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STRUCTURE DU COURS

Volume global de 24h, prenez 'ordinateur chargé! (TP)

Organisation pratique :

@ 12h de CM (6 séances de 2h), avec comme séances
e 1 - Notions statistiques introductives, réduction de dimension
et lien avec I'assurance
2 - Philosophie de I'apprentissage statistique
3 - Algorithme CART
4 - Algorithme des Foréts Aléatoires
5 - Algorithme Gradient Boosting
6 - Réseaux de neurones

®© 6 6 ¢ ¢
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@ 12hde TD/TP en R (6 x 2h) :
e 1 - Réduction de dimension en paramétrique
2 - Méthodes CART
3 - Méthode ensembliste, exemple Random Forest
4 - Introduction aux GBM - les Gradient Boosting Trees
5 - Implémentation approfondie des GBM
6 - Réseaux de neurones

e 6 6 6 o

@ Sanctionné par un projet en R : résolution d’une
problématique opérationnelle avec de vraies données.
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0 Introduction au probléme statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension

e Actuariat - données et assurance

e Philosophie de I'apprentissage statistique

e Premiére brique en Machine Learning : arbres de décision
e Bagging + randomization de CART : foréts aléatoires

e Agrégation de modéles par boosting

e Réseau de neurones et Deep Learning
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BIBLIOGRAPHIE - EXEMPLES

Livres :

- An introduction to Statistical Learning, (with Applications in

R), ;James, Written, Hastie, Tibshirani

- The Elements of Statistical Learning : Data Mining, Inference and
Prediction ; Hastie, Tibshirani, Friedman

- Classification & Regression Trees ; Breiman, Friedman, Olshen,
Stone

- Artificial Intelligence : A Modern Approach ; Russell and Norvig

- Speech and Language Processing ; Jurafsky and Martin

- Pattern Recognition and Machine Learning ; Bishop C.
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@ Introduction au probléme statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension
@ Motivation statistique des modéles d’apprentissage
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CONTEXTE CLASSIQUE D’ETUDE DES RISQUES

Lanalyse d’engagements d’'un assureur nécessite de comprendre
l'impact de caractéristiques X sur le risque Y.

Les bases de données des assureurs comportent généralement
@ les caractéristiques de I'assuré,
@ les options du contrat,
@ les conditions de marché.

Informations X jouent un réle crucial dans les prév. de sinistralité Y
= méthodes doivent tenir compte de ces caractéristiques
(historiguement modélisation paramétrique par régression).
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GENERALITES

Pourquoi modéliser ?
= A partir d’'une série d’observations, phénoméne trop complexe
pour une description analytique par un modele déterministe...

Objectif en statistique : modélisation, parfois décomposable, pour
@ explorer : décrire variables, leurs liaisons, positionner obs. ;

© expliquer : tester 'influence d’une variable ds un modéle
Supposé connu;

© prévoir et sélectionner : un meilleur ensemble de prédicteurs.

Historiquement, modéles paramétriques avec var. expl. + bruit =
inférer les parametres depuis les observ. en contrélant au mieux
les propriétés (comportement) de la partie aléatoire.
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MOTIVATION DU COURS

Observons n réalisations de (X, Y) € RPT1,
D’habitude, on considére que

@ le rapport des dimensions (n, p) est raisonnable,
@ les hyp. du modéle sont vérifiées (échantillon/résidus
supposés suivre des lois sous la forme d’une famille connue),
Alors les techniques statistiques tirées du modeéle linéaire général

sont optimales (max. de vraisemblance)... Avec des échantillons
de taille restreinte = difficile de faire beaucoup mieux.

Mais dés que hyp. distributionnelles ne sont pas vérifiees /
relations entre les variables ou la variable a modéliser ne sont pas
linéaires, ou encore dés que le volume des données est important,
d’autre méthodes viennent concurrencer la stat. classique...

9/217



ﬂ Introduction au probleme statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension

@ Estimation et grande dimension
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PARAMETRIQUE VS NON-PARAMETRIQUE

Cadre : on veut estimer 1 fct. m, par ex. m(x) = E[Y | X = x], ou
m(x) =P(Y =1|X = x).

@ Estimation paramétrique : on cherche m parmi une famille
indexée par un param. de dim. finie — ex : rég. lin.,
m(x) = a + bx. Un candidat s’identifie & 2 paramétres (a, b).
@ Estimation non paramétrique : pas d’hypothése (ou bc -),

cherche m(x) parmi ttes les fonct. possibles (dim. infinie) =
décompositions dans des bases fonctionnelles (ex GAM) :

[e) hx
y=m(x) = Z wikgk(x) etdonc m(x) = Z Wi gk (x)
k=0 k=0
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LA DIMENSION, FACTEUR LIMITANT

Parametres importants du probleme : ses dimensions... Notons :
@ n nombre d’observations ou taille de I'échantillon,
@ p nombre de variables observées sur cet échantillon.

— ngrand : pas de pb a priori, bien au contraire (théo asymptot.)!
— p grand pose probléme (fléau de la dimension) !

Lestimateur du max. de vrais. conserve sa prop. de normalité
asymptotique si p?/n — 0 lorsque p, n — o (Portnoy, 1988).
= Données “massives” : p > yn.

Concept de sparsité ~ dimension effective = compter le nb de
var. expl. réel du pb, a défaut de compter le nb total de var. expl.!
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@ Introduction au probléme statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension

@ Extrapolation de la statistique classique (échantillons
raisonnables) aux grands échantillons
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THE P-VALUE PROBLEM

“A key issue with applying small-sample statistical inference to large samples is
that even minuscule effects can become statistically significant. The increased
power leads to a dangerous pitfall as well as to a huge opportunity. The issue is
one that statisticians have long been aware of : the p-value problem. Chatfield
(1995, p. 70) comments, question is not whether differences are significant (they
nearly always are in large samples), but whether they are interesting. Forget
statistical significance, what is the practical significance of the results 7”
Mingfeng Lin, Henry Lucas, Jr. et Galit Shmueli , 2010 galitshmueli.com

Source : blog d’Arthur Charpentier.

Idée : bonne puissance de test implique qu’1 gd échantillon (n
grand) fait systématiquement conclure a un effet significatif d’'un
facteur de risque, quand bien méme cet effet serait négligeable...

14/217



RAPPEL SUR LA PUISSANCE D’UN TEST

On peut résumer le role des probabilités de bonne et mauvaise
décision dans le tableau suivant (3 est la puissance du test) :

Vérité H(] Hl
Décision
H, a B

Risque / Erreur 1°"® espéce : décider H; vraie alors que Hp vraie
(proba. a).

Erreur seconde espéce : décider Hy vraie alors que Hq vraie
(proba. erreur de seconde espéce : 1 —f3).
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La puissance 8 dépend
@ du nombre d'observations (d'individus),

© durisque a : en general quand « 7, la puissance 8 " aussi :

on ne gagne pas partout!

© et de 'ampleur de I'effet (différence entre les 2 groupes pour
un essai clinique par ex.) relativement aux autres grandeurs.

Remarque 1 : puissance statistique 8 permet de calculer le nb
d’observations nécessaire dans une étude (on fixe 3 désirée, le
risque de 1° espéce et les paramétres associés aux groupes).

Remarque 2 : calcul de la puissance peut s’appliquer a grand
nombre de tests statistiques (comparaison de moyennes,
comparaison de proportions, modéle logistique, modéle de
régression, ...), lorsque I'hyp. alternative est assez restrictive.

16/217



ILLUSTRATION AVEC UN TEST DE STUDENT

Peut servir comme test sur les coefficients d’'une rég. linéaire.
Méme avec un effet faible (1%), on dispose souvent en assurance
de + de 10 000 observ., donc d’'une bonne puissance...

Puissance du test

75%

Puissance d'un test de Student bilatéral sur un échantillon suivant le nombre d'observations
écart type = 0.3; La ligne en pointillé montre la puissance = 90%

10,000
Nombre d'observations (échelle log)

1,000,000

Taille de I'effet
0.1%

— 1.0%

— 10.0%
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AUTRE FORMULATION DU MEME PB :
FALSE DISCOVERY RATIO (FDR)

Le test de significativité,

Ho:Bxk =0 VS Hi:Bx #0

est basé sur le test de Student, issu de la statistique t = S’é—k
Pk

Cette statistique suit une loi de Student, T, a v degrés de liberté
(ouv =d+ 1, avec d le nombre de paramétres) : T ~ t,.

La p-valeur du test correspond a P(|T| > |t]).

En grande dimension, l'intérét est limité car le FDR est grand...
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Exemple : avec un niveau de significativité de 5%, 5% des
variables sont faussement significatives !

Application : supposons que nous disposons de 100 variables
explicatives, avec seulement 5 d’entre elles réellement
significatives...

— Normalement, ces 5 variables passeront le test de Student.
— Mais 5 autres le passeront aussi (test faussement positif) = 10
variables sont donc détectées significatives !

= Le FDR est de 50% !

Pour corriger cet effet, on peut consulter [BH95]...
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AUTRE EXEMPLE ET CONCLUSION

Un coefficient de corrélation égal a 0,002 est significativement
différent de 0 si n = 108, mais il est totalement inutile...

“A researcher might choose to retain a causal covariate which has
a strong theoretical justification even if is statistically insignificant”

“Statistical significance plays a minor or no role in assessing
predictive performance. In fact, it is sometimes the case that
removing inputs with small coefficients, even if they are statistically
significant, results in improved prediction accuracy” (Shmueli,
2010)
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ﬂ Introduction au probleme statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension

@ Notions de biais et variance d’un estimateur
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ERREUR D’UNE MODELISATION

On peut décomposer I'erreur dans la modélisation de m(x) :
Erreur de spécification + Erreur d’estimation du modele.

— Erreur spécification : vient d’hyp. sur la classe d’estimateurs
de la fct m. Inmesurable par déf. puisque m inconnue.

— Erreur d’estimation du modéle (si le modele est “vrai”, cad
bien spécifié). Erreur d’autant + importante que la technique est
compliquée et/ou nécessite beaucoup de données.

Rq : un modéle non paramétrique a une erreur de spécification ~
0, au prix d’une éventuelle inflation de I'erreur d’estimation.
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DECOMPOSITION DE LERREUR D’ESTIMATION

Soit un estimateur & (var. aléatoire) de 6.

On a coutume de considérer comme mesure d’erreur d’estimation
le risque quadratique d’'un estimateur (MSE : erreur quadratique
moyenne ; ou MSEP : MSE sur de nvelles données n’ayant pas
servi a construire I'estimateur), par

MSE(6) = E[(6 - 6)2].
Cette erreur se décompose en 2 termes, biais et variance :
MSE(8) = E[(6 — 6)] + Var(d),

soit approximativement son biais au carré plus sa variance.
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Globalement, 4+ un modéle est complexe, + son biais diminuera et
+ sa variance grandira.

= |l faut optimiser le dosage entre biais et variance !
= Cela revient a contréler la complexité du modéle!

Ex : contréler le nb de variables (explicatives) dans le cadre
paramétrigue = a conduit a la déf. de critéres de sélection tels
que le Cp de Mallows, Akaike (AIC), Schwartz (BIC), ...

Rq : hormis la classe, choix du bon modele dans une classe est
primordial. Pb d’optimisation doivent donc prendre en compte la
complexité de la classe dans laquelle la solution est recherchée.
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LIEN ENTRE CES NOTIONS

Quelque soit la méthode, tous les auteurs soulignent 'importance
de construire des modéles parcimonieux (dimension raisonnable).

En effet + un modele est complexe, + il est flexible = faible erreur
d’ajustement (bon “fit”) = synonyme d’un biais faible...
Par contre ce modéle peut s’avérer défaillant pour généraliser,

s’appliquer a des données nouvelles (synonyme de gde variance).

= Combinaison de modeéles (bagging, boosting) contourne ce
pb au prix d’'une ' du volume de calculs et de l'interprétabilité.
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9 Actuariat - données et assurance
@ La révolution numérique : nouvelles données en assurance
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DEFIS STATISTIQUES

Larrivée des Big Data a permis la découverte pour le “grand
public” de méthodes statistiques fondées sur I'apprentissage
statistique (Machine Learning quand appliqué en pratique).

Mais il faut garder en téte que
@ il ne faut pas créer une usine a gaz...
@ un modéle statistique est d’autant + robuste qu'’il est simple,

© ces méthodes ne sont pas encore parfaitement adaptées a la
gestion de tt type de données.

= Beaucoup de travail préalable a faire avant un emploi judicieux !
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BIG DATA, QU'ES A QUO?
Big Data, définition simplifiée : données non traitable en une passe
et dans un temps raisonnable sur une station de travail.
Deux époques :

< 2005, ordinateurs 32-bit. Taille n > 107, p > 100 = 8Go.
> 2005, ordinateurs 64-bit : bc + de mémoire physique, mais
unités de calcul limitées.

Deux motivations principales d’utlisation : description, prévision.
Deux aspects : spatial (volume) et temporel (flux).
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CARACTERISATION DES BIG DATA

On a coutume de parler de Big Data lorsqu’on dispose de
données...

@ en grand volume (énorme base de données),
@ en grande variété (numérique, texte, images, vidéos, ...),

@ en grande vitesse (fréquence d’arrivée de l'information,
évolution des données).

Régle des 3V...qui doit déboucher sur la création de “V’aleur de
par I'exploitation de ces données.
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DEFIS PRATIQUES

o Défi opérationnel, essentiellement informatique :

e systeéme d’information, architecture, capacité de stockage...
o calculs distribués (MapReduce) = Hadoop, Spark, ...;

@ Une réflexion sur la donnée :

e qualité de la donnée et gestion de son aspect non-structuré :
comment homogénéiser des formats différents a I'origine ?

e sélection en fonction de sa pertinence, gestion,

e visualisation : SQL (Structured Query Language), noSQL..

@ Un enjeu éthique : anonymisation principalement (tests

génétiques en assurance maladie,...) = réglementation
RGPD.
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D’OU VIENNENT LES NOUVELLES DONNEES ?

Essentiellement de données externes... Les assureurs possédent
déja des données internes (peu exploitées, ~ 20%), et accédent
maintenant a d’autres sources riches en information :

@ Objets connectés : télématique, Apple Watch, ...

© Réseaux sociaux et navigation internet : pouvoir de
nuisance des consommateurs;;

© Assurance de biens partagés : AirBnB, AutoLib’, ...
© LOpen Data : crawling, scrapping... (Datagouy, ...).

C’est I'intégration au sein d’'un méme Sl qui est trés compliqué.
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QUESTIONS ESSENTIELLES

Ces nouvelles données posent des questions fondamentales
quant a leur utilisation, notamment

@ Fiabilité des données
— s’assurer auprés des services ayant fourni les données de
leur fiabilité, de leur authenticité ;

@ Cohérence
— s’assurer du contenu de ces données;

@ Sécurité
— cyber-risque, ...

= Risque opérationnel également accru !
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CLASSIFICATION DES DONNEES

Structurée

Objets connectés Réseaux sociaux
Données GPS Objets connectés récupérant des données textuelles
Externe Historiques de navigation Données type "Google Trends"

Statistiques publiques

Déclarations de sinistres

Données clients . | . L
Certains questionnaires médicaux

Données sinistres

Données web provenant de la compagnie

Données sur les réseaux de distribution Données sur les réseaux de distribution
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DATA SCIENTIST ET DATAVIZ

“statistics is the grammar of data science. [t is cru-

. . . engineerin
cial to making data speak coherently. But it takes Y g GES £nGl

statistics

statistics to know whether this difference is sig-
nificant, or just a random fluctuation. (...) What
differentiates data science from statistics is that
data science is a holistic approach. We’re increas-
ingly finding data in the wild, and data scientists \computational
are involved with gathering data, massaging it into selence
a tractable form, making it tell its story, and pre-
senting that story to others.” Mike Loukides, 2010

radar.oreilly.com

Source : blog d’Arthur Charpentier.
Idée : le data scientist ne se limite pas a la statistique, il cherche a
faire parler ses données en général... (data visualisation)
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e Actuariat - données et assurance

@ Impact du Big Data sur le secteur assurantiel
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APPORT PRINCIPAL DE CES NOUVELLES DONNEES EN
ASSURANCE

Un des gros problémes de I'assureur (par rapport au banquier) est
la faible fréquence de ses intéractions avec l'assuré...

En effet, ils ne se voient en général que 2 fois en tout pour tout :
— Une fois a la souscription;

— Une fois lors du sinistre s’il a lieu.

= Tres difficile pour I'assureur de bien connaitre I'assuré !

Technologies liées au Big Data vont augmenter significativement la
fréquence de ces intéractions...et atténuer les particularités de
'assurance : antisélection et aléa moral.

(en plus de l'inversion du cycle de production!)
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IMPACT SUR LA CHAINE DE VALEUR

Le Big Data a un impact a plusieurs niveaux pour un assureur,
parmi ses taches “historiques” impactées :

(7]

segmentation, tarification (Pay-As-You-Drive, HomeBox),
provisionnement : micro-level reserving,

°
@ détection de fraude (par géolocalisation par exemple),

@ ciblage marketing (compréhension des comportements),
o

scoring d’assurés : la construction d’un bon score reste issue
d’une approche stat. couplée a une connaissance métier.

Remarque : échelle de temps de I'assurance parfois bc plus longue
que dans d’autres secteurs (attention aux dérives du risque).
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LA DATA SCIENCE, JUSQU’OU ?

La base de I'assurance est la mutualisation...
...Or I'enjeu principal du Big Data est de mieux comprendre les
mécanismes a I'échelle de I'individu !

“We are moving from an era of private data and public analyses to
one of public data and private analyses” (Andrew Gelman)

Il'y a donc un risque énorme (surtout en tarification), qui est...
...l]a PERTE de MUTUALISATION.

Ou s’arrétera la segmentation... ?
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@ Philosophie de I'apprentissage statistique
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MACHINE LEARNING, NOUVELLE APPROCHE

@ Abandon d’une approche de “modélisation” pour 1 approche
qui cherche a laisser parler les données (“data-driven”),
typigue du monde non-paramétrique.

@ Big Data : pour rendre compte d’une réalité complexe, on
s’autorise des modeéles — simples, voire peu intelligibles.

= Une logique de prévision domine, plus qu’une logique d’analyse
et d’explication des phénomenes.
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RAPPEL : NON PARAMETRIQUE, PARAMETRIQUE

@ Estimation paramétrique : on cherche m parmi une famille
indexée par un parameétre de dimension finie.
— Exemple : régression linéaire, m(x) = a + bx.
Une fonction candidate s’identifie a 2 parametres (a, b).

@ Estimation non paramétrique : on ne fait plus d’hypothése (ou
bc —), on cherche m(x) parmi ttes les fonctions possibles
(dim. infinie).

Exemple connu d’estimateurs non paramétriques : estimateurs a
noyaux, ....
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ILLUSTRATION

Data modeling

GLM,
Logit,...

X —>

Learning through data
\ Algorithmic modeling

X Unknown l—>YVY
\ Machine learning /

Decision frees,
SVM...

MACHINE
LEARNING

POWER TO THE DATA

—> y Informative & explicit

¢ Not explicit model

¢ Correlations not
causalities
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PROBLEME SUPERVISE VS NON SUPERVISE

Deux types de pb : présence ou non d’une variable a expliquer Y
qui a été, conjointement avec X, observée sur les mémes objets.

Paradigme du cas supervisé : apprendre a généraliser a partir
d’exemples du phénomeéne observé.
S’applique

@ alarégression : cas ol la réponse est continue;

@ a la classification : cas ou la réponse est catégorielle.

Cas non supervisé : n‘observe pas la valeur de la variable d’intérét

(ex. modéles mélange : classer les indiv. dans les composantes =
on ne connait pas leur composante d’appartenance)
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EN PRATIQUE...

Dans le 1er cas (supervisé) = trouver une fonction f susceptible,
au mieux selon un critere a définir, de reproduire Y ayant observé
X:

Y=1fX)+e

ou e symbolise le bruit ou erreur de mesure.

Dans le cas contraire (absence d'Y) = non-supervisé.

Objectif : recherche d'une typologie/taxinomie des observations...
Comment regrouper celles-ci en classes homogénes mais les +
dissemblables entre elles — pb de clustering.
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SCHEMA RECAPITULATIF ET METHODES ASSOCIEES

MACHINE LEARNING

0
CLUSTERING

UNSUPERVISED
LEARNING
Group and interpret

data based only
on input data
S

SUPERVISED
LEARNING
Develop predictive
model based on both
input and output data

/
N

CLASSIFICATION

~

Y

REGRESSION
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STATISTIQUE CLASSIQUE VS APPRENTISSAGE

o Statistique classique : recherche le modele génératif des
données. Construit I'estimateur sur 1 jeu de données unique.
Une théorie asymptotique permet de juger sa qualité (IC,...).

@ Apprentissage stat. : recherche de bonnes prévisions...

@ on ne cherche pas le modéle qui génére les données !

o les exemples du phénomeéne observé sont représentés par
I'échantillon d’appren. : on souhaite faire apprendre a 'algo. la
relation entre X et Y, puis la généraliser (prévision de Y) a des
occurrences de X pr lesquelles Y inconnue.

o la qualité n’est plus jugée via des criteres asymptotiques, mais
a l'aune d’une mesure d’adéquation a I'’échantillon test.
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AUTREMENT DIT...

Statistique classique : approches privilégiant la compréhension !

@ Permet une compréhension du mécanisme générateur des
données, avec une représentation si possible parcimonieuse;

@ Le modeéle doit étre “simple” et interprétable (odd-ratio, ...)

Machine learning : approches privilégiant la prévision !
@ pour de nouveaux individus : pouvoir de généralisation,
@ les modéles sont en fait des algorithmes.

“Modern statistical thinking makes a clear distinction between the statistical model and the
world. The actual mechanisms underlying the data are considered unknown. The statistical
models do not need to reproduce these mechanisms to emulate the observable data”,
(Breiman, 2001)

“Better models are sometimes obtained by deliberately avoiding to reproduce the true
mechanisms”, (Vapnik, 2006)
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e Philosophie de I'apprentissage statistique

@ Théorie de Vapnik et surapprentissage

48/217



QUALITE D’ESTIMATION ET GRANDE DIMENSION
MONDE NON PARAMETRIQUE

Théoréme : soit X € R, et m une fonction k fois dérivable &
dérivées bornées. La vitesse optimale de convergence d’un
estimateur non paramétrique m est

M(x) - m(x) = O(nK/@k+d))  ps.

@ Sila fonction m est réguliére (par ex. infiniment dérivable) a d
fixé, la vitesse de convergence est en /n.

@ Si d est “grand” par rapport a n, la performance d’estimation
est considérablement dégradée.
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ECHANTILLONS ET POUVOIR DE GENERALISATION

Les méthodes d’apprentissage statistique induisent le choix de
parametres de tuning (param. “utilisateur”)... lls jouent un réle
important dans le pouvoir de généralisation du modele.

Pour choisir leur valeur, on peut soit
@ recourir a la validation croisée, ou

@ on créé plusieurs échantillons :

@ un échantillon d’apprentissage pour construire le modéle;

e un échantillon de validation pr optimiser les parametres de
tuning (“tuning” du modele) ;

@ un échantillon test 1L pour évaluer la performance du modéle
avec les parameétres de tuning choisis.
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PRINCIPE DE LA VALIDATION CROISEE (5-fold)

Utilisée pr la sélection de modéle ! Permet de choisir le param.

et/ou modéle optimal.

{ Apprentissage

Validation

{ Apprentissage

Validation

[ Apprentissage

Validation

B p—

v
Erreur de prédiction moyenne
Calibrage des méta-paramétres

v

Apprentissage modéle final
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THEORIE DE VAPNIK
ERREURS EN FONCTION DE LA VC DIMENSION (h)

RGen (6)5 Remp (9)"' 5("*"’)

1+In 2% Inn
e(n,h)= T—T
Y

Error

Over-fitting

R

emp
Learning
Error
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ET EN FONCTION DE n?

Théorie de Vapnik

Generalization
error Rcen

-
— — —

Learning error Remp

No of Observations n
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QUELQUES PREMIERES REMARQUES

On voit trés bien a travers I'inégalité de Vapnik que :

@ l'erreur de généralisation croit quand la dimension augmente :
= les modéles de grande dim. ont un faible biais au prix
d’'une grande variance (et inversement).

@ l'erreur est dépendante du rapport n/h (rapport du nombre de
données sur complexité du modéle),

@ on " la capacité prédictive si h ~ mais moins vite que n,

@ on peut " la complexité du modéle si on ” aussi n.
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e Philosophie de I'apprentissage statistique

@ Agrégation d’estimateurs

55/217



LAGREGATION

@ Approche “modéle” VS agrégation :

o modele : déterminer une distribution de probabilité “simple” et
unique qui rende compte des données;

e agrégation : faire la synthese de plusieurs approches, ne plus
se reposer sur un modele unique.

@ Les 2 approches ne sont pas totalement antagonistes.

@ Les approches d’estimation basées sur I'agrégation sont +
précises mais + difficilement interprétables (ex : agréger 3
modeles de régression paramétriques, comment ?).

Rq : on dit que les modéles simples (ex : logit) sont interprétables.

Loin d’étre vrai car les covariables sont svt corrélées, donc la
valeur des param. ne refléte pas exactement leur impact!
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META-MODELES ou METHODES D’ENSEMBLE

Soit mj(x) I'estimateur obtenu en utilisant le modele j. Pour
agréger B modeles et obtenir I'estimateur ensembliste

a(x) = > wi(x),

on peut mener :

@ construction paralléle, 1L de +sieurs estimateurs individuels,
puis combinaison = bagging

@ construct. séquentielle, puis combinaison = boosting !
@ construct. parall., puis imbrication (meta-modéle) = stacking

Rq: ng w; = 1 avec w; poids affecté a I'estimateur j (version
fréquentiste du Bayesian Model Averaging).
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"Modéle" unique

Agrégation

Avantages

Inconvénients

Interprétation des parameétres

Biais important (erreur de modele)

Choix entre deux modeéles ?

Moins de biais car hypotheses
plus faibles

Plus de difficulté liée au choix
de modéle (& nuancer)

Interprétation complexe
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SYNTHESE DES PRINCIPALES DIFFERENCES

A travers ce que nous venons de voir, les différences essentielles
de I'apprentissage statistique par rapport a une approche
classique de modeélisation résident dans les points suivants :

@ les hypothéses : beaucoup moins d’hypothéses (L entre
observations, entre facteurs de risque, hypotheses de
distribution paramétrique, ...)

@ l'agrégation potentielle de modéles : on construit plusieurs
modeles et on synthétise,

@ linterprétabilité des résultats : on perd en interprétabilité a
cause de l'agrégation.
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e Philosophie de I'apprentissage statistique

@ Comment analyser les résultats ?
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MESURE DE LINCERTITUDE - CAS D’UN MODELE

On dispose de résultats asymptotiques...

@ En paramétrique, théorie du max. de vraisemblance. On a en
général des IC sur le paramétre estimé...
Exemple : modele linéaire,

Vn(Bi-p1) ~ N(0,0%)
Donc P(|31 —B1] = €) x P(|1Z| =€) ouZ ~ N(0,c2/n).

— o2 indique la précision de I'estimation : & estimer! — D’ou
la possibilité d’évaluer P(|my(x) — my(x)| > €).

@ En non paramétrique, théorie de Vapnik-Chervonenkis.
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CAS DE LAGREGATION D’ESTIMATEURS

C’est différent...(notons M (x) 'estimateur agrégé)

@ En général, pas de résultat du type M,(x) — m(x) ~ N(0,02).

@ La qualité se mesure en premier lieu par rapport a un
échantillon de validation.

Vocabulaire : soit un échantillon de n + m observations, avec
@ un échantillon d’apprentissage : sous-échantillon de n
observations a partir desquelles on construit M.

@ un échantillon de validation : le reste (m observations) sur
lequel on juge de la qualité de I'estimateur.
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EXEMPLE EN REGRESSION

On dispose d’un échantillon de (n + m) observations i.i.d., de
méme loi qu’un vecteur aléatoire (Y, X).

But : estimer m(x) = E[Y|X = x].

(1) On tire au sort n observations, d’ou I'échantillon (Yi, Xi)1<i<n-

(1bis) Les m autres observations (Y}, Xi)n+1<i<n+m constituent
I’échantillon de validation.

(2) Construction de f1,(x) & partir de (Y;, Xi)1<i<n-
(3) Calcul de 'erreur de prédiction sur I'échantillon de validation :

n+m

e(ia) = ) (Yi—ma(x))?

i=n+1

Plus cette quantité est petite, plus I'estimateur est jugé bon.
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Questions :

@ Pourquoi ce critére ?

@ Pourquoi ne pas directement regarder I'erreur sur I'échantillon
d’apprentissage ?

© Choixdenetm?
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Q1 : POURQUOI CE CRITERE ?

@ m(x) = E[YIX = x] : “meilleure fagcon d’approcher Y par une
fonction de X, au sens de I'écart quadratique”;

@ Si M, est bon estimateur, alors M, (X;) est proche de m(X;) Vi.
Or m(x) étant la fonction la + proche de Y sachant X = x, +
e(m;,) est petit, + M, devrait & proche de m (inconnue !).

@ Sion calcule d’autres quantités, le colt quadratique ne sera
pas forcément utilisé pour I'erreur.
— Ex. : pour estimer la médiane de Y|X = x, on minimisera

n+m

D 1Yi = ().

i=n+1
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Q2 : POURQUOI NE PAS REGARDER L'ERREUR SUR
LECHANTILLON D’APPRENTISSAGE ?

En d’autres termes, pourquoi ne pas prendre m=07?

@ Risque = surapprentissage (on capte le bruit au lieu du
signal), le signal etant I'information principale...

@ Exemple d’estimateurs faisant de I'overfitting : arbre maximal
dans les estimateurs CART possibles...
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Q3 :CHOIXDE nET m

Pas de régle gravée dans le marbre (choix classique, et trés
arbitraire : m = n/2), mais
@ engénéral, n > m, et
— la proportion de I'échantillon d’apprentissage tend vers
50% quand la taille globale des données est grande;
— elle tend vers 80 voire 90% le cas contraire.

@ pourquoi a-t-on besoin d’un n grand ?
— besoin de + de données pour calculer un estimateur m,
précis (sa CV est, en général, en n~* pour un certain a > 0).

@ pourquoi m ne doit pas étre trop petit ?
— Pour que la validation ait un sens...
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AGREGATION : ESTIMATEURS SUR ECHANTILLONS 1

N A 1 vB & N ~
— Limite : on rappelle que ma(x) = g X2 Mj(x), ou les Mj(x)
sont corrélés si calculés sur le méme échantillon...

Si les m; sont 1L car calculés sur # échantillons 1L (en notant

o?(x) la variance de fiy(x)) :

. 1 &,
Var(ma(x)) = o Zo-j (x).

En somme, si 02(x) = supj—y__g 02(x), Var(ia(x)) < Uzéx) '

.....

= Variance estimateur agrégé << variance estimateur unigue.
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LIMITE PRATIQUE

Néanmoins, il est difficile de calculer des estimateurs sur des
échantillons #, car la taille des données n’est évidemment pas
infinie en pratique... D’ou :
@ prendre B sous-échantillons pour calculer B estimateurs # est
une solution de riche (n doit étre trés grand pour I'1L);

@ la solution de couper I'échantillon en sous-échantillons atteint
vite ses limites.

= Une solution : le rééchantillonnage (par exemple bootstrap).

Rq : l'indépendance entre les estimateurs unitaires n’est pas
garantie car certains échantillons bootstrap peuvent fortement se
ressembler...
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e Philosophie de I'apprentissage statistique

@ Rappels sur le bootstrap
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APPLICATION : REECHANTILLONNAGE BOOTSTRAP

@ Si on souhaite agréger B estimateurs, on génére B
échantillons bootstrap suivant la méthode ci-dessous.

@ On utilise I'échantillon j pour calculer I'estimateur ;.

Bootstrap : pourj=1,..,Beti=1,...,n, ontire Z’.(j) i.i.d. deloi

unif. sur {1, ..., n}. Le j®M® échantillon bootstrap est (Y,.(j), )(I.(’))1S;§,,
ou . '

y’(l) — Yzi(f) Xi(l) — Xzi(f)'
En moyenne, e~' = 36, 7% des observations initiales ne sont pas
tirées dans un échantillon bootstrap donné.
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ILLUSTRATION
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POURQUOI LE BOOTSTRAP?

Idées derriére le bootstrap :

@ On va créer artificiellement des échantillons semblables a
celui d’origine en simulant des données, ce qui permettra de
construire des modéles cohérents entre eux.

@ Probléme : les échantillons étant corrélés, les estimateurs
seront corrélés (méme si différents!)...

On aura besoin d’introduire des éléments supplémentaires pour
décorréler au mieux les estimateurs !
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e Philosophie de I'apprentissage statistique

@ Agrégation : cas des variables catégorielles
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PREVISIONS AGREGEES SUR VARIABLE BINAIRE

Soit le contexte suivant :
@ unev.a. Y qui vaut 0 ou 1, avec X = caractéristiques.

e ex.1:Y =1 siaccident dans I'année, 0 sinon.
e ex.2:Y =1 sidéfaut de paiement dans I'année, 0 sinon.
e ex.3:Y =1 sile client souscrit un contrat, 0 sinon.

@ 1°' solution : déterminer E[Y|X] = P(Y = 1|X) pour chaque
modéle. Puis approche similaire & précédemment : moyenner.
— Cette solution fournit un estimateur m,(x) qui prend des
valeurs entre O et 1.

= Si X = x et My(x) > 0.5, on prédit Y = 1. Sinon Y = 0.
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DEUXIEME SOLUTION : LE VOTE MAJORITAIRE

@ Au lieu d’agréger les estimations des espérances

conditionnelles M;, on agrége les prédictions associées.

@ i.e. on définit, pour j=1,..., B, pj(X) = 1,(x)>05-

@ Pour X = x, on prédit Y par

N 1 si majorité de pj(x) égaux a 1
Pa(x) = { /()

0 sinon.

@ Rq: c’est ce que fait randomForest(.) de rpart.
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GENERALISATION AUX VARIABLES CATEGORIELLES

On s’intéresse a une variable Y prenant un nombre fini de
modalités, {1, ..., k}, avec X = caractéristiques.

@ Exemple : Y = gravité sinistre, classé sur échelle de 1 a k.
@ Stratégie : transformation en un probléme binaire.

Zi=1y=
pour | =1, ...k, on estime E[Z/| X] = P(Y = | X) pour tout /.

@ Sion note Mj(x) 'estimateur de P(Y = /| X = x) basé sur la
méthode j, la prédiction p;(x) associée est

pi(x) = alrg ma;(x mj(x).
=1
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e Premiere brique en Machine Learning : arbres de décision
@ Algorithme CART
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ALGO ISSU DE LINTELLIGENCE ARTICIFIELLE

7 principes éthiques de la Commission Européenne pour I'lA :
@ contrdle/supervision humaine : I'l|A n’a pas de conscience !

@ résistance et sécurité des algorithmes : fiabilité pour gérer les
erreurs et incohérences;;

© gestion des données, protection de la vie privée : utilisateurs
en mesure de controler leurs propres données;

© transparence algo : expliguer ce que fait I'lA, tracabilité
© diversité, non-discrimination et équité ;

@ bien-étre social et environnemental : I'lA doit étre mise au
service de la société dans son ensemble;

@ I™accountability” : principe de responsabilité, mise en place de
procédures internes a I'entreprise pour démontrer le respect
des régles relatives a la protection des données.
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OBJECTIF ARBRE : CLASSIF. DES INDIVIDUS

Regrouper des indiv. hétérogenes en classes homogenes de
risque pour résumer I'info d’'une BdD gigantesque.

1 de nombreuses techniques de classification, parmi lesquelles :
@ pour la classification non-supervisée :

— les algorithmes dits des k-plus proches voisins (non param.);
— les techniques ascendantes d’arbre de classification (CAH);
— model-based clustering (paramétrique) ;

@ pour la classification supervisée :

— modeles paramétrique de choix (LOGIT);
— réseaux de neurones ; SVM (non paramétrique) ;
— arbres descendants (CART, CHAID, ...). Non param.

80/217



ARBRE ET CLUSTERING : PREMIERS ELEMENTS

Pour estimer notre quantité d’intérét, on choisit d’utiliser un arbre...
Mais qu’est-ce qu’un arbre ?

@ Une racine : contient I'ensemble de la population a segmenter
(le portefeuille global) = c’est le point de départ;

@ Un tronc et des branches : contiennent les régles de division
qui permettent de segmenter la population;

© Des feuilles : contiennent les sous-populations homogénes
(sur leurs caractéristiques et la réponse) créées, fournissent
I'estimation de la quantité d’intérét.
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REGLES ET LECTURE D’UN ARBRE CART
Un arbre de classification / régression se lit de la racine vers les
feuilles (I'inverse d’'une CAH...).

A chaque ramification, une régle de division apparait : dans CART,
@ cette regle (~ question) admet une réponse binaire (oui/non),
@ elle n’est basée que sur un facteur de risque (une covariable).

Un noeud est l'intersection d’'un ensemble de regles. Lestimation
de la quantité d’intérét se lit dans les noeuds terminaux (feuilles).

N’importe quel individu de la population initiale appartient & une
unique feuille : les sous-populations créées sont disjointes.
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e Premiere brique en Machine Learning : arbres de décision

@ Exemples
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EXEMPLE 1 : ARBRE DE CLASSIFICATION

A travers cet exemple, on veut intuiter comment un arbre se
construit... Cherchons a prévoir “propriétaire” | salaire + surface.

Income
($000's)
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85.5
64.8
615

&7

110.1
108
82.8
69
93
51
81
75
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64.8
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84
492
59.4
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51
63

Lot Size
(000's sq. ft.)
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148

MR RORN R R R R = o o s = s s

250
.
- & *
" . A4
- = *
20.0 . W .
Ld -
- = = .
" n ®

15.0 4 [ ]

=
10.0 T T T T

30.0 50.0 70.0 90.0 110.0

Income ($ 000's)
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© 606 o0 ©o

CHOISIR LA SEGMENTATION DE LESPACE

Choisir une var. explicative j donnée & m valeurs : soit elle est
e numeérique ou catégorielle ordonnée : partitionnements de
'espace associé a cette covariable se situent entre 2 de ses
valeurs successives observées = m — 1 possibilités;
o catégorielle non ordonnée : partitionnements de y; sont toutes
les combinaisons de modalités, au nb de 2™ — 1;
Je teste tous ces partitionnements : j'y associe un critére
d’homogénéité par rapport a ma quantité d’intérét (réponse) ;
Je choisis le partitionnement qui conduit a la plus grande
homogénéité dans les sous-espaces créés;

Je répéte les étapes (1)-(3) pour chacune des covariables
dont je dispose : jobtiens une liste de k homogénéités max.;

Je choisis & la fin la covariable et son partitionnement qui
maximise ’homogénéité globalement.
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PARTITIONNEMENT ET ARBRE MAXIMAL

250
*
= hd L] ¢
£ 5 ] + [
8‘- 20.0 1 —— .
g = ™1 &
S ] = I
g v e
®  15.01 ]
3 ]
10.0 T T T
30.0 50.0 70.0 90.0 110.0
Income ($ 000's)

Partitionnement qui maximise ’homogénéité dans chq rectangle.
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e Premiere brique en Machine Learning : arbres de décision

@ Formalisation : construction de 'arbre
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-

—

NOTATIONS

i € [[1, n] : identifiant de I'individu / 'assuré;

j €1, k] : identifiant du facteur de risque (continu ou discret) ;
Y; : réponse OBSERVEE du i®™ individu (continue/discréte) ;
Xi = (X1, ..., Xix) : vecteur des facteurs de risque de l'indiv. i;
X : espace des covariables (facteurs de risque);

I € [[1, L] : identifiant des feuilles de 'arbre;

X| : ensemble de la partition correspondant a la feuille /.
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ARBRE DE REGRESSION AVEC Y CONTINUE
En régression, la quantité d’intérét est
mo(X) = Eo[Y X =X] (1)

En supposant une relation lin. (se restreignant a une classe
d’estimateurs), on a

#(x) = Bo + x5,
et on estime les paramétres de régression par MCO.
En toute généralité, on ne peut pas considérer ts les estimateurs
potentiels de mp(x) = arbres sont 1 autre classe d’estimateurs :
ce sont des fonct. constantes par morceaux.

Construire un arbre maximal génére une suite d’estimateurs selon
une procédure spécifique : divisions successives de I'espace X.
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CONSTRUCTION DE LARBRE : CRITERE DE DIVISION

La ramification de I'arbre est basée sur la définition d’un critére
d’homogénéité, cohérent avec I'estimation de la quantité d’intérét.

Dans I'estimation de (1), MCO tjs utilisé car solution donnée par

mo(x) = argm(ir; Eo[®(Y,n(x)) | X = x], (2)

ot &(Y, 7(x)) = (Y = 7(x))>.

La fonction de perte ® correspond donc a I'erreur quadratique (fn.
convexe), et le critére est la minimisation de 'EQM.

La # est ici que I'on va estimer mp(x) en plusieurs étapes!
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ETAPES DE CONSTRUCTION DE LARBRE

On résume donc I'enchainement des étapes de construction de
larbre :

@ on part de la racine;

@ on cherche la meilleure premiére segmentation (donnant le
meilleur gain d’homogénéité) ;

@ on segmente;

© on itére sur chacun des 2 noeuds fils ;

@ on itere sur les fils des noeuds fils, et ainsi de suite...

Par construction I'hétérogénéité diminue a chaque segmentation,
pour atteindre sa valeur minimale sur I'arbre maximal.
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@ Premiere brique en Machine Learning : arbres de décision

@ Lien avec le probléme de régression classique
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LIEN ENTRE REGRESSION ET ARBRE

Arbre = ensemble de regles. Pour chaque noeud m, une régle R,
est associée a un sous-ensemble X, € X.

Notation : dans la suite, E,[Y] désigne la moyenne empirique de
Y, et Xpa(m) est le sous-ensemble associé au noeud parent de m.

Larbre est associé a la fonction de régression

M
Z Iétree R (3)

oil "tree = Ep[Y|x€Xn] - En[Y|xe€ Xpa(m)] si m # racine,
”ee = Eu[Y] sinon.
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Cela équivaut en régression classique a chercher
piree __ in E Y — treeR 2
pree = argmin En|( B Rm(x))"|.

Depuis (3), en 3, sur ts les noeuds, il reste les feuilles... :

A(x) = Zy, Ri(x (4)

= Décomposition en bases fonctionnelles de x = non-param!
@ L estle nombre de feuilles de l'arbre, I leur indice,
@ Ri(x) = fi(x € X)) : régle d’appartenance au ss-ensemble X,
@ 9= Ej[Y|x € X|] : moyenne empirique de Y dans la feuille /,

@ Ss-ensembles X, C X disjoints (X;N Xy =0, | # I et
exhaustifs (X = U; X)).
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(4) généralisable glq soit la quantité d’intérét. Ainsi, tout arbre
peut étre vu comme un estimateur par morceaux.
— Interprétation :

@ chaque morceau est une feuille, dont la valeur est la moyenne

empirique des valeurs de Y de cette feuille (cas quantitatif),

@ chqdiv. d'1 noeud t minimise la ), variances intra-noeuds
résultantes = max. \, hétérogénéité H; = 1/t| Xic;(vi — ¥t)?

|td|
nc}iex(H, —(Hy, + th < min Z( yi— [g)2 +—= > (yi ytd)

letg ity

ou ty et ty désignent respectivement les fils gauche et droite
du noeud parent t.
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La construction étant récursive, on génére une suite d’estimateurs
depuis le nd racine : soit une suite {I1%} de ss-espaces t.q. M< c I,

nK = {nL(.) - iy/ R(): LeN'L< K}. (5)
1=

A K fixé, on cherche 7 (x) = arg min Eo[®(Y,7(x)) | X = x].

n(x)enk

= Version empirique 7K : #K(x) = arg min E,[®(Y,n(x))]. Ou :
#(x)enk

K (x) = argmin E,[®(Y,75(x))]. (6)
y=(r1s71)

CART ne cherche pas ts les estimateurs possibles avec L < K :
approche ce minimum petit a petit.
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ARRET DE LA PROCEDURE DE SEGMENTATION

Comme déja évoqué, I'algorithme CART ne fixe pas de regle
d’arrét arbitraire pour la procédure de division de I'espace.

Lalgorithme arréte ainsi de diviser les feuilles quand :
@ il n’y a qu'une observation dans la feuille, ou

@ les individus de la feuille ont les mémes valeurs de facteurs
de risque (covariables X).

On construit ainsi I'arbre “maximal”, qui sera ensuite élagué.

Arbre maximal : estimateur par morceaux le + complexe de la

suite d’estimateurs construits — CV garantie (Breiman et al. 1984).
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ILLUSTRATION ESTIMATEUR PAR MORCEAUX :
EXEMPLE 2

Exemple en assurance : prévision de déces et modélisation des
taux de mortalité. Résultats de I'article EAJ Olbricht (2012).

Portefeuille de SwissRe avec les caractéristiques suivantes :
@ comprenant 1 463 964 enregistrements,
@ couvrant une période de 4 ans,
@ les variables explicatives en jeu sont le sexe et I'age.

Les résultats obtenus par CART sont comparés a la table de
mortalité actuelle “German standard life table DAV 2008 T”.
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ARBRE ELAGUE (PAS MAXIMAL!)

AGE < 56
AGE < 46 SEX| = female
AGE < 43 SEX |= female AGE < 63 AGE < 61
AGE < 59 AGE < 62
286 298 77812 78792 163197 32293 7315
0.479 1.234 1.498 2.488 2.849 5.058
1) (2) (3) (4) (5) (6)

36921 24515 9835 36 046
4.767 6.037 6.914 8.461
(7) (8) (9) (10)

Fig. 8 Final tree for the standard life table example. For each terminal node the number of cases and the
mortality rate (per mille) are given (the numbers in brackets are the labels for the nodes used in Table 6)
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COURBES DE MORTALITE CORRESPONDANTES

o
s
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T T T T T T T
0 10 20 30 40 50 60 70

Age

Courbe continue : table réglementaire ; par morceaux : CART.
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REMARQUE IMPORTANTE

Notez la différence majeure gqu'il existe entre ce type de
modélisation et une modélisation dite paramétrique.

En effet, on s’autorise toute forme de dépendance ici, alors qu’un
modele paramétrique (ex : GLM) impose une forme de
dépendance entre Y et X...

= Peut s’avérer inadapté dans de nombreux cas pratiques! (ex :
tarification d’un contrat auto en incluant 'age ds le modele de
fréquence, ss forme de classes d’age).

En revanche, dans I'exemple de mortalité ici, il serait préférable
d’avoir un modele paramétrique...
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La performance s’évalue sur le “test set”

PERFORMANCE DE LA PREVISION CART

Table 6 Performance of the tree from Fig. 8

N

a droite du tableau :

Node Learning set Independent test set
No. of No. of Estimated No. of No. of Tree Classical
elements  deaths in mortality rate  elements  deaths in  prediction  prediction
in node node (per mille) in node node (Fig. 8) (DAV 2008 T)

1 286,298 137 0.479 254,995 143 122 127

2 77,812 96 1.234 75,882 60 94 79

3 78,792 118 1.498 79,202 146 119 116

4 163,197 406 2.488 155912 361 388 389

5 32,293 92 2.849 33,163 119 94 96

6 7315 37 5.058 7,440 26 38 36

7 36,921 176 4.767 41,759 163 199 188

8 24,515 148 6.037 20,708 118 125 118

9 9,835 68 6.914 8,354 59 58 55

10 36,046 305 8.461 33,525 219 284 299

Total 753,024 1,583 710,940 1,414 1,521 1,503
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@ Premiere brique en Machine Learning : arbres de décision

@ Gestion du surapprentissage : réduction de dimension
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SELECTION DE MODELE (a FIXE)

Larbre maximal construit (de taille K(n)) génére une suite

.....

But : éviter estimateur trop complexe (surapprentissage) = trouver
meilleur sous-arbre selon un arbitrage adéquation / prévision :

Ra(R(x)) = Ea[®(Y, 2 (x))] + a (K/n),
ou « param. de complexité, K dim. de I'estimateur (nb de feuilles).

Pour « fixé, I'estimateur final optimise un critére colt-complexité :

X (x) = argmin R, (7%(x)). (7)

(#) k=1....k(n)
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RESULTATS REMARQUABLES

— Pour a fixé, I'arbre #X(x) est unique et le calcul est rapide !

Exemples :
@ a = o :le modéle sélectionné sera la racine;
@ a = 0 :le modéle sélectionné sera I'arbre maximal.

— Puisque n’importe quelle suite de sous-arbres emboités de
'arbre maximal a au max. K membres, toutes les valeurs
possibles de a peuvent étre groupées en m intervalles (m < K) :

lh =[0,a1] b= (a1,a2] ... Im=(am-1,+]

= Chaque «a € l; partage le méme sous-arbre optimal.
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PROCEDURE D’ELAGAGE

Raisonnement : impossible de parcourir ts les sous-modéles de
'arbre max. (nb sous-arbres exponent. * avec nb feuilles) =

@ on part de I'arbre maximal construit;

@ on considére une 18" valeur de « : conduit & sélectionner un
sous-arbre optimal de I'arbre maximal (cf équation (7)).

© a partir de ce sous-arbre optimal, on prend une autre valeur
de «a (+ grande) qui conduit a sélectionner un sous-arbre
optimal de ce sous-arbre.

© Et ainsi de suite... Cela crée une suite croissante de a;, !
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= Par construction, on obtient une suite \, de sous-arbres
optimaux emboités (de I'arbre maximal vers la racine).

Dans cette liste d’estimateurs, on choisit finalement @ (et I'arbre
optimal qui va avec) tel que

K(x) = argmin R, (75 (x)). 8)

(ﬁgé)n:a1ywaz

N>

Remarque : en pratique,

— il faut déterminer les valeurs possibles de !

— et @ est choisi en regardant cette erreur, mais moyennée via
une validation croisée (pr minimiser une erreur de généralisation).

Consistance : Gey et Nedelec (2005) ; Molinaro, Dudoit et
VanDerLaan (2004).
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PROPOSITION DES VALEURS DE «

La suite des valeurs de a est obtenue lors de la construction de
I'arbre maximal, avec le raisonnement suivant :
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TUNING : CHOIX DE LHYPERPARAMETRE «

— Tuning du modéle : sélection du parameétre de complexité a.
— Elagage : sélection de modéle pour un « fixé.
Comment choisir le meilleur paramétre de tuning o ?

Application a CART : une particularité... En effet, la validation
croisée induit des séquences d’arbres emboités différentes.

= Lerreur moyenne n’est pas calculée pour chaque sous-arbre
avec un nb de feuilles donné, mais pour chaque valeur «; fixée
issue de la séquence produite initialement par tout I'échantillon.

Le choix de « répond a I'équation (8) (ou I'erreur est moyennée) =
fournit le bon « et donc I'arbre optimal !

— En pratique, choisis 1°" point en-dessous de min+1SE
(Therneau : An Introduction to Recursive Partitioning Using the
RPART Routines).
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© 0o

FORMULATION ALGORITHMIQUE (V-fold)

Construction de I'arbre maximal Ty ;

Construction de la séquence Tk, ..., T1 d’arbres emboités
associée a une séquence de valeurs (a;);

© Pourv =1,.., V (ol v désigne le segment de I'échantillon

©0O0

initial servant a la validation),

e pr chqg nouvel éch. d’apprentissage, construire Tpa et estimer
la séquence d’arbres associée a la séq. des pénalisations «,
o estimation de I'erreur sur la partie validation de I'échantillon;;

Calcul de la séquence des moyennes de ces erreurs;
Lerreur minimale désigne la pénalisation aopt optimale ;
Retenir 'arbre associé a apt ds la suite initiale T, ..., T1.
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VALIDATIONS CROISEES DANS rpart

Pour amener plus de robustesse au choix du parametre de
complexité a, on procéde par validations croisées.

Principe de la validation croisée : meilleur compromis biais /
variance. On diminue la variance de I'estimateur en recherchant
une valeur réaliste de I'erreur basée sur plusieurs calibrations.

Dans le cadre de 'algorithme CART, cela consiste en les étapes :
@ Construire I'arbre maximal (modele complet) sur I'échantillon;
© Déduire les intervalles Iy, I, ..., I, & partir des a;.

© Construire la suite (8;) (pour se placer dans les intervalles
|k, @k+1]) telle que
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B = 0

B2 = Vajaz
Bm-1 = NUm-2am1
Bm = ©o

© Diviser I'échantillon d’'origine en s sous-groupes Gy, Go, ..., Gg
de taille s/n (n est la taille de I'échantillon de base).
© Sur chaque sous-groupe i :
@ construire I'arbre maximal sur I'ensemble des sous-groupes
sauf le groupe i, et déterminer les sous-arbres Tg,, Tg,, ..., Tg,,
e prédire la quantité d’intérét pour chaque observation du
groupe i dans chaque modele Tg,, 1 <z < m;
o calculer I'erreur pour chaque sous-arbre.
© Pour chaque B,, sommer les erreurs des G;. Prendre le
parameétre de complexité g d’erreur minimale, et choisir Tg
comme meilleur sous-arbre sur I'échantillon de base.
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e Premiere brique en Machine Learning : arbres de décision

@ Réponse catégorielle
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ARBRE DE CLASSIFICATION : Y DISCRETE

Supposons que Y € {A, B}.
Dans le cas discret, la quantité d’intérét est

mo(X) = Eg[1y=a|X=x] =P(Y =A|X =Xx)

Ici il faut adapter le critere d’homogénéité, donc la perte .
On considére classiquement de

@ l'indice de Gini,

@ I'entropie.
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ENTROPIE

La fonction d’entropie est classiquement définie pour p € [0, 1] par

f(p) = —p log(p).

Appliqué aux CART, dans un pb a 2 classes {A, B} pour Y, on
définit 'hétérogénéité du noeud t (convention 0 log(0) = 0) comme

Hi=-2 > liip} log(py),
I={A,B}

ou p{ est la proportion de la classe | dans le noeud t.

On maximise ~\, hétérogénéité, soit maxgi. Hi — (Hy, + Hy,).
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CONCENTRATION DE GINI

La concentration de Gini est définie pour p € [0, 1] par

f(p) =p(1-p).

Appliqué aux CART, on définit 'hétérogénéité comme

Ho= ), pi(1-p).

I={A,B}

Rqg:

- La concentration de Gini est la variance d’'une Bernoulli...

- Proportions remplagable par des proba. conditionnelles si proba.
a priori des classes connues (# proba. observées). Sinon, proba.
de chq classe estimées sur I'éch. (revient a prendre proportion).
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GRAPHIQUE DE LERREUR

Ds tous les cas, la quantité a optimiser sera convexe/concave.

= Zones intéressantes : extrémités de [0, 1].

118/217



AFFECTATION POUR PREVISION

Concernant I'affectation de I'observation a prédire a I'une des
classes, il y a donc 3 distinctions possibles en fonction de
l'information a disposition :

@ soit on affecte la classe la plus représentée dans la feuille,
@ soit on affecte la classe a posteriori la plus probable (au sens
bayésien) si I'on dispose de probabilités a priori (pas les

proba. de représentation dans I'’échantillon) des classes,

@ soit on affecte la classe la moins coliteuse si des co(its de
mauvais classement sont donnés.
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@ Premiere brique en Machine Learning : arbres de décision

@ Outils et mesures de performance des modéles
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REPONSE QUANTITATIVE

Les mesures classiques de performance d’'un modéle si Y est
quantitative sont :

@ I'Erreur Quadratique Moyenne (EQM, ou MSE) :

MSE(#(x)) = (i - 2 (x))?

i
@ |'Erreur Absolue Moyenne (EAM, ou MAE) :

MAE(#¥ (x)) = Z|Yi - 75 (x))]

Rq : évidemment, ces erreurs se mesurent sur un échant. test, 1L
des échant. ayant servi a construire et tuner/optimiser le modéle...
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REPONSE CATEGORIELLE : MATRICE DE CONFUSION

Dans un pb de classif., on utilise svt la matrice de confusion
comme mesure de performance = résume les indiv. mal classés

et ceux bien classés par le modele :

ACTUAL- ’
= =
Pos\T\wE NE&ATWVE

|

Negahve fosikive

PREDICTED
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REMARQUES

En utilisant cet outil, on peut calculer facilement :

@ le taux de mauvaise classification :

(FP + FN)/(FP + FN + TP + TN)

@ l'indice de sensibilité : TP/(TP + FN)
@ lindice de spécificité : TN/(TN + FP)

Ds la pratique, on optimise svt le modéle par rapport a 1 des 2
indices, qui mene a la prudence du modele (svt la spécificité, qui
mesure la prédiction d’'un événement rare...).
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LIMITES DE CETTE MESURE

Principalement 2 limites a I'utilisation de cette matrice :

@ dépendante d’un seuil d’affectation : pour classer les prév. du
modele, on définit ce seuil. Dans un pb a 2 classes, svt 0,5 =
bien connu que ce n’est svt pas seuil optimal (= ROC).

© ds un pb ol classes de Y sont largement disproportionnées,
le modeéle prédira tjs la méme classe et donnera 1 erreur de
classif. globalement trés faible... Peu réaliste, car souvent
c’est I'événement rare qu’il nous intéresse de prédire... Donc
en fait 'erreur sur cette prévision est maximale, puisque
'événement en question n’est jamais prédit!
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COURBE ROC ET AUC

ROC (Receiving Operator Curve) résume taux de VP (sensibilité)
et FP (1-spécificité) pour ts les seuils d’affectation :

Taux de VP

——— =
- T
- -
e Taux de WP sl de
- FP au nivean dun
-~ sauil de decision
” h -
4
rh —
! S5 Taux de WP at da FP
au nivesu d'un auire
! | seuil de décision
I
I
o Taux de FP

1

AUC (Area Under Curve) : € [0,5 (modele aléatoire) ; 1 (parfait)].
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AUTRES OUTILS : C-INDEX, F;-SCORE

Au lieu d'utiliser la matrice de confusion pour optimiser un modéle,
on peut aussi utiliser une mesure différente qui répond a une autre
logique...

@ le C-index (descendant de 'AUC...) : cf thése Anani
@ ex : article Pierrick;

@ F; score...permet de tuner les hyperparamétres en optimisant
ce score! (cf article Yohan Le Faou)
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e Premiere brique en Machine Learning : arbres de décision

@ Extensions et conclusion
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EXTENSIONS : AUTRES FONCTIONS DE PERTE ¢

no(x) = arg ﬂm()l(r)l Eo[®(Y,n(x)) | X =X]

— Estimation de moyenne :  mp(X) = Eo[Y | X = X]
Critére de division (MCO) :  &(Y,x(x)) = (Y — n(x))2.

— Quantile :  7p(x) = Qy(a| X =x) =infly : F(y| X =Xx) > a}
Po(y,m(x)) = aly —x(x)1 (y > n(x)) + (1-a)ly—m(X)[1 (y <n=(x))

— Estimation de densité de laloide Y :
d(Y,n(x)) = —log (Y, x), avec x la densité jointe de (Y, X).

= En pratique, version empirique de ces mesures pr I'estimateur!
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DONNEES MANQUANTES : LES SURROGATE SPLITS

Dans la pratique, on n'observe pas certaines variables explicatives
pour certains individus = on ne peut pas les faire descendre dans
I'arbre pour en déduire une prévision...

Dans ce cas, on impute la donnée manquante ou on utilise une
surrogate split (obligatoirement basée sur une autre covariable !).

Correspond a la division la + voisine de celle initialement choisie,
en termes de concordance des individus envoyés dans chacun
des noeuds fils = imite au mieux la meilleure d’origine, mesurée
par une mesure d’association entre 0 et 1 (1 est un cléne).

129/217



PROBLEMATIQUES CLASSIQUES A GERER

Probléme de biais de 'estimateur CART lorsqu’une variable
explicative catégorielle contient trop de modalités... Tendance a
attirer la régle de division a cette variable notamment.

Probléme lorsque unbalanced response : on se retrouve qu’avec la
racine et on ne segmente pas! Que faire si on a juste la racine ?...
cf https ://stats.stackexchange.com/questions/28029/training-a-
decision-tree-against-unbalanced-data

Probléme de censure, troncature...
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CONCLUSION SUR CART

Algorithme simple, résultat facile a interpréter (régles, fournit
pouvoir discriminant facteurs de risque).

Procédure statistique consistante théoriquement.

Méthode non-paramétrique, et invariante par transformation
monotone des covariables (rangs utilisés) = robustesse.

Adapté a la gestion de bc de var. explic. : sélection variables
“intégrée” a I'algo. et intéractions implicitement considérées.
Extensions possibles avec adaptation de la perte.

Algo récursif : peut passer a c6té de I'optimum global...

Instabilité aux données d’apprent. (variance estimateur) du
fait de structure hiérarchique = gagner en robustesse.
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UN MOT SUR LA ROBUSTESSE PREDICTIVE

Certaines techniques ont été développées afin de stabiliser la
prévision donnée par un estimateur arbre.

En effet, la construction d’'un arbre optimal peut varier fortement
quand bien méme le jeu de données initial varie peu...
= Proposer des estimateurs agrégés =\, variance estimateur!

Pour éviter de corréler les estimateurs simples qui composeront
I'estimateur agrégé, on peut intégrer par exemple

@ choix aléatoire des covariables considérées lors d’1 division;
@ tirage aléatoire de sous-jeux de données.
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UN MOT SUR LES STRATEGIES D’AGREGATION

Deux stratégies s’opposent dans le raisonnement :

— Stratégie d’agrégation aléatoire (bagging : boostrap
aggregating) : créer des échantillons, construire le modéle sur chq
échantillon, combiner les modéles (ex : type foréts aléatoires).

— Stratégie alternative, apprentissage incrémental (boosting) :
apprentissage sur 1 paquet, prévision sur paquet 2, puis
apprendre des exemples mal prédits du paquet 2, actualiser
modele, puis recommencer sur les paquets suivants = apprendre,
mémoriser (ex : GBM).
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LE BAGGING PLUS EN DETAIL
[FHOO], [Bre94]

Le bagging conduit structurellement & diminuer la variance d’'un
estimateur.

En effet, n’importe quelle estimateur peut s’écrire a I'aide d’un
développement de Taylor...Le premier terme étant la partie linéaire,
les termes suivants étant des termes d’ordre supérieur. Le bagging
ne touche pas au premier terme, mais considére I'espérance des
termes suivants... Faisant ainsi diminuer la variance !

Conclusion : plus la quantité a estimer est linéaire (probleme
simple et dimension raisonnable), moins le bagging est efficace !
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LE BOOSTING PLUS EN DETAIL
[FS97], [Fri01], [Sha03]

Le bagging conduit structurellement a diminuer la variance et le
biais d’un estimateur.
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e Bagging + randomization de CART : foréts aléatoires
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PRINCIPES DES RANDOM FORESTS

Agrégation d’estimateurs CART.

Lobjectif des foréts aléatoires est de proposer un estimateur
“moyenné” afin d’améliorer la robustesse de I'estimation de la
quantité d’intérét (\, variance estimateur agrégé).

Il s’agit d’intégrer une multitude de prévisions obtenues dans une
estimation finale. Approche intéressante pour 2 raisons
principales :

@ on peut dégager un classement robuste du pouvoir explicatif
de chacun des facteurs de risque,

@ sa consistance a été démontrée dans plusieurs articles.
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MAIS N'OUBLIEZ PAS...

“RF is an example of a tool that is useful in doing analyses of
scientific data.”

“But the cleverest algorithms are no substitute for human
intelligence and knowledge of the data in the problem.”

“Take the output of random forests not as absolute truth, but as
smart computer generated guesses that may be helpful in leading
to a deeper understanding of the problem.”

Leo BREIMAN.
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PREVISIONS : Y CONTINUE VS Y DISCRETE

Soit \A’, I'estimateur obtenu pour 'indiv. i par un CART maximal

(pour diminuer le biais).
On construit N arbres CART en modifiant I'’échantillon a chaque
fois. Pour chaque obs. i, 'estimateur foréts aléatoires vaut :

@ une moyenne dans le cas ou Y est continue :
1N
ORF {/CART
V= L2V
n=1
@ un vote majoritaire si Y est discrete :

YAF = a;gT;X(#yi%ART:k)
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e Bagging + randomization de CART : foréts aléatoires

@ Construction de la féret aléatoire
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RF = BAGGING + RANDOMIZATION

Les foréts aléatoires étaient basées sur plusieurs arbres CART.
Chacun de ces arbres est construit comme suit.

@ Construire un échantillon bootstrap de méme taille que
I'apprentissage (répliquer I'éch. selon mesure empirique) ;

@ Construire I'arbre CART sur cet échantillon bootstrap :
considérons qu’il y a k facteurs de risque, avec m << Kk :

e a chaque noeud, on tire aléatoirement m facteurs de risque
parmi les k disponibles;

e on cherche la division optimale basée sur ces m covariables;

@ ou s’arréte-t-on dans la construction (cf slide suivante) ?

© agréger ces arbres pour construire I'estimateur forét.

Remarque : m ne change pas entre les # arbres de la forét.
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TROIS STRATEGIES D’ELAGAGE

Chaque arbre est-il élagué ? On distingue 3 stratégies #

@ Laisser construire I'arbre maximal pour chacun des échant..
— Bon compromis volume des calculs / qualité des prév. :
faible biais et grande variance de chaque estimateur.

@ Construire un arbre d’au plus q feuilles — Cf plus loin...

© Construire I'arbre maximal a chaque fois, puis I'élaguer par
validations croisées — pénalise lourdement la quantité de
calculs sans gain substantiel de qualité de prévision...

Rq : stratégie (1) implémentée par défaut dans randomForest(.).
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BOOTSTRAP, AGGREGATION ET RANDOM FORESTS

On B B chuhilns bortiop (b

Kb don 4 fat)
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e Bagging + randomization de CART : foréts aléatoires

@ Force, corrélation et erreur de la forét
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ERREUR DE LA FORET

Lerreur associée a la forét dépend de 2 paramétres :

@ la corrélation entre les arbres de la forét : + cette corrélation
/", + l'erreur est grande ;

@ la capacité de chq arbre ds la forét & donner une estimation
proche de réalité (force) : + 'arbre est précis, — erreur gde.

Par rapport au paramétre de tuning “m”, on observe que
@ abaisser m réduit la corrélation et la force,
@ agrandir m augmente la corrélation et la force.

= Arbitrage a trouver sur m — minimiser erreur O(ut)-O(f)-B(ag)
Rq : 'autre parameétre de tuning est le nombre d’arbres de la forét.

145/217



LERREUR OOB

Au sein de la construction de chaque arbre CART de la forét, on
ne considére qu’une portion de I'échantillon bootstrap
correspondant = le reste constitue les données “out-of-bag”.

C’est sur ces données “out-of-bag” que sont calculées :
@ une estimation non-biaisée de 'erreur de I'arbre,
@ une estimation de I'importance des facteurs de risque.

Ici, pas de validation croisée pour avoir une estimation non-biaisée

de l'erreur : on prend les obs. et prévisions chaque fois qu’elles
sont dans I'éch. OOB — calcul erreur indiv. — moy. erreurs indiv.
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TIRAGE ALEATOIRE COVARIABLES CHAQUE ETAPE

— Randomization permet de diminuer la corrélation entre les
arbres (rappel : les arbres sont ensuite agrégés), et de traiter le pb
de covariables corrélées qui induisent un biais.

La variance de la moyenne de B estimateurs 1L (v.a.) vaut

B

Var(= ZB: = —Var(z Xp) =~

b=1

@l

En revanche, si ces arbres sont corrélés 2 a 2, de coefficient de
corrélation p, on obtient :

Var(—= Z Xp) pab + %oﬁ
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Ainsi,
@ sip — 0, alors on retrouve le cas initial,
@ sip — 1, alors on a beau ' B, il restera toujours po2.

Cela limite donc fortement I'avantage du bagging... !

La procédure de bagging est encore plus fructueuse si p (nb de
facteurs de risque) est grand !

Conclusion : lors de I'agrégation, on Y\ ainsi la variance de
I'estimateur tout en conservant le meme ordre de grandeur pour le
biais...I'erreur globale de I'estimateur diminue donc!

Gréce a cette randomization, la stratégie d’élagage peut étre +
élémentaire qu’en pur bagging (avec d’autres modeéles), on
pourrait adopter la stratégie (2) d’élagage...
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Preuve :
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REMARQUES ADDITIONNELLES

— La randomization permet de gérer également les covariables
corrélées.

— Limportance des facteurs de risque peut étre calculée de 2
fagcons différentes.

@ Mesurer I'importance par permutation des covariables
(shuffling).

— Permutation aléatoire des valeurs de la covariable entre
individus, puis on prédit : + la qualité de prévision est
dégradée, + le facteur de risque est important.

En pratique, on calcule I'erreur OOB du b€ arbre sans et avec
permutation de la covariable, puis on regarde I'écart. Puis on
moyenne sur tous les arbres.
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@ Utiliser pour chaque variable dans chaque arbre la valeur de
décroissance de l'indice de Gini.

En pratique : il est + simple de moyenner la N, de Gini car elle est
déja calculée lors de la construction de I'arbre.

— Gestion des données manquantes : imputées comme suit,
@ échantillon d’apprentissage : moyenne ou proximités ;
@ échantillon de valid. : # suivant que I'on observe Y ou non.

Rq : le fichier d’aide de randomForest détaille tout cela...
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RESUME SUR LE BAGGING

Finalement, le principe du bagging présente des avantages et des
inconvénients...

(+) Simple a mettre en oeuvre et a comprendre;
(+) Se programme facilement, glg soit la méthode ;
(+) Diminue la variance de I'estimateur;

(-) Temps de calcul parfois important : nécessité d’agréger un
grand nombre de modéles avant de stabiliser I'erreur OOB;;

(-) stockage de tous les modeles (mémoire...);
(-) Perte de l'interprétabilité, sorte de boite noire.
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e Bagging + randomization de CART : foréts aléatoires

@ Interprétabilité de modéles ensemblistes
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INTERPRETABILITE

Contrairement a des modéles simples de type régression linéaire
ou arbres de décision (donc paramétrique ou non), les modéles
ensemblistes sont difficilement interprétables...

En particulier, bien qu’il soit possible d’extraire une mesure
d’'importance des variables explicatives pour expliquer la réponse,
il est complexe de déterminer I'impact quantifié d’'une variation de
valeur d’'une covariable sur la réponse...
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METHODES

Il existe plusieurs techniques permettant d’améliorer
linterprétabilité d’'un modele ensembiliste.

On peut citer par exemple :

Essai 1 : extraire plusieurs arbres représentatifs de la forét, suite a
un clustering sur les arbres (Weinberg Al, Last M. Selecting a
representative decision tree from an ensemble of decision-tree
models for fast big data classification. J Big Data. 2019 ;6(1) :23

Essai 2 : Méthode de LIME
Essai 3 : Méthode de SHAP (Shapley)
Il'y a aussiles PDP, ICE, ...
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@ Agrégation de modéles par boosting
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LES GRADIENT BOOSTING MACHINE (GBM)
[SF12]

Nous avons vu un exemple de combinaison de modeles basé sur
une stratégie aléatoire (bagging : par ex. avec foréts aléatoires).
— Lenjeu de I'agrégation par boosting est tout a fait # : il s’agit
d’'une stratégie adaptative (boosting).

= Améliore I'ajustement par 1 construction adaptative séquentielle
d’estimateurs, puis une combinaison de ces estimateurs pour
éviter le surapprentissage.

Rq : les principes de bagging / boosting concernent tte
modélisation...mais ont principalement un intérét dans le cas de
modeles instables (ex : CART...)!
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EVOLUTION PAR RAPPORT AU BAGGING

On traite le probleme du biais de I'estimateur en plus de traiter la
réduction de variance.

En effet, 'agrégation par bagging ne corrige pas le biais... puisque
'espérance est un opérateur linéaire, et le biais est défini par une

espérance.

Or, dans le cas d’arbres individuels simples (“weak learner”), le
biais peut étre important.

= Le boosting construit une famille de modeéles récurrente :
chaque modele est une version adaptative du précédent.
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PROCEDURE DU BOOSTING

On peut écrire le boosting comme suit.

A la 1% étape, on estime le modéle my poury, & partir de x.
= On en déduit le vecteur d’erreurs e;.

A la 2°™¢ étape, on estime le modéle m; pour e, & partir de x.
= On en déduit le vecteur d’erreurs es.

On réitére ce procédé...et on obtient a I'étape k :

m")(x) = my (x) + ma(X) +... + mi(x) = m*ED(x) + m(x).
—— = S~——
~y € €k—1
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STRATEGIE ADAPTATIVE

Pour s’adapter de proche en proche, on donne + de poids dans
I'estimation suivante aux observ. mal prédites précédemment.

Intuitivement, I'algorithme concentre ses efforts sur les observ. les
+ difficiles & ajuster, tout en limitant l'overfitting par I'agrégation...

Les # algo. de boosting différent par leurs caractéristiques :
@ la fagon de pondérer I'importance des indiv. mal estimés;
@ la fagon de pondérer les modeéles lors de I'agrégation;
@ leur objectif (prédire Y réelle, binaire, ...));

@ la fonction de perte qui mesure I'erreur d’ajustement (+ ou -
sensible aux valeurs atypiques par ex.)
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ALGORITHME D’ORIGINE : ADABOOST

Au départ, cet algorithme est proposé pour un probléme de
discrimination a 2 classes.

Notons ¢ la fonction de discrimination, a valeurs dans {-1, 1}.

Algorithme :

@ Soit yp a prévoir (connaissant Xp), et z = {(x1, Y1), .-, (Xn, ¥n)}
un échantillon.

© Oninitialise les poids (équipondération au départ) :

w={wj=
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© De m=1aM (mestle m®™ modéle) :

o

Q
(8]
o

(5]

on estime 6, sur I'échantillon pondéré par w.

on calcule le taux d’erreur apparent : & = YL wills, (x)zy,-

. . N 1-¢
on calcule les logit relatifs au modéle m : ¢y = In(=2).

€

Ainsi, & /' = ¢y, \, = on pondérera + les bons modéles.

on met a jour les pondérations :

wj = Wj eXp(Cm 115,,,(X,‘)¢,Vi)

Ainsi, on pondeére + les observations mal classées...
m <« m+ 1, retour a I'étape 1 de la boucle.

© Résultat du vote :

~

®y(xp) = signe

M
Z Cm 6m(x0)}.

m=1
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Remarque : il faut vérifier a chaque étape que le modéle courant
fait mieux qu’une prévision aléatoire, i.e.

€ <0,5.

Effectivement, le poids ¢, du modéle correspondant devient
négatif sinon!

De nombreuses adaptations de cet algo. ont été proposés, avec
des fonctions de perte adaptées aux cas ou :

@ Y quantitative,
@ Y qualitative a plusieurs modalités,
° ..
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AUTRES PONDERATIONS

Parfois, on utilise des classifieurs pour lesquels il est difficile (voire
impossible) d’intégrer une pondération des observations...

La stratégie revient a créer aléatoirement des échantillons (un peu
comme en bootstrap), en procédant comme suit :

@ chaque modéle sera construit sur un nouvel échantillon;;

@ la proba. de tirer (avec remise) chaque observ. est
inversement proportionnelle a sa qualité d’ajustement dans
l'itération précédente.

C’est ce qu’on appelle des arcing classifiers (adaptively resample
and combine) (voir les travaux de Breiman).
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ADABOOST AVEC Y CONTINUE

On est donc dans un cadre de régression, ou Y est quantitative.

Algorithme :

@ Soit yp a prévoir (connaissant Xg), et z = {(x1, 1), ---» (Xn, ¥n)}
un échantillon.

@ Oninitialise un vecteur de proba. p par une loi uniforme
(équipondération) : p = {p; = 1/n}
© Pourm=1aM (mestle m®™ modéle) :
@ on tire avec remise dans z un échantillon z7, suivant p .

@ on estime ¢, sur z;.
@ on calcule sur I'échantillon initial z les quantités :

165/217



Im(i) = Q(yi» ®m(x:)), pour i = 1,..,n et Q la perte;
€m = Zipilm(i)
w; = g(In(i)) pi, avec g continue décroissante ;

on met a jour les proba. de tirage : p; = Siar

®© 6 6 0

© Prévision du modéle agrégeé : &M(xo) est la moyenne (ou
médiane) des prévisions ®,(xo), pondérée par des poids
In(1/Bm) (cf ci-dessous pour Bn).

Remarques :
@ Q :souvent perte quadratique, mais p-€ une autre fonction!

. 1=Im(i)
® fm = %, avec Ly = sup;Im(i), et g(Im(i)) = Bm "
@ Condition supp. ajoutée : arrét et réinitialisation a des poids

uniformes si €, < 0.5L, (erreur trop dégradée) ;

@ fBm :indicateur de la performance du prédicteur m sur z.
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VISION PAS A PAS D’ADABOOST

Comme nous I'avons vu, cet algorithme fonctionne pas-a-pas :
c’est la raison pour laguelle on I'appelle le Gradient Boosting
(déplacement : opposé de la pente de fonction a minimiser, cf
expansion de Taylor et algo. de Newton).

Une maniére d’écrire I'optimisation avec cette vision a I'étape m
(rappel : ¢ est lié a la performance du modéle) :

n
(Cm.ym) = arg(rrgin) ZO(y;, Smo1(x) + c5(xi,7))-
Y=

167/217



GENERALISATION : BOOSTING, GRADIENT ADAPTATIF

En d’autres termes, on construit une suite de modeles

m®)(x) = mE=1(x) + a £*(x)

ou
n

f*(x) = arg ;2)‘2 Z I(y,- - m(x)), f(X,-)) ,

i=

avec | fonction de perte, et ‘W un ensemble de weak-learners...

Rq : ces weak-learners sont svt des CART (“stumps”)...Gradient
Tree Boosting!
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PARAMETRES DE TUNING

Dans cet algorithme, voici les paramétres de tuning :
@ nombre d'itérations : combien d’étapes M considérer ?
@ profondeur des arbres, ...

@ “shrinkage” « € [0, 1] : assurer une convergence lente!
Plutot que €1 = y — my(x), on considere

€ :y—a/m1(x).

Rq:

- Algo. trés performant car peut corriger biais et variance.
Néanmoins, les multiples param. de tuning rendent la gestion du
surapprentissage difficile...

- Enreq. lin,, € 1L X = impossible d’apprendre de nos erreurs !
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XGBOOST

eXtreme Gradient BOOSTing
En...

En...
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ﬂ Réseau de neurones et Deep Learning
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UN PEU D’HISTOIRE

Réseaux de neurones sont une branche de I'lA (Intellig. Artific.)
qui a pour but de simuler le comportement du cerveau humain.

— Approche connexionniste (connaissance répartie), avec des
couches... :

@ entrée,
Q coeur,
@ sortie.

Ds les années 1970, mise en oeuvre difficile car puissance des
ordinateurs limitée = développement de I'approche séquentielle
ou symbolique — systémes experts a connaissance localisée.
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EXPERTISE HUMAINE

But : automatiser le principe de I'expertise humaine via 3
concepts :

@ une base de connaissances : propositions logiques
élémentaires,

@ une base de faits : données, observations,

© un moteur d'inférence : applique les regles expertes sur la
base des faits.

= En déduit de nv faits (expérience) jusqu’a réaliser I'objectif !

Pb : complexité...(algorithmiquement, et en termes de
modélisation)
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PRINCIPAUX RESULTATS UTILISES

Finalement, les réseaux de neurones se sont développés grace a
I'essor de l'informatique...

Et 'approche connexionniste a été relancée, grace notamment aux
deux résultats théoriques principaux suivants :

@ |'estimation du gradient par rétropropagation de I'erreur
(Hopkins, 1982) ;

@ l'analogie avec les modeéles Markoviens en mécanique
statistiqgue (Hopfield, 1982).

Remarque : large variété d’applications, technique complémentaire
de méthodes stats usuelles (MLE, ...).
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RESEAU NEURONAL

Réseau neuronal : association de neurones formels = créé un
graphe + ou - complexe d’objets élémentaires.

Les # réseaux se distinguent par 4 composantes :
@ organisation du graphe (couches, ...);
@ niveau de complexité (nb neurones, ...);
© type des neurones (transition, activation) ;
© objectif (apprentissage supervisé ou non, ...).
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0 Réseau de neurones et Deep Learning

@ Neurone formel et fonctionnement d’'un perceptron
multicouches
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LE NEURONE FORMEL

Défini sur la base du fonctionnement d’'un neurone biologique !
C’est un modéle caractérisé par :

@ un état interne, noté s € S;
@ des signaux d’entrée, notés xy, ..., Xp ;
@ une fonction d’activation :

P
s = h(X1,... Xp) = f(ao + ) ajx) = f(ao +a'x).
j=1

Voc : on appelle a le vecteur des poids, ag le biais du neurone.
Rq : les poids a sont estimés durant I'apprentissage : mémoire ou
“connaissance répartie” du réseau.
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TYPES DE NEURONE

# types de neurone se distinguent par leur fonction d’activation f :

@ type linéaire : f(x) = x
e type sigmoide : f(x) = (1 + &™)

o type seuil : f(x) = Mo 1oo[(X)

o type radiale : f(x) = |/ exp(~3x?)
@ type stochastique : f(x) = 1 avec proba (1 + e>/H)~", 0
sinon; ...

Rq : en data mining, les 2'' types de réseaux sont les + utilisés
car fonction d’activation est différentiable — adapté a un algo.
d’apprentissage impliquant la rétropropagation du gradient.
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DIFFERENCES DE SEPARATION

En fonction de 'activation choisie, les données sont séparées

différemment. Exemple ici : fonction linéaire VS fonction radiale...

PMC REF
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AUTRES FONCTIONS D’ACTIVATION

Fonction

Définition

Description

Intervalle de
définition

Identité

L'activation du neurone est transmise
directement en sortie

{—co+eo)

Sigmoidale
logistique

Une courbe en "S"

01

Tangente
hyperbolique

Une courbe sigmaidale similaire & la
dfonction logistique. Produit
généralement de meilleurs résultats
que la fonction logistique en raison de
sa symétrie. Idéale pour les
perceptrons multicouches, en
particulier, pour les couches cachées

(~ 141

Exponentielle

La fonction exponentielle négative

IO,+ODI

Sinus

sinf @)

S'utilise éventuellement si les données
sont distribuées radialement. N'est pas
utilisé par défaut

[01]

Softmax

EXp (‘Ii )

Zexplay)

Essentiellement utilisé (mais pas
uniquement) pour des taches de
classification. Permet de construire des
réseaux de neurones avec plusieurs
sorties nermalisées ce qui le rend
particuliérement adapté 4 la création de
classifications par les réseaux de
neurones avec des sorties
probabilistes.

[01]

Gaussienne

Ce type de fonction d'activation
isotropique Gaussienne n'est utilisé que
par les unités cachées d'un réseau de
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SCHEMA DE FONCTIONNEMENT

U
ozf/?*’g_’ |

)
A wersom J{’WQ

———
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RESULTAT FONDAMENTAL

Le résultat suivant est la base de I'approche de modélisation par
un réseau de neurones.

Théoreme d’approximation “universelle” :

Toute fonction réguliére peut étre approchée uniformément avec
une précision arbitraire et dans un domaine fini de I'espace de ses
variables par un réseau de neurones comportant une couche de
neurones cachés (en nombre fini et possédant tous la méme
fonction d’activation), et un neurone de sortie de type linéaire.
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LE PERCEPTRON MULTICOUCHES (PMC)

Intéressons nous ici a un réseau “statique” (ou feedforward, i.e.

pas de boucle rétroactive), dans un but d’apprentissage supervisé.

En voici quelques caractéristiques :

@ architecture : PMC composé de couches successives, ou 1
couche : ens. de neurones sans connexion entre eux;

@ fonction de transfert : un PMC réalise une transformation des
variables d’entrée :

Y = ®(Xy, Xo, ..., Xp; @),

avec @ = (ajq) prla j¢ entrée (x;) du k® neurone de I° couche.
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© généralisation : cas de la régression, avec un perceptron a
une couche cachée de g neurones, un neurone de sortie.
= La fonction de transfert s’écrit

Y =d(x;a,8) =Bo+ 8"z, avec zx = f(ako + ] x),

pour k = 1, ..., g (identifiant neurone ds couche cachée).

Usuellement, on a

@ en rég. : derniére couche avec 1 seul neurone, avec f = Id;
tandis que neurones couche cachée ont une fonct. sigmoide ;

@ en classif. binaire : neurone de sortie muni de la fonction
d’activation sigmoide;

@ en discrimination & m classes : m neurones de sortie, munis
de sigmoide.
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INTERPRETATION

D’un point de vue statistique, on peut donc voir les réseaux de
neurones comme 2 étapes distinctes :

@ du feature engineering automatisé,

@ une régression linéaire des nouvelles variables.

La premiére étape est processée par les couches d’entrée et les
couches internes du réseau, alors que la derniére étape est gérée
par la couche de sortie...

On pourrait donc récupérer les variables transformées juste avant
la couche de sortie, et remplacer le neurone de sortie par un autre
modele prédictif !
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Q Réseau de neurones et Deep Learning

@ Estimation des paramétres
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APPRENTISSAGE DU RESEAU

Supposons qu’on dispose d’une base d’apprentissage de n
observations, (x, x2, ..., x%; yi)i=1....n.

Prenons le cas de Ia régression (généralisable a tte fonction de
perte dérivable, dc aussi a la discrimination cf Gini) et le réseau a

@ une couche cachée a g neurones,
@ une sortie linéaire.

= Les parametres (poids) sont optimisés par moindres carrés :
I“apprentissage” minimise donc la perte quadratique

Zo, a.p) = Z( (xi; @, 5))?,
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FONCTION DE PERTE CONVEXE - CLASSIFICATION

Dans le cas de |la classification, nous allons choisir 'entropie croisée. Dans le cas
binaire l'entropie croisée est définie par
Erreur(f(x), y?) = —y@ log f(x?) — (1 — y?) log(1 — f(x)).

¥
5 5
% 4 $4 |
w y= 1 w =U
O3 O3
(&] (&]
w ) y
‘a2 ‘82
/
o o ;
€ c
wl 1
85 0.2 Mf(x) 0.6 0.8 . 8o o0z oa flx)0s  ©8 1.0

Quand y=0, l'entropie croisée est d'autant plus élevée que flx) est proche de 1.
Réciproquement, quand y=1, l'entrople croisée est d'autant plus grande que la

prédiction est proche de 0.
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ESTIMATION : EVALUATION DES GRADIENTS

Les algorithmes utilisés pour I'optimisation sont généralement
basés sur une évaluation du gradient par rétropropagation.

On détaille I'algorithme le plus utilisé : la rétropropagation de
l'erreur!

Consiste en évaluer la dérivée de la fonction de colt en une seule
observation a la fois par rapport a 'ensemble des parametres,
puis ajuster les parametres, puis réévaluer avec les nouveaux
parametres sur une nvelle observation, et ainsi de suite.

Notons zxj = f(ako + a[x,-), etz = (zi, ..., Zig)-

Ainsi, z; sont les valeurs pour I'individu i dans chaque neurone de
la couche cachée, et z4; la valeur de I'individu i dans le neurone k.
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Etudions les dérivées partielles de I'erreur :

0Q _ Ayi—d(xia.p))? _ (i~ (Bo +B"2))?
OBk OBk 9Bk
~2(y; - (%)) (B"z1) zi
= 0jZi

Qi A(yi—(Bo+BTz))* _ A(yi—(Bo + BT (f(ako + @] x)))?
Gakj N Bakj N 8czkj

= =2(yi— (%)) (87 2)) Br f (f xi) Xj = 6 B f (e xi) i

= Ski Xjj

— 8 : terme d’erreur sur chaque neurone caché pr l'indiv. i.
— ¢; : terme d’erreur du modele courant a la sortie pr I'indiv. i.
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Ces deux termes vérifient les équations dites de rétropropagation
de I'erreur. On pose

Ski = f,(OJZX,'),Bk 0

= Pour estimer les valeurs des gradients, on a donc besoin
d’évaluer §; et sy;.

Cela se fait en 2 étapes :

@ une passe avant : valeurs courantes des poids permet de
déterminer la sortie du réseau ®(x;);

@ puis une passe retour : avec ®(x;) et les valeurs courantes

des poids, on évalue d;, puis sk par rétropropagation des ;...
On obtient ainsi I'évaluation des gradients. Reste a optimiser.
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ALGORITHMES D’OPTIMISATION

On sait évaluer les gradients = reste & utiliser un algo adapté !

+ simple : utilisation itérative du gradient (e.g.Newton-Raphson) :
en tout point de I'espace des paramétres, le vecteur gradient de Q
pointe dans la direction de I'erreur croissante = suffit de se
déplacer dans le sens opposé pour \, Q! Ainsi,

(k1) g0 0Q;

iaﬁkr
(+1) (0 Qi
@ = @7 Z (rl)
,aa/

7 : taux d’apprentissage (schéma minimisation f convexe).
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APPLICATION : ALGORITHME DE RETROPROPAGATION
ELEMENTAIRE DU GRADIENT

Initialisation :
Tirage aléatoire uniforme sur [0, 1] pour les poids aj (normaliser
dans [0, 1] les données d’apprentissage).

Boucle :
@ Tant que (Q > erreurMax) ou (niter < niterMax), faire
e ranger la base d’apprentissage dans un nouvel ordre aléatoire,
e pour chaque indiv. i = 1, ..., n, faire
o calculer (i) = y; — ®(x', .., x"; (a)(i— 1)) en propageant les
entrées vers l'avant;
@ l'erreur est rétropropagée dans les # couches pour affecter a
chaque entrée une “responsabilité” dans I'erreur globale;
@ mise a jour de chaque poids ajq(i) = aju(i— 1) + Aaje(i).
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Q Réseau de neurones et Deep Learning

@ Paramétrage du réseau
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REMARQUE SUR LE TAUX D’APPRENTISSAGE

Le taux d’apprentissage (learning rate) est un paramétre de tuning.

Il peut
@ soit étre fixé par I'utilisateur au début de I'algorithme ;
@ soit varier en cours d’exécution.

Si T est grand, alors on converge + vite vers une solution, mais elle

est moins précise.
Et inversement.
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PARAMETRES D’UN RESEAU DE NEURONES

Si on récapitule, on doit spécifier/ déterminer...
@ ...variables d’entrée et de sortie (leur faire subir d’éventuelles
transformation de normalisation) ;
@ ...architecture du réseau :

@ nb de couches cachées : aptitude a traiter des non-linéarités ;
@ nb de neurones par couche cachée;

= Impacte le nb de param. a estimer!

© ...3 autres paramétres : erreur max. tolérée, nb d’itérations
max. de I'algo, un terme éventuel de régularisation (“decay”, a
intégrer dans la fonction de colt = Ridge, norme 2 des
poids) ;

© taux d’'apprentissage .
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COMPLEXITE D’UN RESEAU DE NEURONES

Les 2 choix sur le nombre de couches cachées, et le nombre de
neurones par couche cachée, jouent sur la complexité du réseau.

= Donc ces choix jouent sur la recherche du meilleur compromis
biais-variance de I'estimateur par réseau neuronal...

= Jouent donc également sur I'arbitrage qualité d’adéquation /
qualité prédictive.

En pratique, on ne régle pas simultanément ces parametres : on
cherche a contréler le phénomeéne de surapprentissage = on fera
des échantillons bootstrap, ou des validations croisées, ou
échantillon test, pour estimer I'erreur.
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REGLAGES

Pour ce qui concerne...

— ...la durée d’apprentissage (maxit dans R) : arréter par ex
I'apprentissage lorsque I'erreur de validation réaugmente.

— ...le nb de couches : d’aprés le théo. d’approx. univ., on peut se
restreindre a un petit nb de couches cachées (1 ou 2 max.).

— ...le nb de neurones par couche cachée : minimiser I'estimation
de l'erreur de prévision par validations croisées par exemple.

Conclusion : a chaque architecture spécifiée correspond un réseau
de neurones optimal. On fait varier ensuite les param. : on choisit
au final 'optimal des optimaux (comme CART avec I'élagage).
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0 Réseau de neurones et Deep Learning

@ Deep learning et autres types de réseaux
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LE DEEP LEARNING ?

Le Deep Learning n’est rien d’autre qu’un réseau de neurones
ultra complexe.

llya
@ énormément de couches,
@ et énormément de neurones.

Cela implique des millions de paramétres potentiels, et ne peut se
calibrer gu’en cas de données gigantesque...
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CONCLUSION SUR LE DEEP LEARNING

Comme on peut s’en douter, il n’est en fait pas du tout facile de
bien se servir d’un réseau Deep Learning...
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TYPES DE RESEAUX NEURONAUX

1 multitude de types de réseaux, avec des caractéristiques # :
boucles de rétro-apprentissage, ...

© Backfed Input Cell
Input Cell

B Noisy nput Cell

@ ridencen

© -Probablistic Hidden Cell

@ spiking Hidden Cell

@ outputcen

© watch input Output Cell

@ Recurrent Cell

@ wemory cet

@ oifferent Memory Cell
Kernel

© Convolution or Pool

Amostly complete chart of

Neural Networks ..o

©2016 Fiodor van Veen - asimovinstitute org

TATAN
X WX

Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF)

> Ser ot

XA

i
WA
a

Long/ Short STM) ~ Gated Recurrent Unit (GRU)

VY VY VY

Auto Encoder (AE)  Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Markov Chain (MC)

7NN

by
4
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TYPES DE CONNEXION

d aussi une multitude de types de connexions :

Connexions complétes
— Poids: 2*6= 12

Connexions locales
— Poids : 2*3= 6

Poids partagés (réseaux
de convolution)

— Poids : 3
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CONCLUSION GENERALE
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Some characteristics of different learning methods.
Key: @= good, © =fair, and @=poor.

Characteristic Neural SVM CART GAM KNN, Gradient
Nets Kernel Boost
Natural handling of data
of “mixed” type o o o ° L °
Handling of missing val-
ues [ ] [ ] ] ° ° °
Robustness to outliers in
input space o o L4 ° °
Insensitive to monotone
transformations of in- L4 ° L4 L4 L4 °
puts
Computational scalabil-
ity (large N) L] L] L L L] L]
Ability to deal with irrel-
evant inputs L] L] L ° °
Ability to extract linear
combinations of features hd b ° °
Interpretability
[ ] [ ] [ ] [ ] °
Predictive power
° [ ] [ ] [ ] [ ] °
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On peut aussi mentionner les points suivants, caractéristiques des
méthodes d’apprentissage statistiques :

+ non-paramétrique,

+ peu d’hypotheses,

+ “data-driven”,

+ faible biais normalement,

- instabilité (potentielle large variance),
- gestion du surapprentissage,

- ressources informatiques,

- interprétabilité.

Notions-clefs retenus du cours ?
Retours sur le cours ? (contenu, TP, ...)
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QUELS MODELES POUR QUELLES APPLICATIONS ?

scikit-learn
algorithm cheat-sheet

classification

clustering

dimensionality
reduction
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NOTIONS PHARES DU COURS

Videos Deep Learning (cf dossier mac mes videos)
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scikit-learn
algorithm cheat-sheet

classification

few features
should be
important

dimensionality
reduction
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ANNEXES
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Débutant Intermédiaire

Niveau de
mobilisation du

management
Prise en compte des
enjeux, KPI

Maturité des
modes de
fonctionnement
Désiloisation, Test &
Learn

Maturité de
I'approche
organisationnelle
Déploiement des
capacités, intégration
online/offline

Compétences
Disponibilité et maturité
des compétences

Source: entretiens, analyse BCG

POSITION DES ASSUREURS

Automobile

Banques

Télécom

Automobile
Banques

Luxe, FMCG
Télécom !

Automobile
Banques

Luxe, FMCG

Télécom

Automobile  »

Banques

Télécom

o Prise de conscience des enjeux au niveau Comex et mise er

place d'un plan de transformation depuis 12-18 mois

A date seule une partie du périmétre de business
véritablement adapté (typiguement Auto et IARD dans certa
cas)

o Progreés collectif sur les approches fonctionnelles par la mise

en place de plateaux cross-fonction

Pas encore d'alignement structurel entre fonctions (parcours
de carriére, KPlIs croisés etc.)

Pas de logique systématique Test & Learn/POC - les acteur
plus avancés sont par exemple les banques

o Réorganisation dans les 12 derniers mois permettant

I'intégration du numérique dans la fonction marketing

.~ GSS ] o A terme intégration du canal online dans I'écosystéme agenc

—les GSS y sont en avance

e Bien couverts sur les compétences E-business et Digital

Marketing mais besoin de les transformer pour mieux
répondre aux enjeux numériques
Priorité de recrutement dans le Big data
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Les compétences

COMPETENCES BIG DATA

Activités spécifiques

Les compétences

Activités spécifiques

E-business

Activités de vente sur internet
(web, site propre, sites tiers)

Digital Customer
Experience

Design des interfaces
et parcours digitaux

Digital Branding,
Marketing

Activités marketing liées aux
canaux digitaux
(web, réseaux sociaux)

Digital content

Creéation de contenu, de nouveaux

produits/ services digitaux,
digitalisation de produits/services
existants

Source: entretiens, analyse BCG

E-commerce
E-merchandising and site
optimization
Omnichannel/Multi-channel
strategy

UX designer / ergonome
Web developers

Social media marketing
(community mgr / E-reputation /
Advocacy Marketing)

Traffic acquisition (SEO, SEM,
emailing, comparators,
partnerships, affiliates)

Digital branding (display,
video)

Programmatic / Real Time
Bidding

E-CRM

Digital product or service
manager

Web / App Editor

Digital Innovation / new digital
product conception

Big Data & Analytics

Collecte, analyse
et exploitation des données

Mobile interfaces

Ensemble des interfaces propres
aux canaux Smartphones et

tablettes

Digital tools

Développement et maintenance
des outils et logiciels digitaux
permettant la transformation
numérique en interne comme en
externe

Digital support

Ressources en support
des activités numériques

Data scientist

Web Analytics

Data quality
Business Intelligence

Mobile app / msite developer
Mobile UX
Mobile data / geolocalisation

Data technology (Hadoop, )

E-CRM (Neolane, Unica,

Digital Front-Ends (Salesforce,
)

Cloud
Digital security

Digital Recruting
Digital legal
Digital purchasing

214/217



ASSUREURS SUR CES COMPETENCES ?

Les Maturité de la compétence par rapport Les Maturité de la compétence par rapport
compétences aux enjeux compétences aux enjeux
Assurance

Luxe, Automobile

GSA FMCG

Digital Customer
Experience

Assurance, Banques

| Télécom GSS

Assurance, Banques

GSA, Luxe, Automobile

/ Télécomn GSS
A

Digital Branding
& Marketing

Digital content

Luxe, Automobile
/

Assurance, Banques

Téléoom ,/GSS,FMCG

Assurance, Banques, telecom

GSA, GSS Loxe, MGG
/ IXe,
\ / u. eA

Source: entretiens, analyse BCG

Big Data &
Analytics

Mobile
interfaces

Digital tools

Luxe, Automobile Télécom, Banque
e Gss

GSAK#= S e —]
Assurance, Banques
Luxe, Automobile, GSA /
" FMCG  Télécom / GSS
T

Assurance, Banques
GSA, FMCG, Télécom \
\ \\

Luxe, Al &

Luxe, Automobile,
GSA, Télécom

Assurances, Banques
a— - GSS,FMCG
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