: 684 Maladie Hospi.: 1035
NCA:73290 0237127: 591 Maternite 179
TNS: 591 0184638: 553 Longue Maladie: 54
0448817: 530 Maladie Serv. 23
(Other) :78786 (Other) 49
EndObsW NonCensure SPC
Min. : 1.00 Mode :logical Employee:79882 1:21563
1st Qu.: 15.00 FALSE:5991 Manager : 3074 2:19039
Median : 42.00 TRUE :77556 Misc 591 3:20496
Mean : 99.98 NA’s :0 4:22449
3rd Qu.: 106.00
Max. :1578.00

Min.

SurvDate

1st Qu.:

Median
Mean

3rd Qu.:

Max.

:2006-01-0

2007-05-1

:2008-08-2
:2008-07-2

2009-10-2

:2010-11-3

BegAgeClass BegAgeClassT

1

2
3
4
5

118685
111014
114589
115570
123689
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Sex TypeEmployee ContractNumber
0154496
0154509
0154670
0156555
0161383
0161581
0331202
0385996
0725234
0725235

23 F
24
33
44
62
68
88
103
136
140

e I B B B L s B B

NCA
NCA
NCA
NCA
NCA
NCA
NCA
NCA
ENP
ENP

Cause ComNet BegAnc EndAncInd

Accident
Sickness
Sickness
Sickness
Sickness
Sickness
Sickness
Sickness
Sickness
Sickness

Net_C
Net_C
Net_A
Net_A
Net_C
Net_A
Net_C
Net_A
Net_C
Net_A

0

NN
W wo s wwwww

80
470
320
126
284

49
298

25
351
127

TYP.
Acc.

29363
81246
40041
62286
41752
05544
73374
89733
79466
63107

E_ARRET
Travail
Maladie
Maladie
Maladie
Maladie
Maladie
Maladie
Maladie
Maladie
Maladie

50
443
293

99
257

22
292

21
324
100

SurvDate
2010-10-12
2009-09-14
2010-02-11
2010-08-24
2010-03-19
2010-11-09
2010-02-12
2010-11-10
2010-01-11
2010-08-23

BegAge EndObsW NonCensure
47.
41.
39.
50.
46.
51.
52.
45.
51.
54.

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

BegIndDate
2010-11-11
2009-10-14
2010-03-13
2010-09-23
2010-04-18
2010-12-09
2010-03-14
2010-12-10
2010-02-10
2010-09-22

SPC
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee

EndIndDat
2011-01-3
2011-02-2
2011-09-3
2011-04-1
2012-02-2
2012-06-2
2011-04-3
2012-06-2
2012-07-1
2011-01-0
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ARBRE ELAGUE : UAGE EST CLEF!

BegAgeClassT=ab
T

BegAge(lassT=a BegAge(lassT=cd
Sey=b Sex=b BegAgeClassT=c 12b.4
n=23689
62l05 73l29 Cauge=b 99ls8 Cauge=b Comlet=b
n=14714 n=3971 n=2572
7952 98:52 98.2 1.2 95.94 112.4
n=7698 n=744 n=12522 n=2067 n=962 n=14608

La réglementation préconise de calculer les provisions techniques
liées a cette durée en fonction de I'age...Good news !
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QUALITE DU MODELE : COURBE ROC DYNAMIQUE
POUR LA CLASSIFICATION A UNE DATE FUTURE

Idée : les courbes ROC donnent une idée du pouvoir prédictif du
classificateur. Elles comparent les faux et les vrais positifs de
différents modeles, étant donné un seuil de proba. pour
I'affectation.

Adaptation :ici le but est de comparer la prévision du modéle a la
réalité (sur un échantillon test) a une certaine durée. On veut
notamment voir si le modéle détecte les événements déja
survenus a cette date.
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POUVOIR PREDICTIF : DETECTION DES EVENEMENTS

sensitivity
sensitivity
sensitivity

00 0z o4 0s 08 10 00 0z o4 05 08 10 00 0z o4 05 08 10
1- specificity 1- specificity 1- specifcity

Fic 3. Dynamic ROC curves at t = 15,100,110 (from left to right). The dotted line corre-
sponds to the CART model and the black line to the Coz model.

TABLE 6
Dynamic Area Under Curve AUC(t).
t 15 40 100 110

AUC(t) CART 0.787 0.802 0.824 0.839
Cox 0.518 0.531 0.576  0.585
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GESTION DES DONNEES
PROVISION A DATE D’ARRETE

> head(myData,

n =

6)

Sex TypeEmployee ContractNumber TYPE_ARRET

L

V1T W N
o R R

NCA
NCA
NCA
NCA
NCA
NCA

0001591
0001591
0006192
0006192
0024191
0024251

Maladie
Maladie
Maladie
Maladie
Maladie
Maladie

SurvDate
2007-11-03
2008-02-04
2006-12-24
2009-11-18
2006-03-20
2008-06-21

X2006.10.01 X2007.01.01 X2007.04.01 X2007.07.01 X2007.

NA
NA
NA
NA
NA
NA

o VTR W N

NA
NA
91.3125
NA
NA
NA

> dim(learning.sample)

[1] 42523 37

> head(learning.sample)

NA
NA

5.688769

NA
NA
NA

NA 17.
NA
NA
NA
NA
NA

BegIndDate
2007-12-03
2008-03-05
2007-01-23
2009-12-18
2006-04-19
2008-07-21

EndIndDate
2007-12-21
2008-08-31
2007-04-30
2010-10-01
2006-09-03
2010-07-31

10.01 X2008.01.01 X2008.

99769
NA
NA
NA
NA
NA

NA
91.3125
NA
NA
NA
NA
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Sex TypeEmployee

F

= O UVTWN R
=mm ="

NCA
NCA
NCA
NCA
NCA
NCA

Cause ComNet BegAnc

Sickness
Sickness
Sickness
Sickness
Sickness
Sickness

> KM.weights <- unlist(aft.kmweight(Y = matrix(data=learning.

Net_C
Net_C
Net_C
Net_A
Net_A
Net_A

> sum(KM.weights)

[1]1 1

> head(learning.sample)

ContractNumber
0001591
0001591
0006192
0024191
0038268

EndAncInd

3 45 47.
3 206 47.
3 124 46.
30 137 43.
30 32 35.
3 107 37.

TYPE_ARRET
Maladie
Maladie
Maladie
Maladie
Maladie
0064365 Maladie Hospi.

69884
43053
06982
63313
49897
32786

1971

5003

.3504
.8761

SurvDate
2007-11-03
2008-02-04
2006-12-24
2006-03-20
2006-05-02
2006-10-30

BegAge EndObsW NonCensure
0.
1.9603
1.0623
1.
0
0

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

BegIndDate
2007-12-03
2008-03-05
2007-01-23
2006-04-19
2006-06-01
2006-11-29

SPC
Employee
Employee
Employee
Employee
Employee
Employee

EndIndDa
2007-12-
2008-08-
2007-04-
2006-09-
2006-07-
2007-02-

sample$EndObsW, nro
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Sex TypeEmployee ContractNumber TYPE_ARRET  SurvDate BegIndDate
0154699 Maladie 2008-04-10 2008-05-10
0729486 Maladie 2006-02-27 2006-03-29
0149036 Maladie 2006-05-18 2006-06-17
0637995 Maladie 2006-06-12 2006-07-12
0637995 Maladie 2007-12-12 2008-01-11
0179261 Maladie 2007-02-01 2007-03-03

35 F
173
240
295
299
468

L e B B e

Cause ComNet BegAnc EndAncInd

Sickness
Sickness
Sickness
Sickness
Sickness
Sickness

> library(rpart)
> formula <- as.formula("EndObsW
> maximal.tree <- rpart(formula,

Net_C
Net_A
Net_A
Net_B
Net_B
Net_A

NCA
ENP
NCA
NCA
NCA
NCA

3

o= W w

30

28 50.54346
28 39.60849
28 54.24778
30 52.67077
30 51.94524

1 44.00000

0

0
0
0
0
0

BegAge EndObsW NonCensure

.011 TRUE
.011 TRUE
.011 TRUE
.011 TRUE
.011 TRUE
.011 TRUE

SPC
Employee
Employee
Employee
Employee
Employee
Employee

EndIndDate
2008-05-11
2006-03-30
2006-06-18
2006-07-13
2008-01-12
2007-03-04

KM.weight

2.351669%e-
2.351669%e-
2.351669e-
2.351669%e-
2.351669e-
2.351669%e-

~ Sex + TypeEmployee + TYPE_ARRET + Cause + Com
data = learning.sample, weights = KM.weight, me
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COUTS ULTIMES (CENSURES OU NON)

> dim(validation.sample)
[1] 21261 17

> head(validation.sample)

Sex TypeEmployee ContractNumber TYPE_ARRET

4 M NCA 0006192 Maladie
6 F NCA 0024251 Maladie
7 F NCA 0037157 Maladie
14 F NCA 0099654 Maladie
16 F ENP 0119466 Maladie
19 F NCA 0154321 Maladie

SurvDate
2009-11-18
2008-06-21
2009-09-17
2006-08-17
2007-05-23
2006-09-01

BegIndDate
2009-12-18
2008-07-21
2009-10-17
2006-09-16
2007-06-22
2006-10-01

EndIndDate
2010-10-01
2010-07-31
2009-10-30
2006-09-20
2007-06-24
2006-10-08

W WV W LN 1 N

> predictions.validationSample <- predict(final.tree, newdata = validation.sampl

> proba.nonCensure <- length(which(validation.sample$NonCensure ==

> proba.nonCensure
[1] 0.9244626
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> ## E[T|X] = E[T|delta = 1,X] P(delta=1) + E[T|delta = 0,X] P(delta=0)

> predictionsMoy.sinistresOuverts <- (mean(predictions.validationSample) - mean(
> provisionMoyenne <- predictionsMoy.sinistresOuverts * prestation.timeStep * nr
> provisionMoyenne

[1] 181022.9

> ## To be compared with:
> backtest.provisions.validationSample
[1] 179236.8

> ## Erreur de provision moyenne en pourcentage, backtesting:
> (abs(backtest.provisions.validationSample - provisionMoyenne) / max(c(provisio
[1] 0.9866959
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ET DANS LE CAS DE CHAIN LADDER?

> triangle.cumule

2006-01-01
2006-04-01
2006-07-01
2006-10-01
2007-01-01
2007-04-01
2007-07-01
2007-10-01
2008-01-01
2008-04-01
2008-07-01
2008-10-01
2009-01-01
2009-04-01
2009-07-01
2009-10-01

> CL.model

devl
44860
55982
49982
71692
63976
62908
57010
73432
69086
67486
62748
77569
66986
69909
58504
45583

dev2
62511
76905
71709
101671
89524
87738
81126
102235
95648
93500
88588
107101
92879
96281
70612
NA

dev3
72745
90518
84793
120151
104879
102469
96728
119236
111961
109196
102430
124141
107428
104723
NA

NA

dev4
80289
1010960
93874
133815
116125
113509
109027
131857
123578
120165
112289
136047
1124560
NA

NA

NA

dev5
85893
108863
100775
143029
123886
121848
118942
141478
131871
127846
119677
140492
NA

NA

NA

NA

<- chainladder(triangle.cumule)

dev6
90337
115069
106524
149423
130064
128148
126480
149142
138414
133534
122728
NA

NA

NA

NA

NA

dev7
93632
120081
110839
154704
135364
132965
132670
155474
143565
135821
NA

NA

NA

NA

NA

NA

dev8
96355
123873
114411
158843
139655
136765
137549
160262
145966
NA

NA

NA

NA

NA

NA

NA

dev9
98507
126825
117507
161888
143139
140138
141393
162374
NA

NA

NA

NA

NA

NA

NA

NA

dev1®
100076
129345
119784
164097
145725
143179
142766
NA

NA

NA

NA

NA

NA

NA

NA

NA
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> fact.dev <- sapply(CL.model$Models, coef) # a comparer avec ’fact.dev.CL’ calc
X X X X X X X X X
1.384294 1.163524 1.102059 1.067753 1.049660 1.037865 1.029157 1.022532 1.016758

> rectangle.cumule
dev

origin devl dev2 dev3 dev4 dev5 dev6é dev7
2006-01-01 44860 62511.00 72745.00 80289.00 85893.00 960337.00 93632.00
2006-04-01 55982 76905.00 90518.00 101090.00 108863.00 115069.00 120081.00
2006-07-01 49982 71709.00 84793.00 93874.00 100775.00 106524.00 110839.00
2006-10-01 71692 101671.00 120151.00 133815.00 143029.00 149423.00 154704.00
2007-01-01 63976 89524.00 104879.00 116125.00 123886.00 130064.00 135364.00
2007-04-01 62908 87738.00 102469.00 113509.00 121848.00 128148.00 132965.00
2007-07-01 57010 81126.00 96728.00 109027.00 118942.00 126480.00 132670.00
2007-10-01 73432 102235.00 119236.00 131857.00 141478.00 149142.00 155474.00
2008-01-01 69086 95648.00 111961.00 123578.00 131871.00 138414.00 143565.00
2008-04-01 67486 93500.00 109196.00 120165.00 127846.00 133534.00 135821.00
2008-07-01 62748 88588.00 102430.00 112289.00 119677.00 122728.00 127375.09
2008-10-01 77569 107101.00 124141.00 136047.00 140492.00 147468.81 153052.71
2009-01-01 66986 92879.00 107428.00 112450.00 120068.87 126031.47 130803.65
2009-04-01 69909 96281.00 104723.00 115410.90 123230.38 129349.99 134247.82
2009-07-01 58504 70612.00 82158.73 90543.75 96678.40 101479.43 105321.95
2009-10-01 45583 63100.28 73418.67 80911.69 86393.73 90684.03 94117.78

ek i b e el fd ek ek el b e fd i e
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> cbind(Provision.parExercice)

[1,] 0.000000e+00
[2,] 0.000000e+00
[3,] -7.275958e-11
[4,] -8.731149e-11
[5,] 2.209210e+01
[6,] 7.691398e+02
7,1 2.403482e+03
[8,] 5.500488e+03
[9,] 8.345020e+03
[10,] 1.195160e+04
[11,] 1.585549e+04
[12,] 2.602862e+04
[13,] 2.986374e+04
[14,] 4.133798e+04
[15,] 4.397777e+04
[16,] 5.681669e+04

> (Provision.globale <- sum(Provision.parExercice))
[1] 242872.1

> ## Erreur de calcul de provision moyenne par Chain Ladder, backtesting:

> (abs(backtest.provisions.validationSample - Provision.globale) / max(c(Provisi
[1] 26.20117
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COMPARER LEFFICACITE DES METHODES DE
PROVISIONNEMENT ?

Utiliser le backtesting ! Préparer les données comme ceci :
@ ne considérer que des sinistres clos : montant final connu;;
@ introduire une censure (administrative par ex.) pour faire
apparaitre artificiellement des sinistres ouverts;
© définir un éch. d’'apprentissage et un éch. de validation :

e apprentissage : construire notre arbre par CART pondéré;
e validation : pour comparer les prévisions de provision données
par I'arbre avec la vraie observation.

© évaluer la provision relative aux sinistres encore ouvert
uniquement : E[T|T > y,X];

@ faire le différentiel.
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PROVISIONS A DIFFERENTES DATES D’ARRETE

On a pris ici une date d’arrété (01/10/2009) qui excede la durée
max. du risque (3 ans) = impact de la censure limité...

Plagons nous maintenant & des dates d’arrété intermédiaires
successives, plus proches du début de la période d’observation...
Voici I'algorithme a implémenter : pour chaque durée atteinte k,

@ sélectionner sinistres (censurés ou non) avec Y > k;

© estimer les poids KM depuis les données;;

© construire CART pondéré pour estimer E[T — k| T > k, X];
© élaguer l'arbre;

@ prévoir la durée de vie résiduelle

Q@ accroitre k et revenir a I'étape 1.
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CONSTRUCTION DE LA BASE

On découpe par période les paiements...

Sex  SurvDate Cause ComNet BegIndDateW EndIndDateW BegAgeW EndAncIndW NonCensure SpC
F 2008-01-18 Sickness Net_A 2008-02-17 2008-04-14 51.96441 57 TRUE Employee
F 2009-05-06 Sickness Net_C 2009-06-05 2010-07-29 42.68583 419 TRUE Employee
F 2009-03-16 Sickness Net_C 2009-04-15 2011-12-31 50.09993 990 FALSE Employee
2009-12-31.NonCensure 20@9-12-31.EndObsW 2099-12-31.PredictCART 2010-03-31.NonCensure 2010-03-31.EndObsW
TRUE 57 NA TRUE 57
FALSE 209 239.7403 FALSE 299
FALSE 260 234.5195 FALSE 350
2010-03-31.PredictCART 2010-06-30.NonCensure 2010-06-30.EndObsW 2010-06-30.PredictCART 2010-09-30.NonCensure
NA NA TRUE
226.4615 FALSE 390 234.7112 TRUE
232.1991 FALSE 441 225.1316 FALSE
2010-09-30.EndObsW 2010-09-30.PredictCART 2010-12-31.NonCensure 2010-12-31.EndObsW 2010-12-31.PredictCART
NA TRUE 7 NA
419 NA TRUE 419 NA
533 215.8923 FALSE 625 200.5426
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RESULTATS

Observation dates:
01/01/08 04/01/08 07/01/08  10/01/08  01/01/09  04/01/09  07/01/09 10/

Quantities of interest:

(1) Size of the learning set (backtest data) 20 542 23 370 26 214 28 740 31 962 34 796 37 700 40
(2) Size of the validation set (backtest data) 10 271 11 686 13 107 14 371 15 982 17 399 18 850 20
(3) Corresponding censoring rate in learning set, 16.11% 13.94% 12.9% 11.37% 11.97% 10.36% 9.55% 8.
(4) Corresponding censoring rate in validation set 16.24% 13.66% 12.8% 11.4% 11.89% 10.32% 9.27% 8.
(4bis) Number of backtested claims : (4) x (2) 1688

Application of Section 4.3.1: 1$ a day

(5) Total paid amount at observation date 818 079 955809 1115449 1259591 1448942 1608799 1771356 19
(6) Paid amount (censored claims) at observ. date 278 230 286 354 323 982 336 883 378 083 388 346 387 616 39!
(7) Final backtested paid amount (censored claims) 657 047 650 253 708 685 719 172 778 448 780 152 768 116 4
(8) Exact global reserve (backtested) : (7) — (6) 378 817 363 899 384 703 382 289 400 365 391 806 380 500 34
(9) Global reserve by Chain Ladder (CL) 151 017 166 614 193 593 207 677 243 701 242 688 254 947 25
(10) Error of CL : ((9) — (8))/(8) -60.1% -54.2% -50% -45% -39% -38% -33% -
(11) Global reserve by weighted CART (wCART) 211 357 227 088 263 030 312 400 402 398 384 361 387 525 37:
(12) Exrror of wCART : ((11) — (8))/(8) 442%  -42% -31.6% -18.3% 0.5% 1.9% 1.8% 9
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REMARQUES FINALES

+ Technique particulierement intéressante pour les secteurs a
développement long.

+ Résultats théoriques de convergence.
+ Pouvoir discriminant des facteurs de risque.

+ Extensions possibles en travaillant sur la fonction de perte de
l'algorithme.

Possibilité de remplacer cette technique de provisionnement
par tt modéle sur risques individualisés (modéle de Cox, ...)

- Instabilité : typique des CART (random forests, ...).

276/283



CONCLUSION GENERALE DU COURS

En décomposant pour chaque grand théme du cours :

Q tarification :

@ modeles de tarification a priori (type GLM) permettent de tenir
compte des caractéristiques individuelles des assurés, a
l'inverse des modeles de crédibilité ;

e modeles de crédibilité permettent d’intégrer dans le tarif un
historique de sinistres, au contraire des modéles a priori;

@ questionnement sur les données récoltées est primordial pour
une bonne mise en place des modeéles (hétérogénéité,
surdispersion, exposition au risque, franchise, recours,
réassurance, inflation, forfait, ...);

o il est essentiel d’étre rigoureux lors de I'étape de statistiques
descriptives et d’optimisation des modéles pour trouver le bon
niveau de segmentation;
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@ zonier:
o ils représentent la vision géographique du risque ;
e ils n’incluent pas la quantification du risque li¢ aux autres
facteurs de risque (age, ...);
@ peuvent étre bayésien ou fréquentiste ;
e s’ajustent au niveau de découpage géographique voulu par
son utilisateur;

© provisionnement :

e d’autres méthodes que les méthodes classiques (Mack, ...)
permettent d’étendre la gestion de problématiques complexes
(corrélation, ...) dans les triangles de liquidation;

e les techniques bayésiennes offrent de la flexibilité en termes
de modélisation et d’hypothéses, au prix d’'une complexité
accrue en termes d’implémentation ;

e le provisionnement individuel, en plein essor, repose sur une
vision individuelle de chaque risque;

e ce dernier type de provisionnement nécessite de travailler a
part sur les IByR...
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