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Plan du cours

1 Introduction et rappels des concepts essentiels

2 Applications classiques des GLM en assurance

3 Les Modèles Linéaires Généralisés (GLM)

4 Usage pratique des GLM: les écueils récurrents

5 Application sur une base de données réelle
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Organisation - Objectifs

Le travail se répartit comme suit:

12h de cours sur les GLM;

8h de cours sur la théorie de la crédibilité.

L’objectif est d’avoir une idée des difficultés rencontrées en
pratique et de connaitre certaines méthodes pour les traiter.

La mise en pratique sera réalisée sur ordinateur, à l’aide du logiciel
R.
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1 Introduction et rappels des concepts essentiels
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Contrat d’assurance - Tarification

Une police d’assurance est un contrat entre deux parties :

→ l’assuré, détenteur du contrat;

→ l’assureur, pourvoyeur du contrat.

En échange de la couverture d’un risque par l’assureur, l’assuré
verse une prime d’assurance.

En cas de sinistre, le bénéficiaire du contrat reçoit le montant
contractuel prévu en cas de survenance du sinistre.
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Ainsi le risque économique initialement supporté par l’assuré est
transféré vers l’assureur.

La mutualisation induite par la souscription de nombreux contrats
au sein d’une compagnie d’assurance permet l’utilisation grossière
de la loi des grands nombres.

En effet,

→ un portefeuille d’assurance couvre un risque en particulier:
les pertes sont considérées être de même loi de probabilité;

→ les contrats sont a priori indépendants les uns des autres.
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Ces propriétés doivent permettre à l’assureur de prédire avec une
précision relative les pertes encourues pour une période donnée.

Soit un portefeuille d’assurance contenant I polices. Notons la loi
du ième contrat Si (perte), et la loi des pertes agrégées SI.

La LFGN stipule la CV presque sûre de la moyenne empirique de
pertes i.i.d., notée S̄I = 1

I
∑I

i=1 Si , vers l’espérance de la loi:

S̄I
p.s.
−→
n→∞

E[Si] = µ.

Ou encore: P
(

lim
I→∞

S̄I = µ
)

= 1.

7 / 97



Prime technique - prime commerciale

Ce résultat est à l’origine du principe général de tarification: la
prime vaut au moins µ, aussi appelée prime pure du contrat.

En pratique l’assureur applique des chargements à cette prime,
car mathématiquement sa ruine est certaine à horizon infini dès
lors que la tarification respecte le strict principe d’équivalence.

La prime d’assurance Πi se décompose donc en +sieurs parties:

→ la prime pure E[Si];

→ + les chargements techniques (ou marge de risque MRi):

Πi = E[Si] + MR(Si);

→ les coûts:
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acquisition,
administration et gestion du contrat,
rémunération d’intermédiaires (courtiers, ...).

La stratégie de la compagnie peut également jouer sur la hauteur
de ces chargements.

Objectif de l’assureur:

Mettre en place une tarification segmentée tout en conservant le
principe de mutualisation.

Cela lui permettra de déterminer

→ la loi de probabilité de son résultat futur,

→ sa probabilité de ruine.

Les modélisations concernent la détermination de la prime pure.
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Contexte d’étude des risques en assurance

Un assureur essaie généralement d’avoir la meilleure
connaissance possible de la fréquence et du coût des sinistres.

Les bases de données des assureurs comportent un ensemble
d’informations sur les

caractéristiques de l’assuré: sexe, âge, CSP, adresse...

options du contrat: franchise, ...

conditions de marché: indices macroéconomiques,
conjoncture, concurrence...

Ces informations jouent un rôle important dans la détermination
et dans l’estimation des paramètres des modèles mis en place!
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Allure d’une base de données (ex: auto)

> head(myData, n=16)

PERMIS ACV SEX STATUT CSP USAGE AGECOND ... GARAGE CHARGE

1 245 10 F C 50 2 40 ... 3 0

2 348 10 F A 50 1 63 ... 3 0

3 16 10 F C 26 2 20 ... 3 0

4 291 10 F A 50 1 56 ... 3 0

5 123 10 F A 50 1 29 ... 3 0

6 295 10 F A 37 1 43 ... 3 0

7 24 10 F A 50 2 21 ... 3 0

8 181 9 F A 50 3 35 ... 3 0

9 157 10 M C 55 1 31 ... 3 0

10 338 10 M C 1 2 48 ... 2 179

11 20 10 M C 26 2 19 ... 3 0

12 208 10 F A 50 2 39 ... 3 0

13 127 10 F A 37 1 29 ... 1 0

14 93 7 F C 50 2 39 ... 3 0

15 134 10 F A 50 1 36 ... 3 0

16 416 10 F C 50 1 60 ... 3 0
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Quelques principes de base en tarification

Soit Si la somme annuelle des sinistres du contrat i. Le nb Ni de
sinistres est une v.a. considérée ⊥⊥ des coûts Yik , eux-même i.i.d.:

Si =

0 si Ni = 0

Yi1 + . . . + Yin si Ni = n.
⇔ Si =

Ni∑
k=1

Yik

Ainsi, EP[Si] = EP[Ni] × EP[Yik ].

En réalité, Ni est souvent conditionnellement ⊥⊥ à Yi , donc

EP[Si | Xi] = EP[Ni | Xi] . EP[Yik | Xi],

où Xi est un ensemble d’informations.
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Le principe de la tarification est d’approcher X par un proxy.
Ce proxy correspond aux info. indiv. → variables explicatives:

⇒ c’est le contexte des modèles de régression.

Supposons que l’assureur dispose de J facteurs explicatifs du
risque, notés {X1, . . . ,XJ}, on obtient alors la formule

EP[S |X1, . . . ,XJ] = EP[N |X1, . . . ,XJ] . EP[Y |X1, . . . ,XJ].

Le problème est donc d’obtenir

EP[N |X1, . . . ,XJ]: estimation de la loi de N.

EP[Y |X1, . . . ,XJ]: idem.
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En économétrie, on cherche à estimer EP[Z |X1, . . . ,XJ] par une
fonction des facteurs explicatifs notée Φ(X1, . . . ,XJ).

En économétrie linéaire, on a coutûme de supposer que

Z |X1, . . . ,XJ ∼ N(β0 + β1X1 + . . . + βJXJ , σ
2).

En notant X = (1,X1, . . . ,XJ)T le vecteur des facteurs de risque
et β = (β0, β1, . . . , βJ)T les coefficients de régression, on peut
simplifier cette écriture sous forme matricielle:

Z |X ∼ N(XTβ, σ2).

Problème: le modèle linéaire est rarement adapté en assurance...
Alternative: besoin de supposer relations non-linéaires⇒ GLM.
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Dangers d’une mauvaise tarification

Se tromper dans la tarification d’un produit peut avoir plusieurs
conséquences dommageables:

comme cela est souvent lié à la segmentation, il y a un risque
de composition du portefeuille (bons et mauvais risques);

investir dans 1 politique de vente (marketing, ...) mal adaptée;

impact néfaste sur la concurrence, déficit d’image;

mauvaise évaluation de la marge de risque, et donc in fine du
provisionnement: (pour rappel, SI =

∑
i Si)

VaRα(SI) = inf{s ∈ R+ : P(SI > s) ≤ (1 − α)}
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Des difficultés liées à la réglementation

La législation a également un impact en termes de segmentation
et de tarification. L’exemple récent le plus célèbre :

“Les compagnies d’assurances ne pourront plus, à partir du 21
décembre 2012, prendre en considération le critère du sexe pour
calculer les primes et prestations d’assurances dans leurs
contrats.” a jugé la Cour de justice de l’UE.

Source: http://www.lemonde.fr/economie/article/2011/03/02/
les-assureurs-ne-pourront-plus-appliquer-des-tarifs-differents-selon-le-sexe_

1487077_3234.html

Remarque: ce n’est pas le cas pour le provisionnement...
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Etapes statistiques dans la tarification

1 Modélisation de la fréquence par un GLM adapté (choix d’une
loi pour la réponse, intégration des covariables), cela donne

E[N |X] = f1(Xβ)

2 Modélisation du coût par un autre GLM adapté, on obtient

E[Y |X
′

] = f2(X
′

β)

3 Synthèse pour en déduire la prime (pure):

E[Si |X,X
′

] = E[N |X] × E[Y |X
′

]
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La potentielle propagation des erreurs

En construisant deux modèles (1 pour la fréquence et 1 pour la
sévérité), on prend le risque de propager des erreurs...

Parfois il vaut mieux essayer de construire un unique modèle qui
rende compte à la fois de la fréquence et de la sévérité: cela
dépend de la qualité d’adéquation de la loi de fréquence
notamment.

En réalité dans cette ultime approche, on perd l’info sur le nb de
sinistres et on s’intéresse à la charge totale par contrat. La masse
en 0 (contrats non-sinistrés) induit des difficultés de calibration.
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Gestion / utilisation des données

La sinistralité se décompose généralement en trois typologies de
sinistre:

attritionnels: haute fréquence, petite sévérité;

graves: basse fréquence, grande sévérité;

CAT: très basse fréquence, sévérité extrême.

Nécessité de séparer ces données en amont car les GLM ne
fonctionnent que sur les sinistres attritionnels (voire graves) à
cause des queues des distributions des lois utilisées.
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2 Applications classiques des GLM en assurance
Assurance non Vie
Assurance Vie
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Quelques applications en assurance IARD

L’usage des GLM est ancré depuis longtemps dans les moeurs.
On peut citer parmi les domaines concernés:

assurance santé: remboursements soins, frais
d’hospitalisation;

assurance auto / moto: dommages matériels, vol, ...;

assurance Multi-Risques Habitation (MRH): incendie, vol,
dégâts des eaux, ...

assurance Responsabilité Civile (RC): dommages à autrui.

Les cas de la RC, de l’assurance CATNAT et de la réass. IARD
sont un peu , car font intervenir des montants CAT en général.
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Les applications en VIE

On se sert aussi des GLM en Vie, notamment en

épargne: essentiellement du risque comportemental sur les
produits en taux garantis (euro) ou non (UC);

prévoyance: DC, LTC (Long-Term Care: dépendance), CI
(Critical Illness: maladies redoutées), incap/inval. ;

réassurance vie: même remarque qu’en non vie.

Remarque: de par la nature des contrats, il y a souvent une
dimension temporelle dans la modélisation en Vie qui @ en non-vie
→ modèles de durée.
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Exemple en risque décès (DC): Lee Carter
Lee and Carter (1992)

C’est le modèle le plus utilisé en mortalité (longévité):

log(µx(t)) = αx + βxκ(t) + εx(t)

x est l’âge, t l’année;

µx(t) est le taux de mortalité instantané l’année t à l’âge x;

αx : structure de la mortalité en fonction de l’âge;

κ(t): vitesse d’amélioration de la mortalité (série temp.);

βx : la vitesse d’amélioration a des impacts , selon l’âge;

les résidus εx(t) ∼ N(0, σ2).
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Exemple 2: modèle de Brass
Brass (1964), Brass and Macrae (1984)

C’est un modèle relationnel basé sur la régression logistique:

ln
(

qexp(x, t)
1 − qexp(x, t)

)
= a + b × ln

(
qref (x, t)

1 − qref (x, t)

)
où

x est l’âge de la personne, t est le facteur temporel,

qref est une table de mortalité de référence,

qexp est la table de mortalité d’expérience.

Calibre les coef. (a, b) pour établir le passage d’1 table à l’autre,
par ex. d’une population nationale à une population d’assurés.
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3 Les Modèles Linéaires Généralisés (GLM)
Les GLM: brefs rappels
Caractérisation et formalisation
Validation
Implémentation
Lecture des résultats de la calibration
Sélection de modèle et de variables
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Intérêt des GLM

Les GLM permettent de

modéliser des réponses diverses ∈ R, R+, N, [0, 1], ...;

intégrer toute type d’information exogène susceptible
d’influer sur la variable dépendante (réponse Y ),

quantifier l’impact des facteurs de risque X sur N et Y
(sens/intensité).

Ils nécessitent d’introduire deux hypothèses fondamentales:

les individus Yi sont ⊥⊥ entre eux (rq: si les indiv. étaient
corrélés, cela résulterait aussi à avoir − d’indiv., donc n ↘);

les variables explicatives X sont ⊥⊥ deux à deux.
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Attention à la notion de corrélation entre variables

∃ plusieurs mesures de dépendance, e.g. corrélation de rang
(Kendall, Spearman). La + répandu est Pearson,

ρX ,Y =
Cov(X ,Y)

σXσY
=

E[(X − µX )(Y − µY )]

σXσY
,

où µX = E[X ] et σX est l’écart-type de X .

Mesure la corrél. linéaire. En effet, considérons la v.a. X telle que
X ∼ N(0, 1). Ainsi µX = 0, et µX3 = 0. Notons Y = X2, on a

ρX ,Y =
E[(X − µX )(X2 − µX2)]

σXσX2
=
µX3 − µXµX2

σXσX2
= 0.

Corrélation nulle alors que X et X2 parfaitement corrélées!
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3 Les Modèles Linéaires Généralisés (GLM)
Les GLM: brefs rappels
Caractérisation et formalisation
Validation
Implémentation
Lecture des résultats de la calibration
Sélection de modèle et de variables
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Composants d’un GLM (ie individu)
McCullagh and Nelder (1989)

1 La loi de la réponse aléatoire Yi : par hyp. elle ∈ à une

distribution de la famille exponentielle.

2 Le prédicteur ηi =
∑J

j=1 βjXij , linéaire et déterministe:

les facteurs de risque explicatifs le constituent.

3 La fonction de lien g: monotone, dérivable, inversible t.q.

g(E[Yi]) = ηi .

Ex. du modèle linéaire: g = Id ηi =
∑J

j=1 βjXij Yi ∼ N(ηi , σ
2).
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Effets additifs VS effets multiplicatifs

Régression linéaire standard:
E[Yi] = β0 + β1X1 + ... + βpXp ;
l’influence des facteurs de risque (variables explicatives) a un
effet additif sur la réponse Yi .
Yi est un réel, et peut notamment donc être négatif.

Régression log-poisson:
log(E[Yi]) = β0 + β1X1 + ... + βpXp ;
d’où E[Yi] = exp(β0) exp(β1X1) × ... × exp(βpXp);
les effets sont multiplicatifs sur la réponse;
la réponse ne peut être que positive!
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Famille exponentielle

→ La représentation exponentielle facilite la dérivation de résultats.

Les GLM sont issus de la famille exponentielle, dont la densité est
couramment exprimée par

fYi (yi; θ, φ) = exp

{
yiθ − b(θ)

a(φ)
+ c(yi , φ)

}
,

où a(.), b(.) et c(.) sont des fonctions spécifiques suivant le
modèle considéré, et θ et φ sont les paramètres.

La fonction a(φ) est de la forme φ
ω , où

ω correspond à un poids (une “exposition” dans le jargon),

très souvent constant égal à 1 (cas individuel).
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Vocabulaire

lien canonique: permet de vérifier θi = µi (où µi = E[Yi])

paramètre de tendance: le paramètre θi ;

paramètre de dispersion: le paramètre φi .

On peut facilement exprimer les quantités clefs pour l’inférence:

Log-vraisemblance pour une observation yi :

log L(θ, φ; yi) = log fY (yi; θ, φ) =
yiθ − b(θ)

a(φ)
+ c(yi , φ).

Espérance de la réponse: E[Yi] = µi = b
′

(θi);

Variance: Var[Yi] = a(φ) b
′′

(θi) = a(φ) V(µi)︸︷︷︸
fn. variance

.
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Loi de Y: Normale Binomiale Poisson Gamma Inverse Gaussienne
N(µ, σ2) B(n, µ) P(µ) G(µ, ν) IN(µ, σ2)

Supports y ∈ R y ∈ ~0, n� y ∈ N y ∈ R+ y ∈ R+

µ ∈ R n ∈ N∗ µ ∈ R+ µ ∈ R+∗ µ ∈ R+∗

σ2 ∈ R+∗ µ ∈ [0, 1] ν ∈ R+∗ σ2 ∈ R+∗

Tendance θ(µ) µ log[µ/(1 − µ)] log µ −µ−1 −(2µ2)−1

Support de θ θ ∈ R θ ∈ R θ ∈ R θ ∈ R−∗ θ ∈ R−∗

Dispersion φ σ2 1 1 ν−1 1/σ2

Support de φ φ ∈ R+∗ φ ∈ R+∗ φ ∈ R+∗

Fonction b(θ) θ2/2 log(1 + eθ) eθ − log(−θ) −(−2θ)1/2

Fonction c(y,Φ) −
1
2

(
y2

Φ
+ log(2πφ)

)
log(Cny

n ) − log(y!) −
1
2

{
log(2πΦy3) +

1
Φy

}

µ(θ) = E[Y ; θ] θ eθ/(1 + eθ) eθ −1/θ (−2θ)−1/2
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R for actuaries 2/4

C. Dutang

Introduction

GLM
Exponential family

GLM definition

Introductory example

Fitting GLM

Deviance, Residuals

SOME MEMBERS OF THE EXPONENTIAL FAMILY

Law Distribution θ φ a(x) b(x)

N (µ, σ2) 1√
2πσ

e
− (x−µ)2

2σ2 µ σ2 x x2

2

G(α, β) βαxα−1

Γ(α)
e−βx − β

α
= 1

µ
1
α

IN (µ, λ)
q

λ
2πx3 e

−λ(x−µ)2

2µ2x − 1
2µ2

1
λ

B(µ) µx(1 − µ)1−x log( µ
1−µ

) 1

P(µ) µx

x!
e−µ log(µ) 1 1 ex

OP(φ, µ) µ
x
φ

x
φ

!
e−µ log(µ) φ

Law c(x, θ) Expectation Var. function Support
N (µ, σ2) − 1

2
(x2

θ
+ log(2πθ)) µ = θ 1 R

G(α, β) µ = − 1
θ

µ2 R+

IN (µ, λ) µ = (−2θ)−
1
2 µ3 R+

B(µ) µ = eθ

1+eθ
µ(1 − µ) {0, 1}

P(µ) − log(x!) µ = eθ µ N
OP(φ, µ) φµ µ(1 + φµ) N

5/21 08/09/2011
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Inférence

En annulant la dérivée de la log-vraisemblance L (θ, φ; (xi,j)i+j≤n),
on retombe sur le système (S) des équations de Wedderburn (où φ
ne figure pas):

(S)

{∑n
i=1 ωi

(yi − µi)

V(µi)

∂µi

∂ηi
b(k)

i = 0, k = 1, ..., p,

avec b(k)
i est la dérivée partielle de ηi par rapport au k eme élément

de la suite (βj)j=0,...,p .

On résoud ce système par l’algorithme de Newton-Raphson, ce
qui nous donne l’E.M.V. ξ̂ = (β̂0, β̂1, ..., β̂p) de ξ = (β0, β1, ..., βp).
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La matrice d’information de Fisher est obtenu via l’expression

I(ξ) =
1
φ

MT W M,

où M sont les régresseurs, et W diagonale d’éléments wi =

(
∂µi
∂ηi

)2

V(µi)
.

Donc le paramètre de dispersion ne joue aucun rôle ds l’estimation
de ξ̂, mais a une influence sur la dispersion de ξ̂!

→ Faire un exemple concret (ex: le modèle logistique).
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Taylor-Lagrange avec
f = L

′

et f(xk+1) = 0 ⇒ xk+1 = xk −
f(xk )

f ′ (xk )
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3 Les Modèles Linéaires Généralisés (GLM)
Les GLM: brefs rappels
Caractérisation et formalisation
Validation
Implémentation
Lecture des résultats de la calibration
Sélection de modèle et de variables
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Résidus et déviance

En régression linéaire, on dispose du R2 comme indicateur de la
qualité de la modélisation.

Avec les GLM, les mesures de la qualité d’ajustement
proviennent de la déviance, et du Chi-deux de Pearson.

Dû au fait que les observations ne sont pas supposées suivre une
loi normale. Cependant, l’analyse des résidus reste indispensable:

résidus de Pearson: pour i + j ≤ n,

r(P)
i =

Yi − µ̂i√
V̂ar(Yi)

'
Yi − µ̂i√

V(µ̂i)
.
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On déduit la statistique de Pearson: χ2 =
∑

i
(yi − µ̂i)

2

V(µ̂i)
.

χ2∗ = χ2/φ est le χ2∗ de Pearson standardisé de Var(Yi) = φV(µi).

la déviance: elle compare deux vraisemblances:
le modèle saturé E[Yi] = Yi (autant de paramètres que
d’observations, donc erreur nulle);
et le modèle calibré E[Yi] = µ̂i avec µ̂i = g−1(ηi):

−2 ln
L(θ̂, φ; y)

L(θ̃, φ; y)
=

2
φ

∑
i

{
yi(θ̃i − θ̂i) − [b(θ̃i) − b(θ̂i)]

}
La déviance est alors définie par

D = 2
n∑

i=1

{
yi(θ̃i − θ̂i) − [b(θ̃i) − b(θ̂i)]

}
,
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Par analogie, la déviance standardisée : D∗ = D/φ.
Les résidus de déviance sont définis par

r(D)
i = signe(Yi − µ̂i)

√
di ,

où di = 2
{
yi(θ̃i − θ̂i) − [b(θ̃i) − b(θ̂i)]

}
.

On remarque ainsi que

χ2 =
n∑

i=1

[
r(P)
i

]2
D =

n∑
i=1

[
r(D)
i

]2

Modèle bien ajusté⇔ χ2 et D prennent de faibles valeurs.

Ces résidus ne doivent faire apparaitre aucune structure
non-aléatoire: on effectuera un Q-Q Plot de normalité.
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Mise en oeuvre en R

Nous travaillons sur le jeu de données esoph de la librairie
datasets:

> library(datasets) ; data(esoph)

> dim(esoph)

[1] 88 5

> head(esoph, n=4)

agegp alcgp tobgp ncases ncontrols

1 25-34 0-39g/day 0-9g/day 0 40

2 25-34 0-39g/day 10-19 0 10

3 25-34 0-39g/day 20-29 0 6

4 25-34 0-39g/day 30+ 0 5
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On a le nb de personnes ayant un cancer de l’oesophage pour une
tranche d’âge donnée, consommation d’alcool et de tabac, ainsi
que l’exposition.

Pour les variables explicatives catégorielles, chaque modalité est
codée en R comme une indicatrice pour le calcul des coef. de
régression. La matrice des régresseurs est appelée matrice de
schéma (ou design).

Q: prédire le taux d’atteinte en fonction des facteurs de risque→
lien logit
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Que donne la régression linéaire classique?

> esoph.lm <- glm(ncases/ncontrols ˜ agegp + tobgp * alcgp, family=gaussian, data=esoph)

> summary(esoph.lm)

Call:

glm(formula = ncases/ncontrols ˜ agegp + tobgp * alcgp, family = gaussian,

data = esoph)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.46676 -0.11238 -0.02766 0.13151 0.61950

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3683021 0.0253322 14.539 < 2e-16 ***

agegp.L 0.4982970 0.0643470 7.744 6.97e-11 ***

agegp.Q -0.0667736 0.0636627 -1.049 0.2980

agegp.C -0.0273635 0.0619999 -0.441 0.6604

agegpˆ4 0.0961215 0.0602277 1.596 0.1152

agegpˆ5 -0.0291224 0.0586807 -0.496 0.6213

tobgp.L 0.1026511 0.0504525 2.035 0.0459 *

...

tobgp.C:alcgp.C 0.0001316 0.1006860 0.001 0.9990
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Un oeil sur les résidus

> plot(esoph.lm)
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Comparaison des prévisions

On peut comparer les prévisions associées aux deux modèles:

modèle linéaire avec effets additifs des facteurs de risque;

GLM et effets multiplicatifs des variables sur les OR de Y :

> ## comparaison entre prevision par modele lineaire et glm

> esoph.logit <- glm(cbind(ncases,ncontrols) ˜ agegp + tobgp * alcgp, family=binomial, data=esoph)

> cbind(obs=esoph$ncases/esoph$ncontrols, LM=fitted(esoph.lm), GLM=fitted(esoph.logit))[32:43, ]

obs LM GLM

32 0.0000000 0.1539088 0.09441146

33 0.0000000 0.1767439 0.09993717

34 0.0000000 0.1827688 0.16478482

35 0.1578947 0.2299179 0.15056445

36 0.1904762 0.2227619 0.17211332

37 0.3333333 0.2153707 0.18260428

38 0.7142857 0.4899419 0.30463314

39 0.1875000 0.3742752 0.20184238

40 0.4285714 0.3986418 0.23163685
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Coefficients de régression

La qualité d’ajustement et le sens de l’impact des facteurs de
risque est donnée par la fonction summary().

> summary(esoph.logit) (...)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.75985 0.19822 -8.878 < 2e-16 ***

agegp.L 2.99646 0.65386 4.583 4.59e-06 ***

agegp.Q -1.35008 0.59197 -2.281 0.0226 *

agegp.C 0.13436 0.45056 0.298 0.7655

...

agegpˆ5 -0.21347 0.19627 -1.088 0.2768

tobgp.L 0.63846 0.19710 3.239 0.0012 **

...

tobgp.Q:alcgp.C 0.04843 0.36211 0.134 0.8936

tobgp.C:alcgp.C -0.13905 0.35754 -0.389 0.6973

---

Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1
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Résidus de la modélisation

Résidus (Pearson/déviance) ne doivent pas dégager de tendance.

Ces résidus ne sont pas forcément gaussiens...(cf Q-Q plot de
normalité slide suivante).

> plot(esoph.logit, which = 1:2)
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Déviance

Elle mesure la qualité d’adéquation du modèle (en comparant la
vraisemblance du modèle courant à celle du modèle saturé, du
modèle nul, d’un modèle emboı̂té).

Les résidus de déviance doivent être aussi petits que possible.

Null deviance: 227.241 on 87 degrees of freedom

Residual deviance: 47.484 on 67 degrees of freedom

AIC: 236.96

Number of Fisher Scoring iterations: 6

## p-valeur du test de significativite:

> 1-pchisq(residual.deviance,df)

...

Rq: la déviance suit ≈ le Khi-deux (McCullagh and Nelder (1989)).
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Sélection de modèle par analyse de variance

Comparaison du modèle courant au modèle nul:

> anova(esoph.logit) # comparaison modele courant au modele nul

Analysis of Deviance Table

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 87 227.241

agegp 5 88.128 82 139.112

tobgp 3 19.085 79 120.028

alcgp 3 66.054 76 53.973

tobgp:alcgp 9 6.489 67 47.484

Comparaison entre deux modèles GLM:
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> esoph.logit2 <- glm(cbind(ncases,ncontrols) ˜ agegp + tobgp + alcgp, family=binomial, data=esoph)

> anova(esoph.logit2, esoph.logit1, test="Chisq")

Analysis of Deviance Table

Model 1: cbind(ncases, ncontrols) ˜ agegp + tobgp + alcgp

Model 2: cbind(ncases, ncontrols) ˜ agegp + tobgp * alcgp

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 76 53.973

2 67 47.484 9 6.4895 0.6901
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Sélection de variable

→ Tests d’hypothèses pour connaitre la pertinence des variables
(test de Wald basé sur les prop. du MLE).
→ Ici approche descendante (modèle saturé et suppression):
fonction stepAIC() du package MASS (AIC à minimiser).

> esoph.backward <- stepAIC(esoph.logit, direction="backward")

Start: AIC=236.96 % AIC du modele calibre et stocke dans l’objet

cbind(ncases, ncontrols) ˜ agegp + tobgp * alcgp

Df Deviance AIC

- tobgp:alcgp 9 53.973 225.45

<none> 47.484 236.96 % supprime rien, garde le modele actuel

- agegp 5 123.950 303.43

Step: AIC=225.45

cbind(ncases, ncontrols) ˜ agegp + tobgp + alcgp

Df Deviance AIC

<none> 53.973 225.45 % fin de la procedure puisque AIC est minimise ici

- tobgp 3 64.572 230.05

- alcgp 3 120.028 285.51

- agegp 5 131.484 292.96
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]

Choix de la fonction de lien

Suivant la distribution choisie pour la variable réponse, on peut
considérer différentes fonctions de lien. Citons les:

distribution normale:
liens identité, log et inverse;

distribution gamma:
liens inverse, log, identité;

distribution inverse gaussienne:
liens inverse carré, inverse, log, identité;

distribution binomiale:
liens logit, probit, cauchit, cloglog;

distribution poisson:
liens log, identité, racine carré, inverse.

Remarque: les premiers liens cités sont les liens canoniques.
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Choix de la fonction de lien (suite)

La détection d’une tendance systématique des résidus
indique probablement un mauvais choix de lien,

Suivant la distribution de l’erreur, il y a un choix limité de
fonctions de lien possibles.

Ex: pour une erreur de loi de Poisson, nous pouvons considérer
comme liens: identite, sqrt , inverse et log.

esoph.logit <- glm(cbind(ncases,ncontrols) ˜ agegp + tobgp * alcgp,

family=binomial(link="logit"), data=esoph)

esoph.logit <- glm(cbind(ncases,ncontrols) ˜ agegp + tobgp * alcgp,

family=binomial(link="probit"), data=esoph)

esoph.logit <- glm(cbind(ncases,ncontrols) ˜ agegp + tobgp * alcgp,

family=binomial(link="cauchit"), data=esoph)

esoph.logit <- glm(cbind(ncases,ncontrols) ˜ agegp + tobgp * alcgp,

family=binomial(link="cloglog"), data=esoph)
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Choix de la loi de l’erreur et fonctions de lien en actuariat

Adapter le lien en fonction du domaine de définition de Y .

Loi Lien naturel Moyenne Utilisation

N(µ, σ2) Id: η = µ µ = Xβ Rég. lin.

B(µ) logit: η = ln( µ
1−µ) µ =

exp(Xβ)
1+exp(Xβ)

Taux

P(µ) log: η = ln(µ) µ = exp(Xβ) Fréquence

G(α, β) inverse: η = 1
µ µ = (Xβ)−1 Sévérité

IN(µ, λ) inverse2: η = − 1
µ2 µ = (Xβ)−2 Sévérité
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La gaussienne

L’utilisation d’une loi Normale est encore très répandue... Mais cela
implique des erreurs fondamentales de raisonnement, notamment

la densité de la loi est symétrique,

sa queue de distribution est fine,

support non adapté à des charges sinistres⇒ P(Y < 0).
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Valeur des coefficients calibrés: impact sur la réponse

En général, on interprète les résultats de la manière suivante:

βj > 0: ↗ du facteur de risque Xj provoque↗ de g(E[Y ]);

βj < 0: ↗ du facteur de risque Xj provoque↘ de g(E[Y ])

βj = 0: effet nul de la variation dudit Xj .

Evidemment, cela dépend aussi du type de modélisation!

Pour des modèles à effets additifs, la valeur de réf. sera 0;

Pour des modèles multiplicatifs, la valeur de référence sera 1
(à une transformation près parfois, cf modèle log-Poisson).

Pour connaitre le type d’effet, on réécrit le modèle sous la forme

E[Y |X] = g−1(XTβ).
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Comparateur en ligne et odd-ratio (OR)

En souscrivant en ligne, vous pouvez par ex. avoir une idée de la
calibration de certains assureurs pour certains facteurs de risque:
comparer le tarif en faisant évoluer 1 seule caractéristique (ex:
âge, ancienneté du permis, couleur de la voiture, ...)

Cela correspond à l’odd-ratio, un rapport sur la quantité d’intérêt:

E[Y |Xj = xj + 1]

E[Y |Xj = xj]
= h(βj),

avec h une fonction à déterminer.

Exemple log-poisson: Y ∼ P(λ), donc λ = eXTβ ⇒ h(βj) = eβj .
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Validation d’un modèle GLM

Il faut garder en tête que la validation d’une modélisation de type
GLM passe par plusieurs étapes:

1 construction de 2 échantillons ⊥⊥ par tirage aléatoire: un
d’apprentissage (construction) et un de validation;

2 validation de la significat. globale du modèle (déviance, LRT);
3 validation de la significativité des coef. de régression un à un;
4 allure des résidus (doit être aléatoire);

5 confrontation “modélisé / empirique” sur l’échantillon de
validation par prévisions données par le modèle.
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Transformations au sein du prédicteur

Il peut être utile d’introduire une transfo. dans le prédicteur sur
certaines covariables en fonction du type d’impact sur Y .

Cette transformation sera choisie en fonction de l’effet du facteur
de risque sur Y lors de la visualisation des statistiques desc.

Prenons un ex. concret: supposons que l’âge x a un impact
exponentiel sur le taux de mortalité qx , mais que la CSP joue de
manière linéaire. Ainsi on posera un modèle de la forme

ln(qx) = a + b x + ln(c CSP) ⇔ qx = A × exp(bx) × c CSP
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Tweedie or not Tweedie?
Boucher and Danail (2011)

La densité est donnée par

f(y; µ, φ) = a(y, φ) exp

(
1
φ

[
yθ(µ) − κ(θ(µ))

])
,

θ(µ) =

µ1−p

1−p si p , 1

log µ si p = 1
κ(θ(µ)) =

µ2−p

2−p si p , 2

log µ si p = 2

Dans cette formalisation, E[Y ] = µ et Var(Y) = ψµp = ψE[Y ]p ,
avec ψ un parametre de dispersion > 0.

68 / 97



L’ordre p ∈ R+ (paramètre d’indice), choisi (en fonction de
l’application) avant d’estimer µ et φ, définit le type de distribution:

→ p < 0 : réalisations dans R; p = 0 : loi gaussienne,

→ 0 < p < 1 : pas de distribution (pas de modèle Tweedie),

→ p = 1 avec φ = 1 : loi de Poisson,

→ 1 < p < 2 : loi composée Poisson-Gamma (réalisations ≥ 0),

→ 2 < p < 3 ou p > 3 : positive stable distributions (x > 0),

→ p = 2 : loi Gamma, p = 3 : loi inverse gaussienne.

En pratique, 1 < p < 2 pour modéliser fréq. et coût en mm tps!
Inconvénient: mêmes var. explicatives prises en compte dans les
lois de fréq. et de coût, or les praticiens savent qu’elles sont ,.
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Pratique courante

Dans les compagnies d’assurance, on penche souvent pour la loi
de Poisson dans la modélisation de la fréquence des sinistres
lorsqu’on adopte une modélisation de type fréquence-coût.

En pratique,

cela simplifie le calcul global de sinistralité à l’échelle du
portefeuille: loi Poisson composée stable par addition;

souvent on observe que la variance empirique du nombre
de sinistres est bien supérieure à sa moyenne empirique:
cela va à l’encontre de la propriété fondamentale de cette loi.

On réalise donc que cette modélisation n’est pas adaptée!
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Cas classique de surdispersion: la Binomiale Négative

Elle peut être construite comme un mélange de lois de Poisson:

(N |Λ = λ) ∼ P(λ) et Λ ∼ Ga(α, δ).

La densité jointe de N et Λ vaut

fN,Λ(n, λ) = fN |Λ=λ(n) fΛ(λ) = e−λ
λn

n!

δαλα−1e−δλ

Γ(α)
(λ, α, δ > 0, n ∈ N).

Λ est continue et N discrète: la distribution marginale de N est

P(N = n) =

∫ ∞

0
fN,Λ(n, λ) dλ =

∫ ∞

0
e−λ

λn

n!

δαλα−1e−δλ

Γ(α)
dλ

=
δα

n! Γ(α)

∫ ∞

0
λn+α−1e−(δ+1)λ dλ =

δαΓ(α + n)

n! Γ(α) (δ + 1)α+n
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Posons ensuite p = δ
δ+1 , et q = 1 − p = 1

δ+1 . Alors

P(N = n) =
Γ(α + n)

n! Γ(α)
pαqn.

La v.a. N ∼ NB(α; p) prend ses valeurs dans {0, 1, 2, ...}.

Remarques:

La queue de distribution est plus épaisse que celle d’une loi
de Poisson.

Sa variance est plus grande qu’une loi de Poisson: loi utilisée
en cas de surdispersion des observations.
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Les modèles de comptage Zero-Inflated (ZI)
Frees (2009)

Utilisé lorsque la survenance des sinistres est rare...
Les “0” observés viennent de loi de comptage + masse en 0 (π0):

une composante regroupe les deux “sources” de 0,

l’autre regroupe les obs. , 0 provenant de la loi de comptage.

P(N = k) = π0 1{k=0} + (1 − π0) fcount(k).

Ex: N ∼ ZIP(λ): P(N = k) =


π0 + (1 − π0) e−λ si k = 0,

(1 − π0) e−λ
λk

k !
si k > 0.
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Les modèles de type “hurdle-at-zero”
Frees (2009)

Idem que précédemment pour l’utilisation, sauf que l’on maitrise
mieux la proportion de 0 ici (− d’aléa sur cette quantité):

masse en 0 (ne proviennent plus du tout de la loi comptage),

à laquelle on ajoute une loi de comptage tronquée.

P(N = k) =


π0 si k = 0,

(1 − π0)
fcount(k)

1 − fcount(0)
si k > 0.

Zero-trunc. P: P(N = k) =


π0 si k = 0,

(1 − π0)
e−λλk

(1 − e−λ)k !
si k > 0.
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Création de poches d’assurés

La segmentation amène à créer des poches d’assurés ayant les
mêmes caractéristiques. Il y a un arbitrage naturel entre

une segmentation “grossière”: peu de poches différentes,
donc peu de tarifs ,;

une segmentation précise: beaucoup de profils de risque
considérés ,, des tarifs très personnalisés (cf pb Big Data).

Une question essentielle liée à cette problématique de
segmentation est l’exposition... moindre dans certaines poches!
→ Remise en cause du principe de mutualisation (LFGN)...
→ Attention pour les GLM (MLE asymptotique), voire même pour
le calcul de la sinistralité globale en espérance par agrégation...
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Difficultés de calibration des coefficients

Il arrive souvent en pratique que des coefficients de régression
calibrés ne soient pas significatifs. Cela correspond au test:

H0 : β̂j = 0 VS H1 : β̂j , 0.

But: rejeter H0 à un certain niveau de confiance α, en se basant
sur la statistique de Wald (β̂j/Var(β̂j))2 (∼ χ2).

Lorsque l’exposition est faible dans une poche, la calibration des
coefficients de régression affectés à cette poche devient ardue...

Cela est dû au fait que le MLE est asymptotiquement gaussien:

β̂MLE
j ∼ N(βj , 1/I(βj)).
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⇒ La variance de l’estimateur peut devenir grande si l’information
de Fisher est faible (quantité d’info contenue dans les données,
petite dans le cas de trop peu d’individus).

La technique consiste alors à regrouper certaines modalités de
covariables qualitatives (ou catégorielles). La démarche
statistique “propre” s’y rapportant:

1 calibration du modèle saturé (ou modèle complet),
2 pour le test de chaque coef. associé aux covariables, repérer

la pire “p-valeur” au-dessus du seuil α,
3 agréger la modalité correspondante avec une autre

“intelligemment”;
4 recalibrer le modèle, et revenir à l’étape 2 tant que le modèle

n’est pas satisfaisant.
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Dimension du modèle à “minimiser”

On a tjs 2 effets inverses en modélisation (cf théorie de Vapnik):

adéquation du modèle: plus la dimension du modèle est
grande, plus l’adéquation aux données est bonne;

qualité prédictive: plus la dimension du modèle est grande,
plus la capacité prédictive du modèle est mauvaise (on capte
les bruits au lieu de capter le signal principal).

L’idée est donc de rechercher un arbitrage dans la dimension qui
permette d’obtenir un bon compromis dans ces 2 objectifs.�� ��C’est ce qu’on appelle un modèle parcimonieux.

Critères de sélection de modèles emboı̂tés: AIC, BIC, ...

80 / 97



Distribution de sinistralité par poche

Au final, une question importante est d’identifier les poches pour
lesquelles la modélisation marche bien ou non: il vaut mieux se
tromper sur certains profils que sur d’autres...

Pour cela, on confronte la densité théo. construite par GLM à la
densité empirique du profil (poche): dans l’idéal ça coincide
presque!
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82 / 97



Qu’est-ce que l’offset?

L’offset représente une sorte d’exposition.

C’est une constante qui va venir modifier le risque de base, donc
le risque qui n’est pas lié au profil de l’assuré en particulier.

Exemples d’offset:

assurance auto indiv.: nb d’années d’assurance du véhicule;

assurance collective auto: taille de la flotte assurée;

assurance collective incapacité-invalidité: effectif de salariés,
masse salariale;

réassurance: taille du portefeuille, ...
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Comment intégrer un offset dans un modèle GLM?

Tout simplement! C’est un terme commun à tous les individus,
mais dont la valeur va changer en fonction des individus.

En terme explicite, l’équation devient

g(E[Y |X = x]) = offset + xTβ.

on contraint le coefficient de l’offset à valoir 1 (c’est
pourquoi il n’apparait pas dans l’équation!);

pour la calibration, on régresse g(E[Y |X = x])− offset = xTβ.
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Exemple d’offset dans le modèle log-Poisson

L’idée globale de l’offset est que la réponse y est proportionnelle.

Donc l’offset s’exprime sur la même échelle que la réponse. Dans
le cas du modèle log-Poisson de paramètre λ, on aurait donc

ln(E[Y |X = x]) = ln(exposition) + xTβ.

Soit le modèle suivant à calibrer: ln
(
E[Y |X = x]

exposition

)
= xTβ.

On remplace donc la fréquence (au sens nb de sinistres) par une
fréquence standardisée!
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4 Usage pratique des GLM: les écueils récurrents
Quelques notions opérationnelles importantes sur les GLM
Surdispersion et masse en 0
Segmentation et modélisation: limites à garder en tête
Tenir compte de l’exposition: l’offset
Réponse catégorielle: sur-représentation d’une modalité
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Etude d’un taux de réponse faible

On cherche parfois à modéliser un événement binaire “rare” en
utilisant des modèles GLM.�� ��Quel(s) problème(s) cela pose?

Difficultés énoncées précédemment sur la calibration notamment
→ +sieurs poches où on observe (très) peu ou pas l’événement...

Exemples concrets (souvent en risque comportemental):

taux de résiliation en assurance vie et non-vie (surtout en vie
où les taux de résiliation annuels sont + faibles);

taux de conversion en assurance directe par exemple.

87 / 97



Formalisation du contexte

Plaçons nous dans le cadre de risque comportemental pour
présenter le concept (ex: taux de conversion). Cela nous amène à
considérer un modèle GLM de type logistique, à savoir

ln
(

pi

1 − pi

)
= xT

i β.

Rappelons que

XT
i = (1,Xi1, ...,XiJ) et βT = (β0, β1, ..., βJ);

i ∈ 1, ..., I: Yi ∈ {0, 1} ⇒ Yi ∼ B(pi);

pi = P(Yi = 1).

En pratique, p̄ = 1
I
∑

i 1yi=1 est de l’ordre de quelques % au +.
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Les deux problèmes théoriques associés
Albert and Anderson (1984)

1 La séparabilité: en fait, l’existence d’un estimateur du
maximum de vraisemblance est conditionné par le problème
de séparation. Il n’@ de MLE en cas de séparation complète.

Conversion Modeling in Direct Motor Insurance and Study of Some Related Rare Events Issues           Zhe LI 
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following. 
 
Let    be the column vector of observations for the      point           and 
denote   the         matrix with the   

  as rows. We assume that   is of full 
rank,    . The total sample is noted as   and it can obviously be diveided into 
distinct sub-sets of observations              with      . 
 
We define “complete seperation” in the sample points, if there exists a vector     , 
such that for all      and for                  

       
      (Eq. 5) 

Similarly for quasi-complete seperation:  

       
      (Eq. 6) 

 
Otherwise, it is the case of overlap. 
 
For a simple example    ,        . Complete separation means that     
such that   

           and   
          . Quasi-complete separation means 

that     such that   
           and   

          . Otherwise it is the case 
of overlap. 
 
The following graph shows the case when there are only two variables in the sample. 
 

 

Figure 2  Possible configuration of sample points in the case of two variables,    and   , and two 
groups,   , shown by circles, and   , shown by crosses. Regions    and    define corresponding 
allocation rule. (a) Complete separation. (b) Quasi-complete separation. (c) Overlap. 

 
With this definition, we will list the results from Albert and Anderson concerning the 
situation of separation in logistic regression: 
 
Theorem 1: If there is complete seperation or quasi-separation of the data points, the 
maximum likelihood estimates    does not exist and at least one element will get the 
value of infinity.  
 
Theorem 2: If there is overlap of the data points, the maximum likelihood estimate    
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2 La dimensionnalité (“curse of dimensionality”).
On dispose souvent de bc de covariables: la dim. de l’espace
↗ vite et les données peuvent rapidement devenir “sparse”.

Pour toute procédure statistique, la sparsité est un problème
important. On entend parfois parler de

“Small N large P”

Pour avoir un résultat fiable dans la plupart des modèles
statistiques, la taille des données dont nous avons besoin croit
souvent exponentiellement en fonction de la dimension du modèle.

Remarque: dans le cadre de données “sparse”, on utilise plutôt la
régression ridge, lasso, elastic net...
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Solutions “théoriques” existantes

Pour éviter le problème de sparsité ou de non-existence du MLE
pour des données qui seraient séparées (ou quasi-séparées), il
existe deux principales méthodes:

la vraisemblance pénalisée (penalized likelihood method);

la régression logistique conditionnelle exacte (exact
conditional logistic regression).

Rq: la 3e alternative est le response-based sampling, artifice
pour retomber sur un problème plus facile à traiter mais qui n’est
pas applicable directement sur le problème d’origine (cf + loin).
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5 Application sur une base de données réelle
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Exercice d’application en R

Importer la base de données Excel des sinistres auto.
Puis répondez aux questions suivantes:

1 extraire des statistiques descriptives de ce jeu de données
(taux de sinistralité, nb de modalités par facteur de risque,
corrélation, ...)

2 regrouper les modalités qu’il vous semble bon de regrouper;
3 construire aléatoirement un échantillon d’apprentissage et un

échantillon de validation (de tailles respectives 2/3 et 1/3);
4 calibrer un modèle de régression linéaire multiple pour

expliquer la charge sinistre (sans faire de distinction
fréquence-coût):

par procédure de sélection de modèle backward,
calculer les prévisions de charges sinistres.
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5 calibrer un modèle de régression log-Poisson pour expliquer
la charge sinistre (sans faire de distinction fréquence-coût):

calculer les prévisions de charges sinistres,
comparer les statistiques descriptives des prévisions de la
réponse par rapport à l’expérience et à la modélisation linéaire.

6 Construire un modèle de tarification fréquence-coût:
calibrer la loi de fréquence, et établir des prévisions;
calibrer la loi de sévérité, et établir des prévisions;
agréger les résultats pour obtenir un tarif;
comparer les résultats avec les modèles précédemment
construits.

7 Refaire la question précédente en gérant le problème de
surdispersion des données.
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CONCLUSION
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Il existe de nombreux écueils pratiques à la mise en place
opérationnelle des modèles GLM en assurance.

Principalement:

la segmentation et ce qu’elle induit (attention à ne pas trop
segmenter!);

le choix des lois et du lien;

la calibration des modèles (convergence du MLE, bornitude
de la vraisemblance, initialisation de l’algorithme de
Newton-Raphson, etc...);

la validation d’un modèle;

la gestion de la surdispersion des données;

la potentielle (très) faible sinistralité...

96 / 97



Bibliographie

Albert, A. and Anderson, J. A. (1984). On the Existence of Maximum Likelihood Estimates
in Logistic Regression Models. Biometrika, 71(1):1–10.

Boucher, J. P. and Danail, D. (2011). On the Importance of Dispersion Modeling for Claims
Reserving: An Application with the Tweedie Distribution. Variance, 5(2):158–172.

Brass, W. (1964). Uses of census and survey data for the estimation of vital rates. In
African Semin. Vital Stat., United Nations document E/ CN .14/CAS .4IVS/7.

Brass, W. and Macrae, S. (1984). Childhood mortality estimated from reports on previous
births given by mothers at the time of a maternity: I. Preceding-births technique. In
Asian and Pacific Census Forum, volume 11.

Frees, E. W. (2009). Regression Modeling with Actuarial and Financial Applications.
International Series on Actuarial Science. Cambridge University Press, New York.

Lee, R. D. and Carter, L. R. (1992). Modeling and forecasting U.S. mortality. J. Am. Stat.
Assoc., 87(419):659–671.

McCullagh, P. and Nelder, J. A. (1989). Generalized linear models, 2nd ed. Monographs on
Statistics and Applied Probability. Chapman and Hall, London.

97 / 97


	Introduction et rappels des concepts essentiels
	Applications classiques des GLM en assurance
	Assurance non Vie
	Assurance Vie

	Les Modèles Linéaires Généralisés (GLM)
	Les GLM: brefs rappels
	Caractérisation et formalisation
	Validation
	Implémentation
	Lecture des résultats de la calibration
	Sélection de modèle et de variables

	Usage pratique des GLM: les écueils récurrents
	Quelques notions opérationnelles importantes sur les GLM
	Surdispersion et masse en 0
	Segmentation et modélisation: limites à garder en tête
	Tenir compte de l'exposition: l'offset
	Réponse catégorielle: sur-représentation d'une modalité

	Application sur une base de données réelle
	References

