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STRUCTURE DU COURS

Volume global de 24h, prenez l’ordinateur chargé ! (TP)

Organisation pratique :

12h de CM (6 séances de 2h), avec comme séances
1 - Notions statistiques introductives, réduction de dimension
et lien avec l’assurance
2 - Philosophie de l’apprentissage statistique
3 - Algorithme CART
4 - Algorithme des Forêts Aléatoires
5 - Algorithme Gradient Boosting
6 - Réseaux de neurones
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12h de TD/TP en R (6 x 2h) :
1 - Réduction de dimension en paramétrique
2 - Méthodes CART
3 - Méthode ensembliste, exemple Random Forest
4 - Introduction aux GBM - les Gradient Boosting Trees
5 - Implémentation approfondie des GBM
6 - Réseaux de neurones

Sanctionné par un projet en R : résolution d’une
problématique opérationnelle avec de vraies données.
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1 Introduction au problème statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension

2 Actuariat - données et assurance

3 Philosophie de l’apprentissage statistique

4 Première brique en Machine Learning : arbres de décision

5 Bagging + randomization de CART : forêts aléatoires

6 Agrégation de modèles par boosting

7 Réseau de neurones et Deep Learning
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BIBLIOGRAPHIE - EXEMPLES

Livres :
- An introduction to Statistical Learning, (with Applications in
R), ;James, Written, Hastie, Tibshirani
- The Elements of Statistical Learning : Data Mining, Inference and
Prediction ; Hastie, Tibshirani, Friedman
- Classification & Regression Trees ; Breiman, Friedman, Olshen,
Stone
- Artificial Intelligence : A Modern Approach ; Russell and Norvig
- Speech and Language Processing ; Jurafsky and Martin
- Pattern Recognition and Machine Learning ; Bishop C.
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1 Introduction au problème statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension

Motivation statistique des modèles d’apprentissage
Estimation et grande dimension
Extrapolation de la statistique classique (échantillons
raisonnables) aux grands échantillons
Notions de biais et variance d’un estimateur
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CONTEXTE CLASSIQUE D’ETUDE DES RISQUES

L’analyse d’engagements d’un assureur nécessite de comprendre
l’impact de caractéristiques X sur le risque Y .

Les bases de données des assureurs comportent généralement

les caractéristiques de l’assuré,

les options du contrat,

les conditions de marché.

Informations X jouent un rôle crucial dans les prév. de sinistralité Y
⇒ méthodes doivent tenir compte de ces caractéristiques
(historiquement modélisation paramétrique par régression).
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GENERALITES

Pourquoi modéliser?
⇒ A partir d’une série d’observations, phénomène trop complexe
pour une description analytique par un modèle déterministe...

Objectif en statistique : modélisation, parfois décomposable, pour
1 explorer : décrire variables, leurs liaisons, positionner obs. ;
2 expliquer : tester l’influence d’une variable ds un modèle

supposé connu ;
3 prévoir et sélectionner : un meilleur ensemble de prédicteurs.

Historiquement, modèles paramétriques avec var. expl. + bruit⇒
inférer les paramètres depuis les observ. en contrôlant au mieux
les propriétés (comportement) de la partie aléatoire.
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MOTIVATION DU COURS

Observons n réalisations de (X,Y) ∈ Rp+1.
D’habitude, on considère que

le rapport des dimensions (n, p) est raisonnable,

les hyp. du modèle sont vérifiées (échantillon/résidus
supposés suivre des lois sous la forme d’une famille connue),

Alors les techniques statistiques tirées du modèle linéaire général
sont optimales (max. de vraisemblance)... Avec des échantillons
de taille restreinte⇒ difficile de faire beaucoup mieux.

Mais dès que hyp. distributionnelles ne sont pas vérifiées /
relations entre les variables ou la variable à modéliser ne sont pas
linéaires, ou encore dès que le volume des données est important,
d’autre méthodes viennent concurrencer la stat. classique...
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1 Introduction au problème statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension

Motivation statistique des modèles d’apprentissage
Estimation et grande dimension
Extrapolation de la statistique classique (échantillons
raisonnables) aux grands échantillons
Notions de biais et variance d’un estimateur
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PARAMETRIQUE VS NON-PARAMETRIQUE

Cadre : on veut estimer 1 fct. m, par ex. m(x) = E[Y |X = x], ou
m(x) = P(Y = 1 |X = x).

Estimation paramétrique : on cherche m parmi une famille
indexée par un param. de dim. finie→ ex : rég. lin.,
m(x) = a + bx. Un candidat s’identifie à 2 paramètres (a, b).

Estimation non paramétrique : pas d’hypothèse (ou bc −),
cherche m(x) parmi ttes les fonct. possibles (dim. infinie)⇒
décompositions dans des bases fonctionnelles (ex GAM) :

y = m(x) =
∞∑

k=0

wk gk (x) et donc m̂(x) =
h?∑

k=0

ŵk gk (x)
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LA DIMENSION, FACTEUR LIMITANT

Paramètres importants du problème : ses dimensions... Notons :

n nombre d’observations ou taille de l’échantillon,

p nombre de variables observées sur cet échantillon.

→ n grand : pas de pb a priori, bien au contraire (théo asymptot.) !
→ p grand pose problème (fléau de la dimension) !

L’estimateur du max. de vrais. conserve sa prop. de normalité
asymptotique si p2/n → 0 lorsque p, n → ∞ (Portnoy, 1988).
⇒ Données “massives” : p >

√
n.

Concept de sparsité ' dimension effective⇒ compter le nb de
var. expl. réel du pb, à défaut de compter le nb total de var. expl. !
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1 Introduction au problème statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension

Motivation statistique des modèles d’apprentissage
Estimation et grande dimension
Extrapolation de la statistique classique (échantillons
raisonnables) aux grands échantillons
Notions de biais et variance d’un estimateur
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THE P-VALUE PROBLEM

Arthur CHARPENTIER - Big Data (a Personal Perspective)

Statistics, Significance and p-values
“A key issue with applying small-sample statistical inference to large samples is
that even minuscule e�ects can become statistically significant. The increased
power leads to a dangerous pitfall as well as to a huge opportunity. The issue is
one that statisticians have long been aware of : the p-value problem.Chatfield
(1995, p. 70) comments, question is not whether di�erences are significant (they
nearly always are in large samples), but whether they are interesting. Forget
statistical significance, what is the practical significance of the results ?”
Mingfeng Lin, Henry Lucas, Jr. et Galit Shmueli , 2010 galitshmueli.com

“Are there times, I ask, when you just have too much data ? When it gets in the
way and confuses things ? He seems taken aback by this line of questioning. More
data is always better, he says.” Stephen Baker, the Numerati.

33

Source : blog d’Arthur Charpentier.
Idée : bonne puissance de test implique qu’1 gd échantillon (n
grand) fait systématiquement conclure à un effet significatif d’un
facteur de risque, quand bien même cet effet serait négligeable...
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RAPPEL SUR LA PUISSANCE D’UN TEST

On peut résumer le rôle des probabilités de bonne et mauvaise
décision dans le tableau suivant (β est la puissance du test) :

62 Chapitre 5 - Tests d’hypothèses

qui peut coûter cher en image de marque comme en coût de maintenance.

• essais thérapeutiques : on peut adopter un nouveau traitement moins e�cace, voire
pire que l’ancien, ou se priver d’un nouveau traitement plus e�cace que l’ancien.

• finance : si on décide à tort que l’on peut lancer l’opération, on risque de perdre
beaucoup d’argent ; si on décide à tort de ne pas lancer l’opération, on peut se priver
d’un bénéfice important.

• santé : si on interdit la vente de viande de boeuf alors qu’elle ne présente aucun risque,
on provoque injustement la faillite des éleveurs et des abattoirs ; si on autorise cette
vente alors qu’elle présente un risque, on peut transmettre la maladie de Creutzfeldt-
Jacob à l’homme.

• justice : on peut condamner un innocent ou acquitter un coupable.

A toute décision correspond une probabilité de décider juste et une probabilité de se
tromper :

• la probabilité de l’erreur de première espèce, qui est la probabilité de rejeter à tort H0,
est notée ↵ et est appelée seuil ou niveau de signification du test. C’est la même
terminologie que pour les intervalles de confiance, ce qui n’est pas un hasard, comme
nous le verrons plus loin. Dans certains contextes, cette probabilité est appelée risque
fournisseur.

• la probabilité de l’erreur de deuxième espèce est notée 1 � � et est parfois appelée
risque client.

• � est la probabilité de décider H1 ou de rejeter H0 à raison. Elle est appelée puis-
sance du test.

• 1 � ↵ est parfois appelée niveau de confiance du test.

Le tableau 5.1 résume simplement le rôle de ces probabilités.

Vérité H0 H1

Décision
H0 1 � ↵ 1 � �
H1 ↵ �

Table 5.1 – probabilités de bonne et mauvaise décision dans un test d’hypothèses

L’idéal serait évidemment de trouver une procédure qui minimise les deux risques
d’erreur en même temps. Malheureusement, on montre qu’ils varient en sens inverse, c’est-
à-dire que toute procédure diminuant ↵ va en général augmenter 1�� et réciproquement.
Dans la pratique, on va donc considérer que l’une des deux erreurs est plus importante
que l’autre, et tâcher d’éviter que cette erreur se produise. Il est alors possible que l’autre
erreur survienne. Par exemple, dans le cas du procès, on fait en général tout pour éviter
de condamner un innocent, quitte à prendre le risque d’acquitter un coupable.

On va choisir H0 et H1 de sorte que l’erreur que l’on cherche à éviter soit l’erreur de
première espèce. Mathématiquement cela revient à se fixer la valeur du seuil du test ↵.
Plus la conséquence de l’erreur est grave, plus ↵ sera choisi petit. Les valeurs usuelles de
↵ sont 10%, 5%, 1%, ou beaucoup moins. Le principe de précaution consiste à limiter
au maximum la probabilité de se tromper, donc à prendre ↵ très petit.

Risque / Erreur 1ère espèce : décider H1 vraie alors que H0 vraie
(proba. α).

Erreur seconde espèce : décider H0 vraie alors que H1 vraie
(proba. erreur de seconde espèce : 1 − β).

15 / 217



La puissance β dépend
1 du nombre d’observations (d’individus),
2 du risque α : en general quand α↗, la puissance β↗ aussi :

on ne gagne pas partout !
3 et de l’ampleur de l’effet (différence entre les 2 groupes pour

un essai clinique par ex.) relativement aux autres grandeurs.

Remarque 1 : puissance statistique β permet de calculer le nb
d’observations nécessaire dans une étude (on fixe β désirée, le
risque de 1ère espèce et les paramètres associés aux groupes).

Remarque 2 : calcul de la puissance peut s’appliquer à grand
nombre de tests statistiques (comparaison de moyennes,
comparaison de proportions, modèle logistique, modèle de
régression, ...), lorsque l’hyp. alternative est assez restrictive.
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ILLUSTRATION AVEC UN TEST DE STUDENT

Peut servir comme test sur les coefficients d’une rég. linéaire.
Même avec un effet faible (1%), on dispose souvent en assurance
de + de 10 000 observ., donc d’une bonne puissance...
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AUTRE FORMULATION DU MEME PB :
FALSE DISCOVERY RATIO (FDR)

Le test de significativité,

H0 : βk = 0 VS H1 : βk , 0

est basé sur le test de Student, issu de la statistique tk = β̂k
seβ̂k

.

Cette statistique suit une loi de Student, T, à ν degrés de liberté
(où ν = d + 1, avec d le nombre de paramètres) : T ∼ tν.

La p-valeur du test correspond à P(|T | > |tk |).

En grande dimension, l’intérêt est limité car le FDR est grand...
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Exemple : avec un niveau de significativité de 5%, 5% des
variables sont faussement significatives !

Application : supposons que nous disposons de 100 variables
explicatives, avec seulement 5 d’entre elles réellement
significatives...

→ Normalement, ces 5 variables passeront le test de Student.
→ Mais 5 autres le passeront aussi (test faussement positif)⇒ 10
variables sont donc détectées significatives !

⇒ Le FDR est de 50%!

Pour corriger cet effet, on peut consulter [BH95]...
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AUTRE EXEMPLE ET CONCLUSION

Un coefficient de corrélation égal à 0,002 est significativement
différent de 0 si n = 106, mais il est totalement inutile...

“A researcher might choose to retain a causal covariate which has
a strong theoretical justification even if is statistically insignificant”

“Statistical significance plays a minor or no role in assessing
predictive performance. In fact, it is sometimes the case that
removing inputs with small coefficients, even if they are statistically
significant, results in improved prediction accuracy” (Shmueli,
2010)
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1 Introduction au problème statistique : fléau de la dimension et
convergence des estimateurs, réduction de dimension

Motivation statistique des modèles d’apprentissage
Estimation et grande dimension
Extrapolation de la statistique classique (échantillons
raisonnables) aux grands échantillons
Notions de biais et variance d’un estimateur
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ERREUR D’UNE MODELISATION

On peut décomposer l’erreur dans la modélisation de m(x) :

Erreur de spécification + Erreur d’estimation du modèle.

→ Erreur spécification : vient d’hyp. sur la classe d’estimateurs
de la fct m. Inmesurable par déf. puisque m inconnue.

→ Erreur d’estimation du modèle (si le modèle est “vrai”, cad
bien spécifié). Erreur d’autant + importante que la technique est
compliquée et/ou nécessite beaucoup de données.

Rq : un modèle non paramétrique a une erreur de spécification '
0, au prix d’une éventuelle inflation de l’erreur d’estimation.

22 / 217



DECOMPOSITION DE L’ERREUR D’ESTIMATION

Soit un estimateur θ̂ (var. aléatoire) de θ.

On a coutume de considérer comme mesure d’erreur d’estimation
le risque quadratique d’un estimateur (MSE : erreur quadratique
moyenne ; ou MSEP : MSE sur de nvelles données n’ayant pas
servi à construire l’estimateur), par

MSE(θ̂) = E[(θ̂ − θ)2].

Cette erreur se décompose en 2 termes, biais et variance :

MSE(θ̂) = E[(θ̂ − θ)]2 + Var(θ̂),

soit approximativement son biais au carré plus sa variance.
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Globalement, + un modèle est complexe, + son biais diminuera et
+ sa variance grandira.

⇒ Il faut optimiser le dosage entre biais et variance !

⇒ Cela revient à contrôler la complexité du modèle !

Ex : contrôler le nb de variables (explicatives) dans le cadre
paramétrique⇒ a conduit à la déf. de critères de sélection tels
que le Cp de Mallows, Akaïke (AIC), Schwartz (BIC), ...

Rq : hormis la classe, choix du bon modèle dans une classe est
primordial. Pb d’optimisation doivent donc prendre en compte la
complexité de la classe dans laquelle la solution est recherchée.
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LIEN ENTRE CES NOTIONS

Quelque soit la méthode, tous les auteurs soulignent l’importance
de construire des modèles parcimonieux (dimension raisonnable).

En effet + un modèle est complexe, + il est flexible⇒ faible erreur
d’ajustement (bon “fit”)⇒ synonyme d’un biais faible...

Par contre ce modèle peut s’avérer défaillant pour généraliser,
s’appliquer à des données nouvelles (synonyme de gde variance).

⇒ Combinaison de modèles (bagging, boosting) contourne ce
pb au prix d’une↗ du volume de calculs et de l’interprétabilité.
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2 Actuariat - données et assurance
La révolution numérique : nouvelles données en assurance
Impact du Big Data sur le secteur assurantiel
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DEFIS STATISTIQUES

L’arrivée des Big Data a permis la découverte pour le “grand
public” de méthodes statistiques fondées sur l’apprentissage
statistique (Machine Learning quand appliqué en pratique).

Mais il faut garder en tête que
1 il ne faut pas créer une usine à gaz...
2 un modèle statistique est d’autant + robuste qu’il est simple,
3 ces méthodes ne sont pas encore parfaitement adaptées à la

gestion de tt type de données.

⇒ Beaucoup de travail préalable à faire avant un emploi judicieux !
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BIG DATA, QU’ES A QUO?

Big Data, définition simplifiée : données non traitable en une passe
et dans un temps raisonnable sur une station de travail.

Deux époques :

< 2005, ordinateurs 32-bit. Taille n > 107, p > 100 = 8Go.
> 2005, ordinateurs 64-bit : bc + de mémoire physique, mais
unités de calcul limitées.

Deux motivations principales d’utlisation : description, prévision.
Deux aspects : spatial (volume) et temporel (flux).
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CARACTERISATION DES BIG DATA

On a coutume de parler de Big Data lorsqu’on dispose de
données...

en grand volume (énorme base de données),

en grande variété (numérique, texte, images, vidéos, ...),

en grande vitesse (fréquence d’arrivée de l’information,
évolution des données).

Règle des 3V...qui doit déboucher sur la création de “V”aleur de
par l’exploitation de ces données.
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DEFIS PRATIQUES

Défi opérationnel, essentiellement informatique :
système d’information, architecture, capacité de stockage...
calculs distribués (MapReduce)⇒ Hadoop, Spark, ... ;

Une réflexion sur la donnée :
qualité de la donnée et gestion de son aspect non-structuré :
comment homogénéiser des formats différents à l’origine?
sélection en fonction de sa pertinence, gestion,
visualisation : SQL (Structured Query Language), noSQL..

Un enjeu éthique : anonymisation principalement (tests
génétiques en assurance maladie,...)⇒ réglementation
RGPD.
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D’OU VIENNENT LES NOUVELLES DONNEES?

Essentiellement de données externes... Les assureurs possèdent
déjà des données internes (peu exploitées, ' 20%), et accèdent
maintenant à d’autres sources riches en information :

1 Objets connectés : télématique, Apple Watch, ...
2 Réseaux sociaux et navigation internet : pouvoir de

nuisance des consommateurs ;
3 Assurance de biens partagés : AirBnB, AutoLib’, ...
4 L’Open Data : crawling, scrapping... (Datagouv, ...).

C’est l’intégration au sein d’un même SI qui est très compliqué.
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QUESTIONS ESSENTIELLES

Ces nouvelles données posent des questions fondamentales
quant à leur utilisation, notamment

Fiabilité des données
→ s’assurer auprès des services ayant fourni les données de
leur fiabilité, de leur authenticité ;

Cohérence
→ s’assurer du contenu de ces données ;

Sécurité
→ cyber-risque, ...

⇒ Risque opérationnel également accru !
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CLASSIFICATION DES DONNEES

BIG DATA EN ASSURANCE NOUVELLES DONNÉES ET NOUVEAUX RISQUES

LES SOURCES DE DONNÉES

O. LOPEZ, X. MILHAUD (CREST ENSAE) MÉTHODES ACTUARIELLES ET BIG DATA PARIS, 29/06/15 8 / 61
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DATA SCIENTIST ET DATAVIZ

Arthur CHARPENTIER - Big Data (a Personal Perspective)

Statistics, Correlations (and Econometrics)

“statistics is the grammar of data science.It is cru-
cial to making data speak coherently. But it takes
statistics to know whether this di�erence is sig-
nificant, or just a random fluctuation. (. . . ) What
di�erentiates data science from statistics is that
data science is a holistic approach. We’re increas-
ingly finding data in the wild, and data scientists
are involved with gathering data, massaging it into
a tractable form, making it tell its story, and pre-
senting that story to others.” Mike Loukides, 2010
radar.oreilly.com

26

Source : blog d’Arthur Charpentier.
Idée : le data scientist ne se limite pas à la statistique, il cherche à
faire parler ses données en général... (data visualisation)
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2 Actuariat - données et assurance
La révolution numérique : nouvelles données en assurance
Impact du Big Data sur le secteur assurantiel
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APPORT PRINCIPAL DE CES NOUVELLES DONNEES EN
ASSURANCE

Un des gros problèmes de l’assureur (par rapport au banquier) est
la faible fréquence de ses intéractions avec l’assuré...

En effet, ils ne se voient en général que 2 fois en tout pour tout :
→ Une fois à la souscription ;
→ Une fois lors du sinistre s’il a lieu.
⇒ Très difficile pour l’assureur de bien connaitre l’assuré !

Technologies liées au Big Data vont augmenter significativement la
fréquence de ces intéractions...et atténuer les particularités de
l’assurance : antisélection et aléa moral.
(en plus de l’inversion du cycle de production !)
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IMPACT SUR LA CHAINE DE VALEUR

Le Big Data a un impact à plusieurs niveaux pour un assureur,
parmi ses tâches “historiques” impactées :

segmentation, tarification (Pay-As-You-Drive, HomeBox),

provisionnement : micro-level reserving,

détection de fraude (par géolocalisation par exemple),

ciblage marketing (compréhension des comportements),

scoring d’assurés : la construction d’un bon score reste issue
d’une approche stat. couplée à une connaissance métier.

Remarque : échelle de temps de l’assurance parfois bc plus longue
que dans d’autres secteurs (attention aux dérives du risque).
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LA DATA SCIENCE, JUSQU’OÙ?

La base de l’assurance est la mutualisation...
...Or l’enjeu principal du Big Data est de mieux comprendre les
mécanismes à l’échelle de l’individu !

“We are moving from an era of private data and public analyses to
one of public data and private analyses” (Andrew Gelman)

Il y a donc un risque énorme (surtout en tarification), qui est...

...la PERTE de MUTUALISATION.

Où s’arrêtera la segmentation... ?
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3 Philosophie de l’apprentissage statistique
Principes généraux
Théorie de Vapnik et surapprentissage
Agrégation d’estimateurs
Comment analyser les résultats?
Rappels sur le bootstrap
Agrégation : cas des variables catégorielles
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MACHINE LEARNING, NOUVELLE APPROCHE

Abandon d’une approche de “modélisation” pour 1 approche
qui cherche à laisser parler les données (“data-driven”),
typique du monde non-paramétrique.

Big Data : pour rendre compte d’une réalité complexe, on
s’autorise des modèles − simples, voire peu intelligibles.

⇒ Une logique de prévision domine, plus qu’une logique d’analyse
et d’explication des phénomènes.
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RAPPEL : NON PARAMÉTRIQUE, PARAMÉTRIQUE

Estimation paramétrique : on cherche m parmi une famille
indexée par un paramètre de dimension finie.
→ Exemple : régression linéaire, m(x) = a + bx.
Une fonction candidate s’identifie à 2 paramètres (a, b).

Estimation non paramétrique : on ne fait plus d’hypothèse (ou
bc −), on cherche m(x) parmi ttes les fonctions possibles
(dim. infinie).

Exemple connu d’estimateurs non paramétriques : estimateurs à
noyaux, ....
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ILLUSTRATION

* cf. "Statistical modeling: the two cultures" of Léo Breiman  

… and steers the development of an algorithmic modeling culture*  

> The emergence of Machine Learning:  here is the age of algorithms 

X y GLM, 
Logit,… 

Unknown 

Machine learning 
Decision trees, 

SVM… 

Data modeling 

Algorithmic  modeling 

Learning through data  

From static approach to more Iterative and adaptive  process 
New kind of ecosystem  

X y Nature 

X y 

Informative & explicit 

More predictive 

Correlations not 
causalities 

Not explicit model  

Better at capturing 
data complexity 

i 

i 
i 
i 
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PROBLEME SUPERVISÉ VS NON SUPERVISÉ

Deux types de pb : présence ou non d’une variable à expliquer Y
qui a été, conjointement avec X , observée sur les mêmes objets.

Paradigme du cas supervisé : apprendre à généraliser à partir
d’exemples du phénomène observé.
S’applique

à la régression : cas où la réponse est continue ;

à la classification : cas où la réponse est catégorielle.

Cas non supervisé : n’observe pas la valeur de la variable d’intérêt
(ex. modèles mélange : classer les indiv. dans les composantes⇒
on ne connait pas leur composante d’appartenance)
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EN PRATIQUE...

Dans le 1er cas (supervisé)⇒ trouver une fonction f susceptible,
au mieux selon un critère à définir, de reproduire Y ayant observé
X :

Y = f(X) + ε

où ε symbolise le bruit ou erreur de mesure.

Dans le cas contraire (absence d’Y )⇒ non-supervisé.
Objectif : recherche d’une typologie/taxinomie des observations...
Comment regrouper celles-ci en classes homogènes mais les +
dissemblables entre elles→ pb de clustering.
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SCHEMA RECAPITULATIF ET METHODES ASSOCIEES
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STATISTIQUE CLASSIQUE VS APPRENTISSAGE

Statistique classique : recherche le modèle génératif des
données. Construit l’estimateur sur 1 jeu de données unique.
Une théorie asymptotique permet de juger sa qualité (IC,...).

Apprentissage stat. : recherche de bonnes prévisions...
on ne cherche pas le modèle qui génére les données !
les exemples du phénomène observé sont représentés par
l’échantillon d’appren. : on souhaite faire apprendre à l’algo. la
relation entre X et Y , puis la généraliser (prévision de Y ) à des
occurrences de X pr lesquelles Y inconnue.
la qualité n’est plus jugée via des critères asymptotiques, mais
à l’aune d’une mesure d’adéquation à l’échantillon test.
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AUTREMENT DIT...

Statistique classique : approches privilégiant la compréhension !

Permet une compréhension du mécanisme générateur des
données, avec une représentation si possible parcimonieuse ;

Le modèle doit être “simple” et interprétable (odd-ratio, ...)

Machine learning : approches privilégiant la prévision !

pour de nouveaux individus : pouvoir de généralisation,

les modèles sont en fait des algorithmes.

“Modern statistical thinking makes a clear distinction between the statistical model and the
world. The actual mechanisms underlying the data are considered unknown. The statistical
models do not need to reproduce these mechanisms to emulate the observable data”,
(Breiman, 2001)

“Better models are sometimes obtained by deliberately avoiding to reproduce the true

mechanisms”, (Vapnik, 2006)
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QUALITE D’ESTIMATION ET GRANDE DIMENSION
MONDE NON PARAMETRIQUE

Théorème : soit X ∈ Rd , et m une fonction k fois dérivable à
dérivées bornées. La vitesse optimale de convergence d’un
estimateur non paramétrique m̂ est

m̂(x) −m(x) = O(n−k/(2k+d)) p.s.

Si la fonction m est régulière (par ex. infiniment dérivable) à d
fixé, la vitesse de convergence est en

√
n.

Si d est “grand” par rapport à n, la performance d’estimation
est considérablement dégradée.
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ÉCHANTILLONS ET POUVOIR DE GENERALISATION

Les méthodes d’apprentissage statistique induisent le choix de
paramètres de tuning (param. “utilisateur”)... Ils jouent un rôle
important dans le pouvoir de généralisation du modèle.

Pour choisir leur valeur, on peut soit

recourir à la validation croisée, ou
on créé plusieurs échantillons :

un échantillon d’apprentissage pour construire le modèle ;
un échantillon de validation pr optimiser les paramètres de
tuning (“tuning” du modèle) ;
un échantillon test ⊥⊥ pour évaluer la performance du modèle
avec les paramètres de tuning choisis.
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PRINCIPE DE LA VALIDATION CROISÉE (5-fold)

Utilisée pr la sélection de modèle ! Permet de choisir le param.
et/ou modèle optimal.CHAPITRE 3. MODÉLISATION : DEUX APPROCHES, COMPARAISON DES

PERFORMANCES

FIGURE 3.4 – Validation croisée par 5-fold. source : Mémoire IA de GUILLOT [2015]

Dans l’étape de sélection de variables, on utilise la méthode des k-fold pour calibrer
le méta-paramètre de la procédure LASSO (au sein de l’approche innovante) mais aussi
pour valider la sélection de variables issue des gradient boosting mis en oeuvre (dans les
approches classique et alternative). Cette procédure s’appuyant sur k partitions est aussi
utilisée de façon différente dans le cadre de la modélisation GLM de l’approche tradition-
nelle (du fait de l’absence de méta-paramètre) elle permet de valider le modèle final en
évaluant la stabilité de ses coefficients et des indices de Gini obtenus pour les k modèles
entraînés. A titre informatif, une autre pratique existe qui consiste à bâtir un modèle GLM
final « moyen », en définissant la valeur de chaque coefficient comme moyenne des k co-
efficients.

Pour les modèles GLM, nous pouvons aussi approfondir la validation du modèle en
effectuant une analyse variable par variable dans laquelle on vérifie sur la base de test
l’adéquation des prédictions moyennes aux observations moyennes pour chacune des
modalités (cf rubrique 3.2.2).

La courbe de lift est un outil de validation qui permet de comparer les valeurs pré-
dites aux valeurs observées, et ce, par segment de prédictions croissantes. On utilise m
segments d’exposition égale pour chacun desquels on calculera la prédiction moyenne
et l’observation moyenne : in fine, on a une courbe qui représente les valeurs prédites
segmentées et une seconde courbe qui montre les valeurs moyennes observées pour des
risques du même segment. Les courbes doivent être proches pour s’assurer que le mo-
dèle est raisonnable. Si ce graphique fait apparaître un écart systématique et significatif
entre les deux courbes, cela signifie que le modèle n’est pas bien ajusté aux données. Ces
courbes de lift doivent être tracées pour les échantillons d’apprentissage et de test (illus-
tration en page 39).

22
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THÉORIE DE VAPNIK
ERREURS EN FONCTION DE LA VC DIMENSION (h)

14F. Soulié Fogelman. Utiliser les big data: défis & opportunités

La Théorie de l’apprentissage statistique de Vapnik
Un résumé très court !!

: VC dimension de YYYY
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La Théorie de l’apprentissage statistique de Vapnik
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ET EN FONCTION DE n ?

Bénéfices du Big Data 
• La performance  
─  Pour les modèles prédictifs : plus de données est toujours meilleur 

• Augmenter le volume        � Augmenter la variété (feature engineering) 
─                                               Fraude à la carte bancaire 

21 

http://online.liebertpub.com/doi/full/10.1089/big.2013.0037              https://www.kaggle.com/c/kkbox-music-recommendation-challenge/leaderboard 

Plus d’observations 

11/12//2018 Regard sur l’IA en France et en Europe 
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Théorie de Vapnik 

Modèle Couverture Pertinence 
Baseline 1,40% 8,18% 
Baseline + Agg 9,13% 19,00% 
Baseline + Agg + Var Soc. 9,09% 40,58% 
Seg 19 5,09% 28,21% 
Seg 19 + Agg. 7,38% 28,82% 
Seg 19 + Agg + Var Soc. 16,46% 60,89% 
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QUELQUES PREMIERES REMARQUES

On voit très bien à travers l’inégalité de Vapnik que :

l’erreur de généralisation croit quand la dimension augmente :
⇒ les modèles de grande dim. ont un faible biais au prix
d’une grande variance (et inversement).

l’erreur est dépendante du rapport n/h (rapport du nombre de
données sur complexité du modèle),

on↗ la capacité prédictive si h ↗ mais moins vite que n,

on peut↗ la complexité du modèle si on↗ aussi n.
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L’AGREGATION

Approche “modèle” VS agrégation :
modèle : déterminer une distribution de probabilité “simple” et
unique qui rende compte des données ;
agrégation : faire la synthèse de plusieurs approches, ne plus
se reposer sur un modèle unique.

Les 2 approches ne sont pas totalement antagonistes.

Les approches d’estimation basées sur l’agrégation sont +
précises mais + difficilement interprétables (ex : agréger 3
modèles de régression paramétriques, comment?).

Rq : on dit que les modèles simples (ex : logit) sont interprétables.
Loin d’être vrai car les covariables sont svt corrélées, donc la
valeur des param. ne reflète pas exactement leur impact !
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META-MODELES ou METHODES D’ENSEMBLE

Soit m̂j(x) l’estimateur obtenu en utilisant le modèle j. Pour
agréger B modèles et obtenir l’estimateur ensembliste

m̂a(x) =
∑

wjm̂j(x),

on peut mener :

construction parallèle, ⊥⊥ de +sieurs estimateurs individuels,
puis combinaison⇒ bagging

construct. séquentielle, puis combinaison⇒ boosting !

construct. parall., puis imbrication (meta-modèle)⇒ stacking

Rq :
∑B

j=1 wj = 1 avec wj poids affecté à l’estimateur j (version
fréquentiste du Bayesian Model Averaging).
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APPRENTISSAGE STATISTIQUE AGRÉGATION D’ESTIMATEURS

INTERPRÉTATION

O. LOPEZ, X. MILHAUD (CREST ENSAE) MÉTHODES ACTUARIELLES ET BIG DATA PARIS, 29/06/15 23 / 61
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SYNTHÈSE DES PRINCIPALES DIFFÉRENCES

A travers ce que nous venons de voir, les différences essentielles
de l’apprentissage statistique par rapport à une approche
classique de modélisation résident dans les points suivants :

les hypothèses : beaucoup moins d’hypothèses (⊥⊥ entre
observations, entre facteurs de risque, hypothèses de
distribution paramétrique, ...)

l’agrégation potentielle de modèles : on construit plusieurs
modèles et on synthétise,

l’interprétabilité des résultats : on perd en interprétabilité à
cause de l’agrégation.
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MESURE DE L’INCERTITUDE - CAS D’UN MODÈLE

On dispose de résultats asymptotiques...

En paramétrique, théorie du max. de vraisemblance. On a en
général des IC sur le paramètre estimé...
Exemple : modèle linéaire,

√
n(β̂1 − β1) ≈ N(0, σ2)

Donc P(|β̂1 − β1| ≥ ε) ≈ P(|Z | ≥ ε) où Z ∼ N(0, σ2/n).

→ σ2 indique la précision de l’estimation : à estimer !→ D’où
la possibilité d’évaluer P(|m̂1(x) −m1(x)| ≥ ε).

En non paramétrique, théorie de Vapnik-Chervonenkis.
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CAS DE L’AGREGATION D’ESTIMATEURS

C’est différent...(notons m̂a(x) l’estimateur agrégé)

En général, pas de résultat du type m̂a(x) −m(x) ∼ N(0, σ2).

La qualité se mesure en premier lieu par rapport à un
échantillon de validation.

Vocabulaire : soit un échantillon de n + m observations, avec

un échantillon d’apprentissage : sous-échantillon de n
observations à partir desquelles on construit m̂a .

un échantillon de validation : le reste (m observations) sur
lequel on juge de la qualité de l’estimateur.
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EXEMPLE EN RÉGRESSION

On dispose d’un échantillon de (n + m) observations i.i.d., de
même loi qu’un vecteur aléatoire (Y ,X).

But : estimer m(x) = E[Y |X = x].

(1) On tire au sort n observations, d’où l’échantillon (Yi ,Xi)1≤i≤n.

(1bis) Les m autres observations (Yi ,Xi)n+1≤i≤n+m constituent
l’échantillon de validation.

(2) Construction de m̂a(x) à partir de (Yi ,Xi)1≤i≤n.

(3) Calcul de l’erreur de prédiction sur l’échantillon de validation :

e(m̂a) =
n+m∑

i=n+1

(Yi − m̂a(xi))2.

Plus cette quantité est petite, plus l’estimateur est jugé bon.
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Questions :

1 Pourquoi ce critère?
2 Pourquoi ne pas directement regarder l’erreur sur l’échantillon

d’apprentissage?
3 Choix de n et m ?
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Q1 : POURQUOI CE CRITÈRE?

m(x) = E[Y |X = x] : “meilleure façon d’approcher Y par une
fonction de X , au sens de l’écart quadratique” ;

Si m̂a est bon estimateur, alors m̂a(Xi) est proche de m(Xi) ∀i.
Or m(x) étant la fonction la + proche de Y sachant X = x, +
e(m̂a) est petit, + m̂a devrait ê proche de m (inconnue !).

Si on calcule d’autres quantités, le coût quadratique ne sera
pas forcément utilisé pour l’erreur.
→ Ex. : pour estimer la médiane de Y |X = x, on minimisera

n+m∑
i=n+1

|Yi − m̂a(xi)|.
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Q2 : POURQUOI NE PAS REGARDER L’ERREUR SUR
L’ÉCHANTILLON D’APPRENTISSAGE?

En d’autres termes, pourquoi ne pas prendre m = 0?

Risque = surapprentissage (on capte le bruit au lieu du
signal), le signal etant l’information principale...

Exemple d’estimateurs faisant de l’overfitting : arbre maximal
dans les estimateurs CART possibles...
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Q3 : CHOIX DE n ET m

Pas de règle gravée dans le marbre (choix classique, et très
arbitraire : m = n/2), mais

en général, n > m, et
→ la proportion de l’échantillon d’apprentissage tend vers
50% quand la taille globale des données est grande ;
→ elle tend vers 80 voire 90% le cas contraire.

pourquoi a-t-on besoin d’un n grand?
→ besoin de + de données pour calculer un estimateur m̂a

précis (sa CV est, en général, en n−α pour un certain α > 0).

pourquoi m ne doit pas être trop petit ?
→ Pour que la validation ait un sens...
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AGREGATION : ESTIMATEURS SUR ÉCHANTILLONS ⊥⊥

→ Limite : on rappelle que m̂a(x) = 1
B

∑B
j=1 m̂j(x), où les m̂j(x)

sont corrélés si calculés sur le même échantillon...

Si les m̂j sont ⊥⊥ car calculés sur , échantillons ⊥⊥ (en notant
σ2

j (x) la variance de m̂j(x)) :

Var(m̂a(x)) =
1

B2

B∑
j=1

σ2
j (x).

En somme, si σ2(x) = supj=1,...,B σ
2
j (x), Var(m̂a(x)) ≤

σ2(x)
B :

⇒ Variance estimateur agrégé << variance estimateur unique.
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LIMITE PRATIQUE

Néanmoins, il est difficile de calculer des estimateurs sur des
échantillons ,, car la taille des données n’est évidemment pas
infinie en pratique... D’où :

prendre B sous-échantillons pour calculer B estimateurs , est
une solution de riche (n doit être très grand pour l’⊥⊥) ;

la solution de couper l’échantillon en sous-échantillons atteint
vite ses limites.

⇒ Une solution : le rééchantillonnage (par exemple bootstrap).

Rq : l’indépendance entre les estimateurs unitaires n’est pas
garantie car certains échantillons bootstrap peuvent fortement se
ressembler...
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APPLICATION : REECHANTILLONNAGE BOOTSTRAP

Si on souhaite agréger B estimateurs, on génère B
échantillons bootstrap suivant la méthode ci-dessous.

On utilise l’échantillon j pour calculer l’estimateur m̂j .

Bootstrap : pour j = 1, ...,B et i = 1, ..., n, on tire Z (j)
i i.i.d. de loi

unif. sur {1, ..., n}. Le jème échantillon bootstrap est (Y (j)
i ,X (j)

i )1≤i≤n

où
Y (j)

i = Y
Z(j)

i
X (j)

i = X
Z(j)

i
.

En moyenne, e−1 = 36, 7% des observations initiales ne sont pas
tirées dans un échantillon bootstrap donné.
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ILLUSTRATION
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POURQUOI LE BOOTSTRAP?

Idées derrière le bootstrap :

On va créer artificiellement des échantillons semblables à
celui d’origine en simulant des données, ce qui permettra de
construire des modèles cohérents entre eux.

Problème : les échantillons étant corrélés, les estimateurs
seront corrélés (même si différents !)...

On aura besoin d’introduire des éléments supplémentaires pour
décorréler au mieux les estimateurs !
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PRÉVISIONS AGRÉGÉES SUR VARIABLE BINAIRE

Soit le contexte suivant :
une v.a. Y qui vaut 0 ou 1, avec X = caractéristiques.

ex. 1 : Y = 1 si accident dans l’année, 0 sinon.
ex. 2 : Y = 1 si défaut de paiement dans l’année, 0 sinon.
ex. 3 : Y = 1 si le client souscrit un contrat, 0 sinon.

1ère solution : déterminer E[Y |X ] = P(Y = 1|X) pour chaque
modèle. Puis approche similaire à précédemment : moyenner.
→ Cette solution fournit un estimateur m̂a(x) qui prend des
valeurs entre 0 et 1.

⇒ Si X = x et m̂a(x) > 0.5, on prédit Y = 1. Sinon Y = 0.
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DEUXIÈME SOLUTION : LE VOTE MAJORITAIRE

Au lieu d’agréger les estimations des espérances
conditionnelles m̂j , on agrège les prédictions associées.

i.e. on définit, pour j = 1, ...,B, p̂j(x) = 1m̂j(x)>0,5.

Pour X = x, on prédit Y par

p̂a(x) =

1 si majorité de p̂j(x) égaux à 1

0 sinon.

Rq : c’est ce que fait randomForest(.) de rpart.
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GÉNÉRALISATION AUX VARIABLES CATÉGORIELLES

On s’intéresse à une variable Y prenant un nombre fini de
modalités, {1, ..., k }, avec X = caractéristiques.

Exemple : Y = gravité sinistre, classé sur échelle de 1 à k.

Stratégie : transformation en un problème binaire.

Zl = 1Y=l

pour l = 1, ..., k , on estime E[Zl |X ] = P(Y = l |X) pour tout l.

Si on note m̂j,l(x) l’estimateur de P(Y = l |X = x) basé sur la
méthode j, la prédiction p̂j(x) associée est

p̂j(x) = arg max
l=1,...,k

m̂j,l(x).
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ALGO ISSU DE L’INTELLIGENCE ARTICIFIELLE

7 principes éthiques de la Commission Européenne pour l’IA :
1 contrôle/supervision humaine : l’IA n’a pas de conscience !
2 résistance et sécurité des algorithmes : fiabilité pour gérer les

erreurs et incohérences ;
3 gestion des données, protection de la vie privée : utilisateurs

en mesure de contrôler leurs propres données ;
4 transparence algo : expliquer ce que fait l’IA, traçabilité
5 diversité, non-discrimination et équité ;
6 bien-être social et environnemental : l’IA doit être mise au

service de la société dans son ensemble ;
7 l’“accountability” : principe de responsabilité, mise en place de

procédures internes à l’entreprise pour démontrer le respect
des règles relatives à la protection des données.
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OBJECTIF ARBRE : CLASSIF. DES INDIVIDUS

Regrouper des indiv. hétérogènes en classes homogènes de
risque pour résumer l’info d’une BdD gigantesque.

∃ de nombreuses techniques de classification, parmi lesquelles :
pour la classification non-supervisée :
→ les algorithmes dits des k -plus proches voisins (non param.) ;
→ les techniques ascendantes d’arbre de classification (CAH) ;
→ model-based clustering (paramétrique) ;

pour la classification supervisée :
→ modèles paramétrique de choix (LOGIT) ;
→ réseaux de neurones ; SVM (non paramétrique) ;
→ arbres descendants (CART, CHAID, ...). Non param.
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ARBRE ET CLUSTERING : PREMIERS ÉLÉMENTS

Pour estimer notre quantité d’intérêt, on choisit d’utiliser un arbre...
Mais qu’est-ce qu’un arbre?

1 Une racine : contient l’ensemble de la population à segmenter
(le portefeuille global)⇒ c’est le point de départ ;

2 Un tronc et des branches : contiennent les règles de division
qui permettent de segmenter la population ;

3 Des feuilles : contiennent les sous-populations homogènes
(sur leurs caractéristiques et la réponse) créées, fournissent
l’estimation de la quantité d’intérêt.
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RÉGLES ET LECTURE D’UN ARBRE CART

Un arbre de classification / régression se lit de la racine vers les
feuilles (l’inverse d’une CAH...).

A chaque ramification, une règle de division apparait : dans CART,

cette règle (' question) admet une réponse binaire (oui/non),

elle n’est basée que sur un facteur de risque (une covariable).

Un noeud est l’intersection d’un ensemble de règles. L’estimation
de la quantité d’intérêt se lit dans les noeuds terminaux (feuilles).

N’importe quel individu de la population initiale appartient à une
unique feuille : les sous-populations créées sont disjointes.
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EXEMPLE 1 : ARBRE DE CLASSIFICATION

A travers cet exemple, on veut intuiter comment un arbre se
construit... Cherchons à prévoir “propriétaire” | salaire + surface.
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CHOISIR LA SEGMENTATION DE L’ESPACE

1 Choisir une var. explicative j donnée à m valeurs : soit elle est
numérique ou catégorielle ordonnée : partitionnements de
l’espace associé à cette covariable se situent entre 2 de ses
valeurs successives observées⇒ m − 1 possibilités ;
catégorielle non ordonnée : partitionnements de χj sont toutes
les combinaisons de modalités, au nb de 2m − 1 ;

2 Je teste tous ces partitionnements : j’y associe un critère
d’homogénéité par rapport à ma quantité d’intérêt (réponse) ;

3 Je choisis le partitionnement qui conduit à la plus grande
homogénéité dans les sous-espaces créés ;

4 Je répète les étapes (1)-(3) pour chacune des covariables
dont je dispose : j’obtiens une liste de k homogénéités max. ;

5 Je choisis à la fin la covariable et son partitionnement qui
maximise l’homogénéité globalement.

85 / 217



PARTITIONNEMENT ET ARBRE MAXIMAL

!"# $%&'# ()*+# ,)--%"'# .%#
$/+'*'*)""%-%"'# +0,&+1*2#
$%+-%'#34/22*"%+#.4%"1%-5.%#3%1#
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$+),73%#.4/.6)+*8'-%9#

:# 3+)*'%# )"# ()*'# .40'/$%# 2*"/.%#
3&#$/+'*'*)""%-%"'#+0,&+1*29

Partitionnement qui maximise l’homogénéité dans chq rectangle.
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Voici l'arbre complet. On a représenté par des cercles les noeuds qui ont des successeurs. Les 
nombres à l'intérieur des cercles sont les valeurs de division et le nom de la variable choisie 
pour la division à ce noeud est écrit sous le noeud. Les nombres sur la fourche gauche à un 
noeud de décision ont des valeurs inférieures ou égales à la valeur de division tandis que le 
nombre de la fourche droite montre un nombre qui a une valeur plus grande. 
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NOTATIONS

→ i ∈ ~1, n� : identifiant de l’individu / l’assuré ;

→ j ∈ ~1, k� : identifiant du facteur de risque (continu ou discret) ;

→ Yi : réponse OBSERVEE du ième individu (continue/discrète) ;

→ Xi = (Xi1, ...,Xik ) : vecteur des facteurs de risque de l’indiv. i ;

→ X : espace des covariables (facteurs de risque) ;

→ l ∈ ~1, L� : identifiant des feuilles de l’arbre ;

→ Xl : ensemble de la partition correspondant à la feuille l.
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ARBRE DE RÉGRESSION AVEC Y CONTINUE

En régression, la quantité d’intérêt est

π0(x) = E0[Y |X = x] (1)

En supposant une relation lin. (se restreignant à une classe
d’estimateurs), on a

π̂(x) = β̂0 + xT β̂,

et on estime les paramètres de régression par MCO.
En toute généralité, on ne peut pas considérer ts les estimateurs
potentiels de π0(x)⇒ arbres sont 1 autre classe d’estimateurs :
ce sont des fonct. constantes par morceaux.

Construire un arbre maximal génére une suite d’estimateurs selon
une procédure spécifique : divisions successives de l’espace X.
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CONSTRUCTION DE L’ARBRE : CRITÈRE DE DIVISION

La ramification de l’arbre est basée sur la définition d’un critère
d’homogénéité, cohérent avec l’estimation de la quantité d’intérêt.

Dans l’estimation de (1), MCO tjs utilisé car solution donnée par

π0(x) = arg min
π(x)

E0[Φ(Y , π(x)) |X = x], (2)

où Φ(Y , π(x)) = (Y − π(x))2.

La fonction de perte Φ correspond donc à l’erreur quadratique (fn.
convexe), et le critère est la minimisation de l’EQM.

La , est ici que l’on va estimer π0(x) en plusieurs étapes !
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ETAPES DE CONSTRUCTION DE L’ARBRE

On résume donc l’enchainement des étapes de construction de
l’arbre :

1 on part de la racine ;
2 on cherche la meilleure première segmentation (donnant le

meilleur gain d’homogénéité) ;
3 on segmente ;
4 on itère sur chacun des 2 noeuds fils ;
5 on itère sur les fils des noeuds fils, et ainsi de suite...

Par construction l’hétérogénéité diminue à chaque segmentation,
pour atteindre sa valeur minimale sur l’arbre maximal.
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LIEN ENTRE RÉGRESSION ET ARBRE

Arbre = ensemble de règles. Pour chaque noeud m, une règle Rm

est associée à un sous-ensemble Xm ⊆ X.

Notation : dans la suite, En[Y ] désigne la moyenne empirique de
Y , et Xpa(m) est le sous-ensemble associé au noeud parent de m.

L’arbre est associé à la fonction de régression

π̂(x) =
M∑

m=1

β̂tree
m Rm(x) (3)

où β̂tree
m = En[Y | x ∈ Xm] − En[Y | x ∈ Xpa(m)] si m , racine,
β̂tree

m = En[Y ] sinon.
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Cela équivaut en régression classique à chercher

β̂tree = arg min
βtree

En

[(
Y −

∑
βtree

m Rm(x)
)2

]
.

Depuis (3), en
∑

sur ts les noeuds, il reste les feuilles... :

π̂(x) := π̂L (x) =
L∑

l=1

γ̂l Rl(x) (4)

⇒ Décomposition en bases fonctionnelles de x⇒ non-param!

L est le nombre de feuilles de l’arbre, l leur indice,

Rl(x) = 11(x ∈ Xl) : règle d’appartenance au ss-ensemble Xl ,

γ̂l = En[Y | x ∈ Xl] : moyenne empirique de Y dans la feuille l,

Ss-ensembles Xl ⊆ X disjoints (Xl ∩ Xl′ = ∅, l , l
′

) et
exhaustifs (X = ∪l Xl).

95 / 217



(4) généralisable qlq soit la quantité d’intérêt. Ainsi, tout arbre
peut être vu comme un estimateur par morceaux.

→ Interprétation :

chaque morceau est une feuille, dont la valeur est la moyenne
empirique des valeurs de Y de cette feuille (cas quantitatif),

chq div. d’1 noeud t minimise la
∑

variances intra-noeuds
résultantes⇒ max.↘ hétérogénéité Ht = 1/|t |

∑
i∈t (yi − ȳt )

2 :

max
div .

(
Ht − (Htg + Htd )

)
⇔ min

 |tg |n

∑
i∈tg

(yi − ȳtg )2 +
|td |
n

∑
i∈td

(yi − ȳtd )2


où tg et td désignent respectivement les fils gauche et droite
du noeud parent t .
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La construction étant récursive, on génère une suite d’estimateurs
depuis le nd racine : soit une suite {ΠK } de ss-espaces t.q. ΠK ⊆ Π,

ΠK =
{
πL (.) =

L∑
l=1

γl Rl(.) : L ∈ N∗, L ≤ K
}
. (5)

A K fixé, on cherche πK
0 (x) = arg min

π(x)∈ΠK
E0[Φ(Y , π(x)) |X = x].

⇒ Version empirique π̂K : π̂K (x) = arg min
π(x)∈ΠK

En[ Φ(Y , π(x)) ]. Ou :

π̂K (x) = arg min
γ=(γ1,...,γL )

En[ Φ(Y , πL (x)) ]. (6)

CART ne cherche pas ts les estimateurs possibles avec L ≤ K :
approche ce minimum petit à petit.
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ARRÊT DE LA PROCÉDURE DE SEGMENTATION

Comme déjà évoqué, l’algorithme CART ne fixe pas de règle
d’arrêt arbitraire pour la procédure de division de l’espace.

L’algorithme arrête ainsi de diviser les feuilles quand :

il n’y a qu’une observation dans la feuille, ou

les individus de la feuille ont les mêmes valeurs de facteurs
de risque (covariables X).

On construit ainsi l’arbre “maximal”, qui sera ensuite élagué.

Arbre maximal : estimateur par morceaux le + complexe de la
suite d’estimateurs construits→ CV garantie (Breiman et al. 1984).
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ILLUSTRATION ESTIMATEUR PAR MORCEAUX :
EXEMPLE 2

Exemple en assurance : prévision de décès et modélisation des
taux de mortalité. Résultats de l’article EAJ Olbricht (2012).

Portefeuille de SwissRe avec les caractéristiques suivantes :

comprenant 1 463 964 enregistrements,

couvrant une période de 4 ans,

les variables explicatives en jeu sont le sexe et l’âge.

Les résultats obtenus par CART sont comparés à la table de
mortalité actuelle “German standard life table DAV 2008 T”.
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ARBRE ÉLAGUÉ (PAS MAXIMAL!)

conceals it). Imagine that two customers apply for a life insurance policy. You
know that one is male and the other female and you know that one is aged 30
and the other 50. You are allowed to ask either for SEX or for AGE but not for
both and you have to calculate the contract afterwards. Which question should

Fig. 8 Final tree for the standard life table example. For each terminal node the number of cases and the
mortality rate (per mille) are given (the numbers in brackets are the labels for the nodes used in Table 6)
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COURBES DE MORTALITÉ CORRESPONDANTES

conceals it). Imagine that two customers apply for a life insurance policy. You
know that one is male and the other female and you know that one is aged 30
and the other 50. You are allowed to ask either for SEX or for AGE but not for
both and you have to calculate the contract afterwards. Which question should

Fig. 8 Final tree for the standard life table example. For each terminal node the number of cases and the
mortality rate (per mille) are given (the numbers in brackets are the labels for the nodes used in Table 6)
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Courbe continue : table réglementaire ; par morceaux : CART.
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REMARQUE IMPORTANTE

Notez la différence majeure qu’il existe entre ce type de
modélisation et une modélisation dite paramétrique.

En effet, on s’autorise toute forme de dépendance ici, alors qu’un
modèle paramétrique (ex : GLM) impose une forme de
dépendance entre Y et X...
⇒ Peut s’avérer inadapté dans de nombreux cas pratiques ! (ex :
tarification d’un contrat auto en incluant l’âge ds le modèle de
fréquence, ss forme de classes d’âge).

En revanche, dans l’exemple de mortalité ici, il serait préférable
d’avoir un modèle paramétrique...
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PERFORMANCE DE LA PRÉVISION CART

La performance s’évalue sur le “test set” à droite du tableau :

atypical we would like this to show up. In order to separate such variation which
would affect all methods from potential weaknesses of the tree-based method as
such we compared the tree with the classical procedure (i.e. predictions for the
independent test set based on the adjusted DAV 2008 T). For present purposes we
will not go into a detailed analysis since the example serves for illustration only.
Table 6 summarizes the results. It shows both the results for the learning set and the
independent test set broken down to single nodes. In addition to the tree-based
predictions the classical predictions (based on the adjusted DAV 2008 T) are given
for the independent test set. Overall the tree performs impressively—in particular if
one considers that it is based on ten nodes only and on far less data than went into
DAV 2008 T (DAV 2008 T was based on a huge data base—more than 100 million
data records—from various sources, but not all records were used in order to
exclude selection effects. The tree was based on the 753,024 data records from the
learning set—all of which were used). One can also see that the most important
variation is not between the two methods but rather between years in the 4-year
observation period. Overall there were 1,414 deaths in the test set. The tree
predicted 1,521 or 107.6% whereas the classical prediction was 1,503 corresponding
to 106.3%. While both methods perform almost equivalently, they both overesti-
mate reality somewhat. This is due to a distinct shift between the 2 years selected
for the learning set and the 2 years chosen for the independent test set. In as much as
such shifts are due to a real breakdown of the model assumptions, they cannot be
covered by any method that extrapolates essentially from past experience—not even
by methods that include a time component, since some assumptions have to be made
in any case. Thus, the phenomenon underscores the importance to use a selection of
years as an independent test set (and not just a sample of all data records) in order to
get some idea of the real extent of this type of variability.

Table 6 Performance of the tree from Fig. 8

Node Learning set Independent test set

No. of
elements
in node

No. of
deaths in
node

Estimated
mortality rate
(per mille)

No. of
elements
in node

No. of
deaths in
node

Tree
prediction
(Fig. 8)

Classical
prediction
(DAV 2008 T)

1 286,298 137 0.479 254,995 143 122 127

2 77,812 96 1.234 75,882 60 94 79

3 78,792 118 1.498 79,202 146 119 116

4 163,197 406 2.488 155,912 361 388 389

5 32,293 92 2.849 33,163 119 94 96

6 7,315 37 5.058 7,440 26 38 36

7 36,921 176 4.767 41,759 163 199 188

8 24,515 148 6.037 20,708 118 125 118

9 9,835 68 6.914 8,354 59 58 55

10 36,046 305 8.461 33,525 219 284 299

Total 753,024 1,583 710,940 1,414 1,521 1,503

144 W. Olbricht
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SÉLECTION DE MODÈLE (α FIXÉ)

L’arbre maximal construit (de taille K(n)) génère une suite
d’estimateurs (π̂K (x))K=1,...,K(n) ⇔ chaque sous-arbre.

But : éviter estimateur trop complexe (surapprentissage)⇒ trouver
meilleur sous-arbre selon un arbitrage adéquation / prévision :

Rα(π̂K (x)) = En[ Φ(Y , π̂K (x)) ] + α (K/n),

où α param. de complexité, K dim. de l’estimateur (nb de feuilles).

Pour α fixé, l’estimateur final optimise un critère coût-complexité :

π̂K
α (x) = arg min

(π̂K )K=1,...,K(n)

Rα(π̂K (x)). (7)
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RESULTATS REMARQUABLES

→ Pour α fixé, l’arbre π̂K
α (x) est unique et le calcul est rapide !

Exemples :

α = ∞ : le modèle sélectionné sera la racine ;

α = 0 : le modèle sélectionné sera l’arbre maximal.

→ Puisque n’importe quelle suite de sous-arbres emboîtés de
l’arbre maximal a au max. K membres, toutes les valeurs
possibles de α peuvent être groupées en m intervalles (m ≤ K ) :

I1 = [0, α1] I2 = (α1, α2] ... Im = (αm−1,+∞]

⇒ Chaque α ∈ Ii partage le même sous-arbre optimal.
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PROCEDURE D’ELAGAGE

Raisonnement : impossible de parcourir ts les sous-modèles de
l’arbre max. (nb sous-arbres exponent.↗ avec nb feuilles)⇒

1 on part de l’arbre maximal construit ;

2 on considère une 1ère valeur de α : conduit à sélectionner un
sous-arbre optimal de l’arbre maximal (cf équation (7)).

3 à partir de ce sous-arbre optimal, on prend une autre valeur
de α (+ grande) qui conduit à sélectionner un sous-arbre
optimal de ce sous-arbre.

4 Et ainsi de suite... Cela crée une suite croissante de αz !
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⇒ Par construction, on obtient une suite↘ de sous-arbres
optimaux emboîtés (de l’arbre maximal vers la racine).

Dans cette liste d’estimateurs, on choisit finalement α̂ (et l’arbre
optimal qui va avec) tel que

π̂K
α̂ (x) = arg min

(π̂K
αz )α=α1 ,...,αZ

Rαz (π̂K
αz

(x)). (8)

Remarque : en pratique,
→ il faut déterminer les valeurs possibles de α !
→ et α̂ est choisi en regardant cette erreur, mais moyennée via
une validation croisée (pr minimiser une erreur de généralisation).

Consistance : Gey et Nedelec (2005) ; Molinaro, Dudoit et
VanDerLaan (2004).
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PROPOSITION DES VALEURS DE α

La suite des valeurs de α est obtenue lors de la construction de
l’arbre maximal, avec le raisonnement suivant :
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TUNING : CHOIX DE L’HYPERPARAMETRE α

→ Tuning du modèle : sélection du paramètre de complexité α.
→ Elagage : sélection de modèle pour un α fixé.
Comment choisir le meilleur paramètre de tuning α?

Application à CART : une particularité... En effet, la validation
croisée induit des séquences d’arbres emboîtés différentes.
⇒ L’erreur moyenne n’est pas calculée pour chaque sous-arbre
avec un nb de feuilles donné, mais pour chaque valeur αz fixée
issue de la séquence produite initialement par tout l’échantillon.

Le choix de α répond à l’équation (8) (où l’erreur est moyennée)⇒
fournit le bon α et donc l’arbre optimal !
→ En pratique, choisis 1er point en-dessous de min+1SE
(Therneau : An Introduction to Recursive Partitioning Using the
RPART Routines).
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FORMULATION ALGORITHMIQUE (V-fold)

1 Construction de l’arbre maximal Tmax ;
2 Construction de la séquence TK , ...,T1 d’arbres emboîtés

associée à une séquence de valeurs (αz) ;
3 Pour v = 1, ...,V (où v désigne le segment de l’échantillon

initial servant à la validation),
pr chq nouvel éch. d’apprentissage, construire Tmax et estimer
la séquence d’arbres associée à la séq. des pénalisations αz ,
estimation de l’erreur sur la partie validation de l’échantillon ;

4 Calcul de la séquence des moyennes de ces erreurs ;
5 L’erreur minimale désigne la pénalisation αopt optimale ;
6 Retenir l’arbre associé à αopt ds la suite initiale TK , ...,T1.
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VALIDATIONS CROISÉES DANS rpart

Pour amener plus de robustesse au choix du paramètre de
complexité α, on procède par validations croisées.

Principe de la validation croisée : meilleur compromis biais /
variance. On diminue la variance de l’estimateur en recherchant
une valeur réaliste de l’erreur basée sur plusieurs calibrations.

Dans le cadre de l’algorithme CART, cela consiste en les étapes :
1 Construire l’arbre maximal (modèle complet) sur l’échantillon ;
2 Déduire les intervalles I1, I2, ..., Im à partir des αz .
3 Construire la suite (βz) (pour se placer dans les intervalles

]αk , αk+1]) telle que
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β1 = 0
β2 =

√
α1α2

· · · = · · ·

βm−1 =
√
αm−2αm−1

βm = ∞

4 Diviser l’échantillon d’origine en s sous-groupes G1,G2, ...,Gs

de taille s/n (n est la taille de l’échantillon de base).
5 Sur chaque sous-groupe i :

construire l’arbre maximal sur l’ensemble des sous-groupes
sauf le groupe i, et déterminer les sous-arbres Tβ1 , Tβ2 , ..., Tβm ,
prédire la quantité d’intérêt pour chaque observation du
groupe i dans chaque modèle Tβz , 1 ≤ z ≤ m ;
calculer l’erreur pour chaque sous-arbre.

6 Pour chaque βz , sommer les erreurs des Gi . Prendre le
paramètre de complexité β d’erreur minimale, et choisir Tβ
comme meilleur sous-arbre sur l’échantillon de base.
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ARBRE DE CLASSIFICATION : Y DISCRÈTE

Supposons que Y ∈ {A ,B}.

Dans le cas discret, la quantité d’intérêt est

π0(x) = E0[1Y=A |X = x] = P(Y = A |X = x)

Ici il faut adapter le critère d’homogénéité, donc la perte Φ.

On considère classiquement de

l’indice de Gini,

l’entropie.
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ENTROPIE

La fonction d’entropie est classiquement définie pour p ∈ [0, 1] par

f(p) = −p log(p).

Appliqué aux CART, dans un pb à 2 classes {A ,B} pour Y , on
définit l’hétérogénéité du noeud t (convention 0 log(0) = 0) comme

Ht = −2
∑

l={A ,B}

|t | p l
t log(p l

t ),

où p l
t est la proportion de la classe l dans le noeud t .

On maximise↘ hétérogénéité, soit maxdiv . Ht − (Htg + Htd ).
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CONCENTRATION DE GINI

La concentration de Gini est définie pour p ∈ [0, 1] par

f(p) = p (1 − p).

Appliqué aux CART, on définit l’hétérogénéité comme

Ht =
∑

l={A ,B}

p l
t (1 − p l

t ).

Rq :
- La concentration de Gini est la variance d’une Bernoulli...
- Proportions remplaçable par des proba. conditionnelles si proba.
a priori des classes connues (, proba. observées). Sinon, proba.
de chq classe estimées sur l’éch. (revient à prendre proportion).
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GRAPHIQUE DE L’ERREUR

Ds tous les cas, la quantité à optimiser sera convexe/concave.

⇒ Zones intéressantes : extrémités de [0, 1].
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AFFECTATION POUR PREVISION

Concernant l’affectation de l’observation à prédire à l’une des
classes, il y a donc 3 distinctions possibles en fonction de
l’information à disposition :

soit on affecte la classe la plus représentée dans la feuille,

soit on affecte la classe a posteriori la plus probable (au sens
bayésien) si l’on dispose de probabilités a priori (pas les
proba. de représentation dans l’échantillon) des classes,

soit on affecte la classe la moins coûteuse si des coûts de
mauvais classement sont donnés.
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REPONSE QUANTITATIVE

Les mesures classiques de performance d’un modèle si Y est
quantitative sont :

l’Erreur Quadratique Moyenne (EQM, ou MSE) :

MSE(π̂K (x)) =
∑

i

(Yi − π̂
K (xi))2

l’Erreur Absolue Moyenne (EAM, ou MAE) :

MAE(π̂K (x)) =
∑

i

|Yi − π̂
K (xi)|

Rq : évidemment, ces erreurs se mesurent sur un échant. test, ⊥⊥
des échant. ayant servi à construire et tuner/optimiser le modèle...
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REPONSE CATEGORIELLE : MATRICE DE CONFUSION

Dans un pb de classif., on utilise svt la matrice de confusion
comme mesure de performance⇒ résume les indiv. mal classés
et ceux bien classés par le modèle :
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REMARQUES

En utilisant cet outil, on peut calculer facilement :

le taux de mauvaise classification :

(FP + FN)/(FP + FN + TP + TN)

l’indice de sensibilité : TP/(TP + FN)

l’indice de spécificité : TN/(TN + FP)

Ds la pratique, on optimise svt le modèle par rapport à 1 des 2
indices, qui mène à la prudence du modèle (svt la spécificité, qui
mesure la prédiction d’un événement rare...).
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LIMITES DE CETTE MESURE

Principalement 2 limites à l’utilisation de cette matrice :
1 dépendante d’un seuil d’affectation : pour classer les prév. du

modèle, on définit ce seuil. Dans un pb à 2 classes, svt 0,5⇒
bien connu que ce n’est svt pas seuil optimal (⇒ ROC).

2 ds un pb où classes de Y sont largement disproportionnées,
le modèle prédira tjs la même classe et donnera 1 erreur de
classif. globalement très faible... Peu réaliste, car souvent
c’est l’événement rare qu’il nous intéresse de prédire... Donc
en fait l’erreur sur cette prévision est maximale, puisque
l’événement en question n’est jamais prédit !
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COURBE ROC ET AUC

ROC (Receiving Operator Curve) résume taux de VP (sensibilité)
et FP (1-spécificité) pour ts les seuils d’affectation :

AUC (Area Under Curve) : ∈ [0,5 (modèle aléatoire) ; 1 (parfait)].
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AUTRES OUTILS : C-INDEX, F1-SCORE

Au lieu d’utiliser la matrice de confusion pour optimiser un modèle,
on peut aussi utiliser une mesure différente qui répond à une autre
logique...

le C-index (descendant de l’AUC...) : cf thèse Anani

ex : article Pierrick ;

F1 score...permet de tuner les hyperparamètres en optimisant
ce score ! (cf article Yohan Le Faou)
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4 Première brique en Machine Learning : arbres de décision
Algorithme CART
Exemples
Formalisation : construction de l’arbre
Lien avec le problème de régression classique
Gestion du surapprentissage : réduction de dimension
Réponse catégorielle
Outils et mesures de performance des modèles
Extensions et conclusion
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EXTENSIONS : AUTRES FONCTIONS DE PERTE Φ

π0(x) = arg min
π(x)

E0[Φ(Y , π(x)) |X = x]

→ Estimation de moyenne : π0(x) = E0[Y |X = x]
Critère de division (MCO) : Φ(Y , π(x)) = (Y − π(x))2.

→ Quantile : π0(x) = QY (α |X = x) = inf{y : F(y |X = x) ≥ α}
Φα(y, π(x)) = α|y−π(x)|11(y > π(x)) + (1−α)|y−π(x)|11(y ≤ π(x))

→ Estimation de densité de la loi de Y :
Φ(Y , π(x)) = − log π(Y , x), avec π la densité jointe de (Y ,X).

⇒ En pratique, version empirique de ces mesures pr l’estimateur !
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DONNEES MANQUANTES : LES SURROGATE SPLITS

Dans la pratique, on n’observe pas certaines variables explicatives
pour certains individus⇒ on ne peut pas les faire descendre dans
l’arbre pour en déduire une prévision...

Dans ce cas, on impute la donnée manquante ou on utilise une
surrogate split (obligatoirement basée sur une autre covariable !).

Correspond à la division la + voisine de celle initialement choisie,
en termes de concordance des individus envoyés dans chacun
des noeuds fils⇒ imite au mieux la meilleure d’origine, mesurée
par une mesure d’association entre 0 et 1 (1 est un clône).
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PROBLEMATIQUES CLASSIQUES A GERER

Problème de biais de l’estimateur CART lorsqu’une variable
explicative catégorielle contient trop de modalités... Tendance à
attirer la règle de division à cette variable notamment.

Problème lorsque unbalanced response : on se retrouve qu’avec la
racine et on ne segmente pas ! Que faire si on a juste la racine?...
cf https ://stats.stackexchange.com/questions/28029/training-a-
decision-tree-against-unbalanced-data

Problème de censure, troncature...
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CONCLUSION SUR CART

+ Algorithme simple, résultat facile à interpréter (règles, fournit
pouvoir discriminant facteurs de risque).

+ Procédure statistique consistante théoriquement.

+ Méthode non-paramétrique, et invariante par transformation
monotone des covariables (rangs utilisés)⇒ robustesse.

+ Adapté à la gestion de bc de var. explic. : sélection variables
“intégrée” à l’algo. et intéractions implicitement considérées.

+ Extensions possibles avec adaptation de la perte.

- Algo récursif : peut passer à côté de l’optimum global...

- Instabilité aux données d’apprent. (variance estimateur) du
fait de structure hiérarchique⇒ gagner en robustesse.
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UN MOT SUR LA ROBUSTESSE PREDICTIVE

Certaines techniques ont été développées afin de stabiliser la
prévision donnée par un estimateur arbre.

En effet, la construction d’un arbre optimal peut varier fortement
quand bien même le jeu de données initial varie peu...
⇒ Proposer des estimateurs agrégés⇒↘ variance estimateur !

Pour éviter de corréler les estimateurs simples qui composeront
l’estimateur agrégé, on peut intégrer par exemple

1 choix aléatoire des covariables considérées lors d’1 division ;
2 tirage aléatoire de sous-jeux de données.
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UN MOT SUR LES STRATEGIES D’AGREGATION

Deux stratégies s’opposent dans le raisonnement :

→ Stratégie d’agrégation aléatoire (bagging : boostrap
aggregating) : créer des échantillons, construire le modèle sur chq
échantillon, combiner les modèles (ex : type forêts aléatoires).

→ Stratégie alternative, apprentissage incrémental (boosting) :
apprentissage sur 1 paquet, prévision sur paquet 2, puis
apprendre des exemples mal prédits du paquet 2, actualiser
modèle, puis recommencer sur les paquets suivants⇒ apprendre,
mémoriser (ex : GBM).
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LE BAGGING PLUS EN DETAIL
[FH00], [Bre94]

Le bagging conduit structurellement à diminuer la variance d’un
estimateur.

En effet, n’importe quelle estimateur peut s’écrire à l’aide d’un
développement de Taylor...Le premier terme étant la partie linéaire,
les termes suivants étant des termes d’ordre supérieur. Le bagging
ne touche pas au premier terme, mais considère l’espérance des
termes suivants... Faisant ainsi diminuer la variance !

Conclusion : plus la quantité à estimer est linéaire (problème
simple et dimension raisonnable), moins le bagging est efficace !
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LE BOOSTING PLUS EN DETAIL
[FS97], [Fri01], [Sha03]

Le bagging conduit structurellement à diminuer la variance et le
biais d’un estimateur.

...
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5 Bagging + randomization de CART : forêts aléatoires
Principe
Construction de la fôret aléatoire
Force, corrélation et erreur de la forêt
Interprétabilité de modèles ensemblistes
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PRINCIPES DES RANDOM FORESTS

Agrégation d’estimateurs CART.
L’objectif des forêts aléatoires est de proposer un estimateur
“moyenné” afin d’améliorer la robustesse de l’estimation de la
quantité d’intérêt (↘ variance estimateur agrégé).

Il s’agit d’intégrer une multitude de prévisions obtenues dans une
estimation finale. Approche intéressante pour 2 raisons
principales :

on peut dégager un classement robuste du pouvoir explicatif
de chacun des facteurs de risque,

sa consistance a été démontrée dans plusieurs articles.
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MAIS N’OUBLIEZ PAS...

“RF is an example of a tool that is useful in doing analyses of
scientific data.”

“But the cleverest algorithms are no substitute for human
intelligence and knowledge of the data in the problem.”

“Take the output of random forests not as absolute truth, but as
smart computer generated guesses that may be helpful in leading
to a deeper understanding of the problem.”

Leo BREIMAN.
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PRÉVISIONS : Y CONTINUE VS Y DISCRÈTE

Soit Ŷi l’estimateur obtenu pour l’indiv. i par un CART maximal
(pour diminuer le biais).
On construit N arbres CART en modifiant l’échantillon à chaque
fois. Pour chaque obs. i, l’estimateur forêts aléatoires vaut :

une moyenne dans le cas où Y est continue :

ŶRF
i =

1
N

N∑
n=1

ŶCART
i,n

un vote majoritaire si Y est discrète :

ŶRF
i = arg max

k=A ,B
(#ŶCART

i,n = k)
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5 Bagging + randomization de CART : forêts aléatoires
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RF = BAGGING + RANDOMIZATION

Les forêts aléatoires étaient basées sur plusieurs arbres CART.
Chacun de ces arbres est construit comme suit.

1 Construire un échantillon bootstrap de même taille que
l’apprentissage (répliquer l’éch. selon mesure empirique) ;

2 Construire l’arbre CART sur cet échantillon bootstrap :
considérons qu’il y a k facteurs de risque, avec m << k :

à chaque noeud, on tire aléatoirement m facteurs de risque
parmi les k disponibles ;
on cherche la division optimale basée sur ces m covariables ;
où s’arrête-t-on dans la construction (cf slide suivante)?

3 agréger ces arbres pour construire l’estimateur forêt.

Remarque : m ne change pas entre les , arbres de la forêt.
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TROIS STRATÉGIES D’ÉLAGAGE

Chaque arbre est-il élagué? On distingue 3 stratégies ,

1 Laisser construire l’arbre maximal pour chacun des échant..
→ Bon compromis volume des calculs / qualité des prév. :
faible biais et grande variance de chaque estimateur.

2 Construire un arbre d’au plus q feuilles→ Cf plus loin...

3 Construire l’arbre maximal à chaque fois, puis l’élaguer par
validations croisées→ pénalise lourdement la quantité de
calculs sans gain substantiel de qualité de prévision...

Rq : stratégie (1) implémentée par défaut dans randomForest(.).
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BOOTSTRAP, AGGRÉGATION ET RANDOM FORESTS
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5 Bagging + randomization de CART : forêts aléatoires
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ERREUR DE LA FORÊT

L’erreur associée à la forêt dépend de 2 paramètres :

la corrélation entre les arbres de la forêt : + cette corrélation
↗, + l’erreur est grande ;

la capacité de chq arbre ds la forêt à donner une estimation
proche de réalité (force) : + l’arbre est précis, − erreur gde.

Par rapport au paramètre de tuning “m”, on observe que

abaisser m réduit la corrélation et la force,

agrandir m augmente la corrélation et la force.

⇒ Arbitrage à trouver sur m→ minimiser erreur O(ut)-O(f)-B(ag)
Rq : l’autre paramètre de tuning est le nombre d’arbres de la forêt.
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L’ERREUR OOB

Au sein de la construction de chaque arbre CART de la forêt, on
ne considère qu’une portion de l’échantillon bootstrap
correspondant⇒ le reste constitue les données “out-of-bag”.

C’est sur ces données “out-of-bag” que sont calculées :

une estimation non-biaisée de l’erreur de l’arbre,

une estimation de l’importance des facteurs de risque.

Ici, pas de validation croisée pour avoir une estimation non-biaisée
de l’erreur : on prend les obs. et prévisions chaque fois qu’elles
sont dans l’éch. OOB→ calcul erreur indiv.→ moy. erreurs indiv.
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TIRAGE ALÉATOIRE COVARIABLES CHAQUE ÉTAPE

→ Randomization permet de diminuer la corrélation entre les
arbres (rappel : les arbres sont ensuite agrégés), et de traiter le pb
de covariables corrélées qui induisent un biais.

La variance de la moyenne de B estimateurs ⊥⊥ (v.a.) vaut

Var(
1
B

B∑
b=1

Xb) =
1

B2
Var(

B∑
b=1

Xb) '
σ2

b

B
.

En revanche, si ces arbres sont corrélés 2 à 2, de coefficient de
corrélation ρ, on obtient :

Var(
1
B

B∑
b=1

Xb) ' ρσ2
b +

1 − ρ
B

σ2
b .
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Ainsi,

si ρ→ 0, alors on retrouve le cas initial,

si ρ→ 1, alors on a beau↗ B, il restera toujours ρσ2.

Cela limite donc fortement l’avantage du bagging... !

La procédure de bagging est encore plus fructueuse si p (nb de
facteurs de risque) est grand !

Conclusion : lors de l’agrégation, on↘ ainsi la variance de
l’estimateur tout en conservant le meme ordre de grandeur pour le
biais...l’erreur globale de l’estimateur diminue donc !

Grâce à cette randomization, la stratégie d’élagage peut être +
élémentaire qu’en pur bagging (avec d’autres modèles), on
pourrait adopter la stratégie (2) d’élagage...
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Preuve :
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REMARQUES ADDITIONNELLES

→ La randomization permet de gérer également les covariables
corrélées.
→ L’importance des facteurs de risque peut être calculée de 2
façons différentes.

Mesurer l’importance par permutation des covariables
(shuffling).

→ Permutation aléatoire des valeurs de la covariable entre
individus, puis on prédit : + la qualité de prévision est
dégradée, + le facteur de risque est important.

En pratique, on calcule l’erreur OOB du be arbre sans et avec
permutation de la covariable, puis on regarde l’écart. Puis on
moyenne sur tous les arbres.
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Utiliser pour chaque variable dans chaque arbre la valeur de
décroissance de l’indice de Gini.

En pratique : il est + simple de moyenner la↘ de Gini car elle est
déjà calculée lors de la construction de l’arbre.

→ Gestion des données manquantes : imputées comme suit,

échantillon d’apprentissage : moyenne ou proximités ;

échantillon de valid. : , suivant que l’on observe Y ou non.

Rq : le fichier d’aide de randomForest détaille tout cela...
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RÉSUMÉ SUR LE BAGGING

Finalement, le principe du bagging présente des avantages et des
inconvénients...

(+) Simple à mettre en oeuvre et à comprendre ;

(+) Se programme facilement, qlq soit la méthode ;

(+) Diminue la variance de l’estimateur ;

(-) Temps de calcul parfois important : nécessité d’agréger un
grand nombre de modèles avant de stabiliser l’erreur OOB;

(-) stockage de tous les modèles (mémoire...) ;

(-) Perte de l’interprétabilité, sorte de boîte noire.
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INTERPRETABILITE

Contrairement à des modèles simples de type régression linéaire
ou arbres de décision (donc paramétrique ou non), les modèles
ensemblistes sont difficilement interprétables...

En particulier, bien qu’il soit possible d’extraire une mesure
d’importance des variables explicatives pour expliquer la réponse,
il est complexe de déterminer l’impact quantifié d’une variation de
valeur d’une covariable sur la réponse...
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METHODES

Il existe plusieurs techniques permettant d’améliorer
l’interprétabilité d’un modèle ensembliste.

On peut citer par exemple :

Essai 1 : extraire plusieurs arbres représentatifs de la forêt, suite à
un clustering sur les arbres (Weinberg AI, Last M. Selecting a
representative decision tree from an ensemble of decision-tree
models for fast big data classification. J Big Data. 2019 ;6(1) :23

Essai 2 : Méthode de LIME

Essai 3 : Méthode de SHAP (Shapley)

Il y a aussi les PDP, ICE, ...
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6 Agrégation de modèles par boosting
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LES GRADIENT BOOSTING MACHINE (GBM)
[SF12]

Nous avons vu un exemple de combinaison de modèles basé sur
une stratégie aléatoire (bagging : par ex. avec forêts aléatoires).
→ L’enjeu de l’agrégation par boosting est tout à fait , : il s’agit
d’une stratégie adaptative (boosting).

⇒ Améliore l’ajustement par 1 construction adaptative séquentielle
d’estimateurs, puis une combinaison de ces estimateurs pour
éviter le surapprentissage.

Rq : les principes de bagging / boosting concernent tte
modélisation...mais ont principalement un intérêt dans le cas de
modèles instables (ex : CART...) !
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EVOLUTION PAR RAPPORT AU BAGGING

On traite le problème du biais de l’estimateur en plus de traiter la
réduction de variance.

En effet, l’agrégation par bagging ne corrige pas le biais... puisque
l’espérance est un opérateur linéaire, et le biais est défini par une
espérance.

Or, dans le cas d’arbres individuels simples (“weak learner”), le
biais peut être important.

⇒ Le boosting construit une famille de modèles récurrente :
chaque modèle est une version adaptative du précédent.
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PROCEDURE DU BOOSTING

On peut écrire le boosting comme suit.

A la 1ère étape, on estime le modèle m1 pour y, à partir de x.
⇒ On en déduit le vecteur d’erreurs ε1.

A la 2ème étape, on estime le modèle m2 pour ε1, à partir de x.
⇒ On en déduit le vecteur d’erreurs ε2.

On réitère ce procédé...et on obtient à l’étape k :

m(k)(x) = m1(x)︸︷︷︸
∼y

+ m2(x)︸︷︷︸
ε1

+... + mk (x)︸ ︷︷ ︸
εk−1

= m(k−1)(x) + mk (x).
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STRATÉGIE ADAPTATIVE

Pour s’adapter de proche en proche, on donne + de poids dans
l’estimation suivante aux observ. mal prédites précédemment.

Intuitivement, l’algorithme concentre ses efforts sur les observ. les
+ difficiles à ajuster, tout en limitant l’overfitting par l’agrégation...

Les , algo. de boosting diffèrent par leurs caractéristiques :

la façon de pondérer l’importance des indiv. mal estimés ;

la façon de pondérer les modèles lors de l’agrégation ;

leur objectif (prédire Y réelle, binaire, ...)) ;

la fonction de perte qui mesure l’erreur d’ajustement (+ ou -
sensible aux valeurs atypiques par ex.)
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ALGORITHME D’ORIGINE : ADABOOST

Au départ, cet algorithme est proposé pour un problème de
discrimination à 2 classes.

Notons δ la fonction de discrimination, à valeurs dans {−1, 1}.

Algorithme :
1 Soit y0 à prévoir (connaissant x0), et z = {(x1, y1), ..., (xn, yn)}

un échantillon.

2 On initialise les poids (équipondération au départ) :

ω = {ωi =
1
n

; i = 1, ..., n}
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3 De m = 1 à M (m est le mième modèle) :
1 on estime δm sur l’échantillon pondéré par ω.
2 on calcule le taux d’erreur apparent : ε̂p =

∑n
i=1 ωi11δm(xi),yi .

3 on calcule les logit relatifs au modèle m : cm = ln
( 1−ε̂p

ε̂p

)
.

Ainsi, ε̂p ↗⇒ cm ↘⇒ on pondérera + les bons modèles.
4 on met à jour les pondérations :

ωi = ωi exp(cm 11δm(xi),yi )

Ainsi, on pondère + les observations mal classées...
5 m ← m + 1, retour à l’étape 1 de la boucle.

4 Résultat du vote :

Φ̂M(x0) = signe

 M∑
m=1

cm δm(x0)

 .
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Remarque : il faut vérifier à chaque étape que le modèle courant
fait mieux qu’une prévision aléatoire, i.e.

ε̂p < 0, 5.

Effectivement, le poids cm du modèle correspondant devient
négatif sinon !

De nombreuses adaptations de cet algo. ont été proposés, avec
des fonctions de perte adaptées aux cas où :

Y quantitative,

Y qualitative à plusieurs modalités,

...
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AUTRES PONDÉRATIONS

Parfois, on utilise des classifieurs pour lesquels il est difficile (voire
impossible) d’intégrer une pondération des observations...

La stratégie revient à créer aléatoirement des échantillons (un peu
comme en bootstrap), en procédant comme suit :

chaque modèle sera construit sur un nouvel échantillon ;

la proba. de tirer (avec remise) chaque observ. est
inversement proportionnelle à sa qualité d’ajustement dans
l’itération précédente.

C’est ce qu’on appelle des arcing classifiers (adaptively resample
and combine) (voir les travaux de Breiman).
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ADABOOST AVEC Y CONTINUE

On est donc dans un cadre de régression, où Y est quantitative.

Algorithme :
1 Soit y0 à prévoir (connaissant x0), et z = {(x1, y1), ..., (xn, yn)}

un échantillon.

2 On initialise un vecteur de proba. p par une loi uniforme
(équipondération) : p = {pi = 1/n}

3 Pour m = 1 à M (m est le mième modèle) :
1 on tire avec remise dans z un échantillon z?m suivant p .
2 on estime Φ̂m sur z?m.
3 on calcule sur l’échantillon initial z les quantités :
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lm(i) = Q(yi , Φ̂m(xi)), pour i = 1, ..., n et Q la perte ;
ε̂m =

∑
i pi lm(i)

ωi = g(lm(i)) pi , avec g continue décroissante ;
on met à jour les proba. de tirage : pi = ωi∑

i ωi
.

4 Prévision du modèle agrégé : Φ̂M(x0) est la moyenne (ou
médiane) des prévisions Φ̂m(x0), pondérée par des poids
ln(1/βm) (cf ci-dessous pour βm).

Remarques :

Q : souvent perte quadratique, mais p-ê une autre fonction !

βm = ε̂m
Lm−ε̂m

, avec Lm = supi lm(i), et g(lm(i)) = β
1−lm(i)

Lm
m

Condition supp. ajoutée : arrêt et réinitialisation à des poids
uniformes si ε̂m < 0.5Lm (erreur trop dégradée) ;

βm : indicateur de la performance du prédicteur m sur z.
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VISION PAS À PAS D’ADABOOST

Comme nous l’avons vu, cet algorithme fonctionne pas-à-pas :
c’est la raison pour laquelle on l’appelle le Gradient Boosting
(déplacement : opposé de la pente de fonction à minimiser, cf
expansion de Taylor et algo. de Newton).

Une manière d’écrire l’optimisation avec cette vision à l’étape m
(rappel : c est lié à la performance du modèle) :

(cm, γm) = arg min
(c,γ)

n∑
i=1

Q(yi , Φ̂m−1(xi) + cδ(xi , γ)).
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GENERALISATION : BOOSTING, GRADIENT ADAPTATIF

En d’autres termes, on construit une suite de modèles

m(k)(x) = m(k−1)(x) + α f?(x)

où

f?(x) = arg min
f∈W

 n∑
i=1

l
(
yi −m(k−1)(xi), f(xi)

) ,
avec l fonction de perte, etW un ensemble de weak-learners...

Rq : ces weak-learners sont svt des CART (“stumps”)...Gradient
Tree Boosting !
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PARAMETRES DE TUNING

Dans cet algorithme, voici les paramètres de tuning :

nombre d’itérations : combien d’étapes M considérer?

profondeur des arbres, ...

“shrinkage” α ∈ [0, 1] : assurer une convergence lente !
Plutôt que ε1 = y −m1(x), on considère

ε1 = y − α m1(x).

Rq :
- Algo. très performant car peut corriger biais et variance.
Néanmoins, les multiples param. de tuning rendent la gestion du
surapprentissage difficile...
- En reg. lin., ε ⊥⊥ X⇒ impossible d’apprendre de nos erreurs !
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XGBOOST

eXtreme Gradient BOOSTing

En...

En...
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7 Réseau de neurones et Deep Learning
Introduction
Neurone formel et fonctionnement d’un perceptron
multicouches
Estimation des paramètres
Paramétrage du réseau
Deep learning et autres types de réseaux
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UN PEU D’HISTOIRE

Réseaux de neurones sont une branche de l’IA (Intellig. Artific.)
qui a pour but de simuler le comportement du cerveau humain.

→ Approche connexionniste (connaissance répartie), avec des
couches... :

1 entrée,
2 coeur,
3 sortie.

Ds les années 1970, mise en oeuvre difficile car puissance des
ordinateurs limitée⇒ développement de l’approche séquentielle
ou symbolique→ systèmes experts à connaissance localisée.
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EXPERTISE HUMAINE

But : automatiser le principe de l’expertise humaine via 3
concepts :

1 une base de connaissances : propositions logiques
élémentaires,

2 une base de faits : données, observations,
3 un moteur d’inférence : applique les règles expertes sur la

base des faits.

⇒ En déduit de nv faits (expérience) jusqu’à réaliser l’objectif !

Pb : complexité...(algorithmiquement, et en termes de
modélisation)
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PRINCIPAUX RÉSULTATS UTILISÉS

Finalement, les réseaux de neurones se sont développés grâce à
l’essor de l’informatique...
Et l’approche connexionniste a été relancée, grâce notamment aux
deux résultats théoriques principaux suivants :

l’estimation du gradient par rétropropagation de l’erreur
(Hopkins, 1982) ;

l’analogie avec les modèles Markoviens en mécanique
statistique (Hopfield, 1982).

Remarque : large variété d’applications, technique complémentaire
de méthodes stats usuelles (MLE, ...).
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RÉSEAU NEURONAL

Réseau neuronal : association de neurones formels⇒ créé un
graphe + ou - complexe d’objets élémentaires.

Les , réseaux se distinguent par 4 composantes :
1 organisation du graphe (couches, ...) ;
2 niveau de complexité (nb neurones, ...) ;
3 type des neurones (transition, activation) ;
4 objectif (apprentissage supervisé ou non, ...).
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LE NEURONE FORMEL

Défini sur la base du fonctionnement d’un neurone biologique !
C’est un modèle caractérisé par :

un état interne, noté s ∈ S ;

des signaux d’entrée, notés x1, ..., xp ;

une fonction d’activation :

s = h(x1, ..., xp) = f(α0 +

p∑
j=1

αjxj) = f(α0 + αT x).

Voc : on appelle α le vecteur des poids, α0 le biais du neurone.
Rq : les poids α sont estimés durant l’apprentissage : mémoire ou
“connaissance répartie” du réseau.
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TYPES DE NEURONE

, types de neurone se distinguent par leur fonction d’activation f :

type linéaire : f(x) = x

type sigmoïde : f(x) = (1 + e−x)−1

type seuil : f(x) = 11[0,+∞[(x)

type radiale : f(x) =
√

1
2π exp

(
−1

2x2
)

type stochastique : f(x) = 1 avec proba (1 + e−x/H)−1, 0
sinon ; ...

Rq : en data mining, les 2iers types de réseaux sont les + utilisés
car fonction d’activation est différentiable→ adapté à un algo.
d’apprentissage impliquant la rétropropagation du gradient.
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DIFFERENCES DE SEPARATION

En fonction de l’activation choisie, les données sont séparées
différemment. Exemple ici : fonction linéaire VS fonction radiale...
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AUTRES FONCTIONS D’ACTIVATION
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SCHÉMA DE FONCTIONNEMENT
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RÉSULTAT FONDAMENTAL

Le résultat suivant est la base de l’approche de modélisation par
un réseau de neurones.

Théorème d’approximation “universelle” :

Toute fonction régulière peut être approchée uniformément avec
une précision arbitraire et dans un domaine fini de l’espace de ses
variables par un réseau de neurones comportant une couche de
neurones cachés (en nombre fini et possédant tous la même
fonction d’activation), et un neurone de sortie de type linéaire.
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LE PERCEPTRON MULTICOUCHES (PMC)

Intéressons nous ici à un réseau “statique” (ou feedforward, i.e.
pas de boucle rétroactive), dans un but d’apprentissage supervisé.

En voici quelques caractéristiques :
1 architecture : PMC composé de couches successives, où 1

couche : ens. de neurones sans connexion entre eux ;

2 fonction de transfert : un PMC réalise une transformation des
variables d’entrée :

Y = Φ(X1,X2, ...,Xp; α),

avec α = (αjkl) pr la jè entrée (xj) du kè neurone de lè couche.
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3 généralisation : cas de la régression, avec un perceptron à
une couche cachée de q neurones, un neurone de sortie.
⇒ La fonction de transfert s’écrit

Y = Φ(x;α, β) = β0 + βT z, avec zk = f(αk0 + αT
k x),

pour k = 1, ..., q (identifiant neurone ds couche cachée).

Usuellement, on a

en rég. : dernière couche avec 1 seul neurone, avec f = Id ;
tandis que neurones couche cachée ont une fonct. sigmoïde ;

en classif. binaire : neurone de sortie muni de la fonction
d’activation sigmoïde ;

en discrimination à m classes : m neurones de sortie, munis
de sigmoïde.
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INTERPRETATION

D’un point de vue statistique, on peut donc voir les réseaux de
neurones comme 2 étapes distinctes :

1 du feature engineering automatisé,
2 une régression linéaire des nouvelles variables.

La première étape est processée par les couches d’entrée et les
couches internes du réseau, alors que la dernière étape est gérée
par la couche de sortie...

On pourrait donc récupérer les variables transformées juste avant
la couche de sortie, et remplacer le neurone de sortie par un autre
modèle prédictif !

187 / 217



7 Réseau de neurones et Deep Learning
Introduction
Neurone formel et fonctionnement d’un perceptron
multicouches
Estimation des paramètres
Paramétrage du réseau
Deep learning et autres types de réseaux

188 / 217



APPRENTISSAGE DU RÉSEAU

Supposons qu’on dispose d’une base d’apprentissage de n
observations, (x1

i , x
2
i , ..., x

p
i ; yi)i=1,...,n.

Prenons le cas de la régression (généralisable à tte fonction de
perte dérivable, dc aussi à la discrimination cf Gini) et le réseau à

une couche cachée à q neurones,

une sortie linéaire.

⇒ Les paramètres (poids) sont optimisés par moindres carrés :
l’“apprentissage” minimise donc la perte quadratique

Q(α, β) =
n∑

i=1

Qi(α, β) =
n∑

i=1

(yi − Φ(xi;α, β))2,

avec α = (αjk )j=0,...,p;k=1,...,q, et β = (βk )k=0,...,q.
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FONCTION DE PERTE CONVEXE - CLASSIFICATION
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ESTIMATION : EVALUATION DES GRADIENTS

Les algorithmes utilisés pour l’optimisation sont généralement
basés sur une évaluation du gradient par rétropropagation.

On détaille l’algorithme le plus utilisé : la rétropropagation de
l’erreur !

Consiste en évaluer la dérivée de la fonction de coût en une seule
observation à la fois par rapport à l’ensemble des paramètres,
puis ajuster les paramètres, puis réévaluer avec les nouveaux
paramètres sur une nvelle observation, et ainsi de suite.
Notons zki = f(αk0 + αT

k xi), et zi = (zi1, ..., ziq).

Ainsi, zi sont les valeurs pour l’individu i dans chaque neurone de
la couche cachée, et zki la valeur de l’individu i dans le neurone k .
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Etudions les dérivées partielles de l’erreur :

∂Qi

∂βk
=

∂(yi − Φ(xi;α, β))2

∂βk
=
∂(yi − (β0 + βT zi))2

∂βk

= −2(yi − Φ(xi)) (βT zi) zki

= δi zki

∂Qi

∂αkj
=

∂(yi − (β0 + βT zi))2

∂αkj
=
∂(yi − (β0 + βT (f(αk0 + αT

k xi)))2

∂αkj

= −2(yi − Φ(xi)) (βT zi) βk f
′

(αT
k xi) xij = δi βk f

′

(αT
k xi) xij

= ski xij

→ ski : terme d’erreur sur chaque neurone caché pr l’indiv. i.
→ δi : terme d’erreur du modèle courant à la sortie pr l’indiv. i.
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Ces deux termes vérifient les équations dites de rétropropagation
de l’erreur. On pose

ski = f
′

(αT
k xi) βk δi

⇒ Pour estimer les valeurs des gradients, on a donc besoin
d’évaluer δi et ski .

Cela se fait en 2 étapes :
1 une passe avant : valeurs courantes des poids permet de

déterminer la sortie du réseau Φ̂(xi) ;
2 puis une passe retour : avec Φ̂(xi) et les valeurs courantes

des poids, on évalue δi , puis ski par rétropropagation des δi ...
On obtient ainsi l’évaluation des gradients. Reste à optimiser.
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ALGORITHMES D’OPTIMISATION

On sait évaluer les gradients⇒ reste à utiliser un algo adapté !

+ simple : utilisation itérative du gradient (e.g.Newton-Raphson) :
en tout point de l’espace des paramètres, le vecteur gradient de Q
pointe dans la direction de l’erreur croissante⇒ suffit de se
déplacer dans le sens opposé pour↘ Q ! Ainsi,

β
(r+1)
k = β

(r)
k − τ

∑
i

∂Qi

∂β
(r)
k

α
(r+1)
kj = α

(r)
kj − τ

∑
i

∂Qi

∂α
(r)
kj

τ : taux d’apprentissage (schéma minimisation f convexe).
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APPLICATION : ALGORITHME DE RÉTROPROPAGATION
ÉLÉMENTAIRE DU GRADIENT

Initialisation :
Tirage aléatoire uniforme sur [0, 1] pour les poids αjkl (normaliser
dans [0, 1] les données d’apprentissage).

Boucle :
Tant que (Q > erreurMax) ou (niter < niterMax), faire

ranger la base d’apprentissage dans un nouvel ordre aléatoire,
pour chaque indiv. i = 1, ..., n, faire

calculer ε(i) = yi −Φ(x1
i , ..., x

p
i ; (α)(i − 1)) en propageant les

entrées vers l’avant ;
l’erreur est rétropropagée dans les , couches pour affecter à
chaque entrée une “responsabilité” dans l’erreur globale ;
mise à jour de chaque poids αjkl(i) = αjkl(i − 1) + ∆αjkl(i).
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REMARQUE SUR LE TAUX D’APPRENTISSAGE

Le taux d’apprentissage (learning rate) est un paramètre de tuning.

Il peut

soit être fixé par l’utilisateur au début de l’algorithme ;

soit varier en cours d’exécution.

Si τ est grand, alors on converge + vite vers une solution, mais elle
est moins précise.
Et inversement.
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PARAMÈTRES D’UN RÉSEAU DE NEURONES

Si on récapitule, on doit spécifier/ déterminer...
1 ...variables d’entrée et de sortie (leur faire subir d’éventuelles

transformation de normalisation) ;
2 ...architecture du réseau :

nb de couches cachées : aptitude à traiter des non-linéarités ;
nb de neurones par couche cachée ;

⇒ Impacte le nb de param. à estimer !
3 ...3 autres paramètres : erreur max. tolérée, nb d’itérations

max. de l’algo, un terme éventuel de régularisation (“decay”, à
intégrer dans la fonction de coût⇒ Ridge, norme 2 des
poids) ;

4 taux d’apprentissage τ.
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COMPLEXITÉ D’UN RÉSEAU DE NEURONES

Les 2 choix sur le nombre de couches cachées, et le nombre de
neurones par couche cachée, jouent sur la complexité du réseau.

⇒ Donc ces choix jouent sur la recherche du meilleur compromis
biais-variance de l’estimateur par réseau neuronal...

⇒ Jouent donc également sur l’arbitrage qualité d’adéquation /
qualité prédictive.

En pratique, on ne règle pas simultanément ces paramètres : on
cherche à contrôler le phénomène de surapprentissage⇒ on fera
des échantillons bootstrap, ou des validations croisées, ou
échantillon test, pour estimer l’erreur.
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RÉGLAGES

Pour ce qui concerne...

→ ...la durée d’apprentissage (maxit dans R) : arrêter par ex
l’apprentissage lorsque l’erreur de validation réaugmente.
→ ...le nb de couches : d’après le théo. d’approx. univ., on peut se
restreindre à un petit nb de couches cachées (1 ou 2 max.).
→ ...le nb de neurones par couche cachée : minimiser l’estimation
de l’erreur de prévision par validations croisées par exemple.

Conclusion : à chaque architecture spécifiée correspond un réseau
de neurones optimal. On fait varier ensuite les param. : on choisit
au final l’optimal des optimaux (comme CART avec l’élagage).
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LE DEEP LEARNING?

Le Deep Learning n’est rien d’autre qu’un réseau de neurones
ultra complexe.

Il y a

énormément de couches,

et énormément de neurones.

Cela implique des millions de paramètres potentiels, et ne peut se
calibrer qu’en cas de données gigantesque...
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CONCLUSION SUR LE DEEP LEARNING

Comme on peut s’en douter, il n’est en fait pas du tout facile de
bien se servir d’un réseau Deep Learning...
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TYPES DE RESEAUX NEURONAUX

∃ multitude de types de réseaux, avec des caractéristiques , :
boucles de rétro-apprentissage, ...
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TYPES DE CONNEXION

∃ aussi une multitude de types de connexions :
Plusieurs façons de connecter  

16 

Connexions complètes 
–  Poids : 2*6 =    12 

 
   

Connexions locales 
–  Poids : 2*3 =     6 
 

Poids partagés (réseaux 
de convolution) 
–  Poids : 3 

 

https://hal.archives-ouvertes.fr/hal-00003371   1990 

11/12//2018 Regard sur l’IA en France et en Europe 
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CONCLUSION GENERALE
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Mémoire d’Actuariat

Nous constatons que le Gradient Boosting est bien noté sur presque tous les critères tandis

que les réseaux de neurones et les Supports Vectors Machine (SVM) apparaissent comme des

modèles boîte noire malgré leur fortes capacités prédictives. Les arbres de décisions semblent être

le meilleur modèle mais ils ont de très faibles capacités prédictives. La présentation théorique

plus détaillée de ces méthodes de machine learning se fera au chapitre qui suit.

Figure 2.5 – Quelques élements de comparaison des modèles de machine learning

Etape 4 : Comparaison des modèles

Une fois les prédictions faites à travers les différents modèles, il est important de mesurer

leur qualité et de comparer leurs performances. Nous présentons ci-dessous quelques indicateurs

permettant de mesurer la qualité d’un modèle.

Courbe ROC

La courbe ROC (Receiver Operating Characteristic) est une mesure de la performance d’un

classifieur binaire et fût inventé pendant la seconde guerre mondiale pour montrer la séparation

entre les signaux radar et le bruit de fond. En statistique, elle est utilisée pour évaluer l’efficacité

d’une discrimination en deux groupes. c’est une représentation du taux de vrais positifs en

2015-2016 29 ENSAE ParisTech
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On peut aussi mentionner les points suivants, caractéristiques des
méthodes d’apprentissage statistiques :

+ non-paramétrique,

+ peu d’hypothèses,

+ “data-driven”,

+ faible biais normalement,

- instabilité (potentielle large variance),

- gestion du surapprentissage,

- ressources informatiques,

- interprétabilité.

Notions-clefs retenus du cours?
Retours sur le cours? (contenu, TP, ...)
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QUELS MODELES POUR QUELLES APPLICATIONS?
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NOTIONS PHARES DU COURS

Videos Deep Learning (cf dossier mac mes videos)
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POSITION DES ASSUREURS
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Transformation numérique: où en est le secteur d'assurance? 

Maturité de 
l'approche 

organisationnelle 
Déploiement des 

capacités, intégration 
online/offline 

Niveau de 
mobilisation du 

management  
Prise en compte des 

enjeux, KPI 

Maturité des 
modes de 

fonctionnement 
Désiloisation, Test & 

Learn 

Compétences 
Disponibilité et maturité 

des compétences 

Assurance 

Pionnier Avancés Intermédiaire Débutant 

Automobile 

GSS 

Luxe 

Télécom 

Banques 

Assurance 

Automobile 

GSS, GSA 

Luxe, FMCG 

Télécom 

Banques 

Assurance 

Automobile 

GSS 

Luxe, FMCG 

Télécom 

Banques 

Automobile 

GSS 

Luxe 

Télécom 

Banques 

• Prise de conscience des enjeux au niveau Comex et mise en 
place d'un plan de transformation depuis 12-18 mois 

• A date seule une partie du périmètre de business 
véritablement adapté  (typiquement Auto et IARD dans certain 
cas) 

• Progrès collectif sur les approches fonctionnelles par la mise 
en place de plateaux cross-fonction 

• Pas encore d'alignement structurel entre fonctions (parcours 
de carrière, KPIs croisés etc.) 

• Pas de logique systématique Test & Learn/POC – les acteurs 
plus avancés sont par exemple les banques 

• Réorganisation dans les 12 derniers mois permettant 
l'intégration du numérique dans la fonction marketing 

• A terme intégration du canal online dans l'écosystème agence 
– les GSS y sont en avance  

Assurance 

• Bien couverts sur les compétences E-business et Digital 
Marketing mais besoin de les transformer pour mieux 
répondre aux enjeux numériques 

• Priorité de recrutement dans le Big data 

Source: entretiens, analyse BCG 
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COMPÉTENCES BIG DATA
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8 compétences clés identifiées sur la transformation 
numérique 

Les compétences Activités spécifiques Les compétences Activités spécifiques 

Digital content 
 

Création de contenu, de nouveaux 
produits/ services digitaux, 

digitalisation de produits/services 
existants 

• Digital product or service 
manager 

• Web / App Editor  
• Digital Innovation / new digital 

product conception 

E-business 
 

Activités de vente sur internet 
(web, site propre, sites tiers) 

• E-commerce 
• E-merchandising and site 

optimization 
• Omnichannel/Multi-channel 

strategy 

Digital Customer 
Experience 

 

Design des interfaces 
 et parcours digitaux 

• UX designer / ergonome 
• Web developers 

Digital Branding, 
Marketing 

 

Activités marketing liées aux 
canaux digitaux  

(web, réseaux sociaux) 

• Social media marketing 
(community mgr / E-reputation / 
Advocacy Marketing) 

• Traffic acquisition (SEO, SEM, 
emailing, comparators, 
partnerships, affiliates) 

• Digital branding  (display, 
video) 

• Programmatic / Real Time 
Bidding 

• E-CRM 

Big Data & Analytics 
 

Collecte, analyse  
et exploitation des données  

• Data scientist 
• Web Analytics 
• Data quality 
• Business Intelligence 

Mobile interfaces 
 

Ensemble des interfaces propres 
aux canaux Smartphones et 

tablettes 

• Mobile app / msite developer 
• Mobile UX 
• Mobile data / geolocalisation 

Digital tools 
 

Développement et maintenance 
des outils et logiciels digitaux 
permettant la transformation 

numérique en interne comme en 
externe 

• Data technology (Hadoop,  ) 
• E-CRM (Neolane, Unica,  ) 
• Digital Front-Ends (Salesforce, 

...) 
• Cloud 
• Digital security 

Digital support 
 

Ressources en support  
des activités numériques 

• Digital Recruting 
• Digital legal 
• Digital purchasing 

1 

2 

3 

4 

5 

6 

7 

8 

Source: entretiens, analyse BCG 
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ASSUREURS SUR CES COMPÉTENCES?
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Perspective sur la position des assureurs 
Les 

compétences 
Maturité de la compétence par rapport 

aux enjeux 
Les 

compétences 
Maturité de la compétence par rapport 

aux enjeux 

Digital content 

E-business 

Digital Customer 
Experience 

Digital Branding 
& Marketing 

Big Data & 
Analytics 

Mobile 
interfaces 

Digital tools 

Digital support 

1 

2 

3 

4 

5 

6 

7 

8 

FMCG GSA Télécom 

Luxe, Automobile 

GSS 

Assurance, Banques 

Télécomn GSS 
GSA, Luxe, Automobile 

Assurance, Banques 

Télécom 
Luxe, Automobile 

GSS, FMCG 

Assurance, Banques 

Luxe, FMCG 
GSA, GSS 

Assurance, Banques, telecom 

FMCG Télécom 
Luxe, Automobile,GSA 

GSS 

Assurance, Banques 

GSS, FMCG 

Luxe, Automobile, 
GSA, Télécom 

Assurances, Banques 

GSA, FMCG, Télécom 

Luxe, Automobile 

Assurance, Banques 

Source: entretiens, analyse BCG 
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