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Plan du cours

0 Introduction et rappels des concepts essentiels
e Applications classiques des GLM en assurance
e Les Modeles Linéaires Généralisés (GLM)

0 Usage pratique des GLM: les écueils récurrents

© Application sur une base de données réelle
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Organisation - Objectifs

Le travail se répartit comme suit:
@ 12h de cours sur les GLM;
@ 8h de cours sur la théorie de la crédibilité.

Lobjectif est d’avoir une idée des difficultés rencontrées en
pratique et de connaitre certaines méthodes pour les traiter.

La mise en pratique sera réalisée sur ordinateur, a I'aide du logiciel
R.
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ﬂ Introduction et rappels des concepts essentiels
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Contrat d’assurance - Tarification

Une police d’assurance est un contrat entre deux parties :
— lassuré, détenteur du contrat;
— l'assureur, pourvoyeur du contrat.

En échange de la couverture d’un risque par I'assureur, I'assuré
verse une prime d’assurance.

En cas de sinistre, le bénéficiaire du contrat recoit le montant
contractuel prévu en cas de survenance du sinistre.
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Ainsi le risque économique initialement supporté par I'assuré est
transféré vers I'assureur.

La mutualisation induite par la souscription de nombreux contrats
au sein d’'une compagnie d’assurance permet I'utilisation grossiere
de la loi des grands nombres.

En effet,
— un portefeuille d’assurance couvre un risque en particulier:

les pertes sont considérées étre de méme loi de probabilité;
— les contrats sont a priori indépendants les uns des autres.
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Ces propriétés doivent permettre a I'assureur de prédire avec une
précision relative les pertes encourues pour une période donnée.

Soit un portefeuille d’assurance contenant I polices. Notons la loi
du i®M€ contrat S; (perte), et la loi des pertes agrégées S,.

La LFGN stipule la CV presque sire de la moyenne empirique de
pertes i.i.d., notée S = 1 1_, Sj, vers I'espérance de la loi:

8 = B[S] = p.

Ou encore: P(llim S = /1) =1,
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Prime technique - prime commerciale

Ce résultat est a I'origine du principe général de tarification: la
prime vaut au moins u, aussi appelée prime pure du contrat.

En pratique I'assureur applique des chargements a cette prime,
car mathématiquement sa ruine est certaine a horizon infini des
lors que la tarification respecte le strict principe d’équivalence.

La prime d’assurance [1; se décompose donc en +sieurs parties:

— la prime pure E[Sj];
— + les chargements techniques (ou marge de risque MR;):

= E[S,] + MR(S,‘);

— les codts:
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@ acquisition,
e administration et gestion du contrat,
e rémunération d’'intermédiaires (courtiers, ...).

La stratégie de la compagnie peut également jouer sur la hauteur
de ces chargements.

Objectif de I’'assureur:

Mettre en place une tarification segmentée tout en conservant le
principe de mutualisation.

Cela lui permettra de déterminer
— la loi de probabilité de son résultat futur,
— sa probabilité de ruine.

Les modélisations concernent la détermination de la prime pure.
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Contexte d’étude des risques en assurance

Un assureur essaie généralement d’avoir la meilleure
connaissance possible de la fréquence et du colt des sinistres.

Les bases de données des assureurs comportent un ensemble
d’'informations sur les

@ caractéristiques de I'assuré: sexe, age, CSP, adresse...
@ options du contrat: franchise, ...

@ conditions de marché: indices macroéconomiques,
conjoncture, concurrence...

Ces informations jouent un réle important dans la détermination
et dans I'estimation des paramétres des modéles mis en place!
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Quelques principes de base en tarification

Soit S; la somme annuelle des sinistres du contrat i. Le nb N; de

sinistres est une v.a. considérée 1 des colts Yi, eux-méme i.i.d.:

S’_:{o siN=0 Si:iyik

Yo+...+Yn siNi=n. P

Ainsi, Ep[Sj] = Ep[Nj] x Ep[Yi].

En réalité, N; est souvent conditionnellement . a Y}, donc
Ep[Si|Xi] = Ep[N;i| Xi] . Ep[Yi | Xi],

ou X; est un ensemble d’'informations.
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Le principe de la tarification est d’approcher X par un proxy.
Ce proxy correspond aux info. indiv. — variables explicatives:

= c’est le contexte des modéles de régression.
Supposons que I'assureur dispose de J facteurs explicatifs du
risque, notés {Xi,..., Xy}, on obtient alors la formule

E[S|Xi,....X)] = Be[N| X1, ..., X)] . Be[Y | X1,....XJ].

Le probleme est donc d’obtenir
@ Ep[N| Xi,...,X/]: estimation de la loi de N.
@ Ep[Y|Xi,...,XJ]: idem.
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En économétrie, on cherche a estimer Ep[Z| X1, ..., Xy] par une
fonction des facteurs explicatifs notée (X1, ..., X)).

En économétrie linéaire, on a coutiime de supposer que
ZIX,.. Xy~ N(Bo+Bi1 X1+ ...+ BuXy, o).
En notant X = (1, Xy,..., XJ)T le vecteur des facteurs de risque

et 8 = (Bo.B1....,B)" les coefficients de régression, on peut
simplifier cette écriture sous forme matricielle:

ZIX ~ NX'8, o).

Probléme: le modéle linéaire est rarement adapté en assurance...
Alternative: besoin de supposer relations non-linéaires = GLM.
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Dangers d’une mauvaise tarification

Se tromper dans la tarification d’un produit peut avoir plusieurs
conséquences dommageables:

@ comme cela est souvent lié a la segmentation, il y a un risque
de composition du portefeuille (bons et mauvais risques);

@ investir dans 1 politique de vente (marketing, ...) mal adaptée;
@ impact néfaste sur la concurrence, déficit d'image;

@ mauvaise évaluation de la marge de risque, et donc in fine du
provisionnement: (pour rappel, S; = 3}; S))

VaR,(S)) = inf{se RT : P(S;>s) < (1 -a)}
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Des difficultés liées a la réglementation

La Iégislation a également un impact en termes de segmentation
et de tarification. Lexemple récent le plus célébre :

“Les compagnies d’assurances ne pourront plus, a partir du 21
décembre 2012, prendre en considération le critere du sexe pour
calculer les primes et prestations d’assurances dans leurs
contrats.” a jugé la Cour de justice de I'UE.

Source: http://www.lemonde. fr/economie/article/2011/03/02/
les-assureurs-ne-pourront-plus-appliquer-des-tarifs-differents-selon-le-sexe_
1487077_3234.html

Remarque: ce n’est pas le cas pour le provisionnement...
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Etapes statistiques dans la tarification
@ Modélisation de la fréquence par un GLM adapté (choix d’'une
loi pour la réponse, intégration des covariables), cela donne
E[NIX] = fi(XB)
@ Modélisation du co(it par un autre GLM adapté, on obtient
E[Y X] = (X B)
© Synthése pour en déduire la prime (pure):

E[Si|X,X] = E[N|X] x E[Y|X]
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La potentielle propagation des erreurs

En construisant deux modeles (1 pour la fréquence et 1 pour la
sévérité), on prend le risque de propager des erreurs...

Parfois il vaut mieux essayer de construire un unique modele qui
rende compte a la fois de la fréquence et de la sévérité: cela
dépend de la qualité d’adéquation de la loi de fréquence
notamment.

En réalité dans cette ultime approche, on perd I'info sur le nb de
sinistres et on s’intéresse a la charge totale par contrat. La masse
en 0 (contrats non-sinistrés) induit des difficultés de calibration.
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Gestion / utilisation des données

La sinistralité se décompose généralement en trois typologies de
sinistre:

@ attritionnels: haute fréquence, petite sévérité;
@ graves: basse fréquence, grande sévérité;
@ CAT: trés basse fréquence, sévérité extréme.

Nécessité de séparer ces données en amont car les GLM ne

fonctionnent que sur les sinistres attritionnels (voire graves) a
cause des queues des distributions des lois utilisées.
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@ Applications classiques des GLM en assurance
@ Assurance non Vie
@ Assurance Vie
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Quelques applications en assurance IARD

Lusage des GLM est ancré depuis longtemps dans les moeurs.
On peut citer parmi les domaines concernés:

@ assurance santé: remboursements soins, frais
d’hospitalisation;
@ assurance auto / moto: dommages matériels, vol, ...;

@ assurance Multi-Risques Habitation (MRH): incendie, vol,
dégats des eaux, ...

@ assurance Responsabilité Civile (RC): dommages a autrui.

Les cas de la RC, de I'assurance CATNAT et de la réass. IARD
sont un peu # car font intervenir des montants CAT en général.
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Les applications en VIE

On se sert aussi des GLM en Vie, notamment en

@ épargne: essentiellement du risque comportemental sur les
produits en taux garantis (euro) ou non (UC);

@ prévoyance: DC, LTC (Long-Term Care: dépendance), Cl
(Critical lliness: maladies redoutées), incap/inval. ;

@ réassurance vie: méme remarque qu’en non vie.
Remarque: de par la nature des contrats, il y a souvent une

dimension temporelle dans la modélisation en Vie qui A en non-vie
— modeles de durée.
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Exemple en risque déces (DC): Lee Carter
Lee and Carter (1992)

C’est le modéle le plus utilisé en mortalité (longévité):

log(ux(t)) = ax + Bxk(t) + e(t)

@ x est'age, t 'année;

@ ux(t) est le taux de mortalité instantané I'année t a I'age x;
@ a,: structure de la mortalité en fonction de I'age;

@ «(t): vitesse d’amélioration de la mortalité (série temp.);

@ fx: la vitesse d’amélioration a des impacts # selon I'age;

@ les résidus &(t) ~ N(0,2).
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Exemple 2: modele de Brass
Brass (1964), Brass and Macrae (1984)

C’est un modele relationnel basé sur la régression logistique:

[ 2 i) |

R R e

ou
@ x est I'age de la personne, t est le facteur temporel,
@ q® est une table de mortalité de référence,
@ g°%P est la table de mortalité d’expérience.

Calibre les coef. (a, b) pour établir le passage d'1 table a l'autre,
par ex. d’'une population nationale a une population d’assurés.
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e Les Modeéles Linéaires Généralisés (GLM)
Les GLM: brefs rappels

Caractérisation et formalisation
Validation

Implémentation

Lecture des résultats de la calibration
Sélection de modéle et de variables
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Intérét des GLM

Les GLM permettent de
@ modéliser des réponses diverses € R, R*, N, [0, 1], ...;

@ intégrer toute type d’information exogéne susceptible
d’influer sur la variable dépendante (réponse Y),

@ quantifier 'impact des facteurs de risque X sur Net Y
(sens/intensité).

lls nécessitent d’introduire deux hypothéses fondamentales:

@ les individus Y; sont 1L entre eux (rq: si les indiv. étaient
corrélés, cela résulterait aussi a avoir — d’indiv., donc n \);

@ les variables explicatives X sont L deux a deux.

27/97



Attention a la notion de corrélation entre variables

d plusieurs mesures de dépendance, e.g. corrélation de rang
(Kendall, Spearman). La + répandu est Pearson,

_ Cov(X.¥) _ E[(X—mx)(Y ~ )]
px.y = 'A% N OXxXOy ’

ou ux = E[X] et ox est I'écart-type de X.

Mesure la corrél. linéaire. En effet, considérons la v.a. X telle que
X ~ N(0,1). Ainsi ux = 0, et uxs = 0. Notons Y = X2, on a

EI(X =) (X2 — o)l _ pixe = pixixe
X0 x2 OXO x2

PXY = =0.
Corrélation nulle alors que X et X? parfaitement corrélées!
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e Les Modeéles Linéaires Généralisés (GLM)

@ Caractérisation et formalisation
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Composants d’un GLM (i€ individu)
McCullagh and Nelder (1989)

@ Laloi de la réponse aléatoire Y;: par hyp. elle € a une
distribution de la famille exponentielle.

©Q Le prédicteur n; = Zf:1 B X, linéaire et déterministe:
les facteurs de risque explicatifs le constituent.

© La fonction de lien g: monotone, dérivable, inversible t.q.

9(E[Yil) = .

Ex. du modéle linéaire: g = Id n; = Z,-J:1 BiXi Yi~ N(ni,c?).
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Effets additifs VS effets multiplicatifs

@ Régression linéaire standard:

o E[Yi] =Bo+B1 X1 + ... +BpXp;

e l'influence des facteurs de risque (variables explicatives) a un
effet additif sur la réponse Y;.

o Y estun réel, et peut notamment donc étre négatif.

@ Régression log-poisson:

log(E[Yi]) = Bo + B1 X1 + ... + BpXp;

d'ou E[Y]] = exp(Bo) exp(B1X1) X ... X exp(BpXp);
les effets sont multiplicatifs sur la réponse;

la réponse ne peut étre que positive!
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Famille exponentielle

— La représentation exponentielle facilite la dérivation de résultats.

Les GLM sont issus de la famille exponentielle, dont la densité est
couramment exprimée par

yi6 — b(0)
a(e)

ou a(.), b(.) et c(.) sont des fonctions spécifiques suivant le
modele considéré, et 0 et ¢ sont les parameétres.

fv.(yi; 0, ¢) = exp{ + c(y,-,¢)},

La fonction a(¢) est de la forme %, ou
@ w correspond a un poids (une “exposition” dans le jargon),

@ treés souvent constant égal a 1 (cas individuel).
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Vocabulaire
@ lien canonique: permet de vérifier 6; = p; (ou w; = E[Yi])
@ paramétre de tendance: le parameétre 6;;
@ parameétre de dispersion: le parametre ¢;.

On peut facilement exprimer les quantités clefs pour I'inférence:
@ Log-vraisemblance pour une observation y;:

yif — b(6)

ag) U

log L(6,¢; yi) = log fy(yi; 6, ¢) =

@ Espérance de la réponse: E[Y/] =u; = b'(¢));
@ Variance: Var[Yj] =a(¢)b"(6) = a(¢)  V(w)
——

fn. variance
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Loide Y: Normale Binomiale Poisson ~ Gamma Inverse Gaussienne

N(u,o?) B(n.u) Pu)  Gwv) IN(u,0?)
Supports yeR yel0,n] yeN y eR* y eR*
HeER neN* HeERT  peR™ peRT
o2 e RF* welo,1] veR™* o? e RT*
Tendance 6() " loglu/(1-p)]  logu - ~(2u?)™
Support de ¢ feR feR feR feR™ eR™
Dispersion ¢ a? 1 1 v 1/0?
Support de ¢ ¢ eRT ¢ e R ¢ eRT
Fonction b(6) 6?2 log(1 + €?) ef — log(-9) —(-26)2
. 1 ,V2 ny | 1 3 L
Fonction c(y, ®) -3 ($ + Iog(27r¢)) log(Cy") —log(y!) 5 log(2ndy®) 4+ oy
wu(6) =E[Y; 6] 0 e’/(1 +e’) e’ -1/0 (-20)712
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Law Distribution 0 [ a(z)  b(x)
) - emw? ) 22
fVK;L,J ) 2#0—6 20 12 o x =5
o _a—1
T —Bx _B _ 1 1
G(a, B) T(a) © o o
N - 1 1
IN (p, ) T3¢ T~z >
B(n) prd—p)t? log(:£) 1
P(p) bre # log (k) 1 e’
OP(6,1)  tgre log(n) ¢
Law c(z, 0) Expectation Var. function ~ Support
N (i, 0?) —%(% +log(270)) wp=20 1 R
g;((y,ﬁg) M= — % ; [L2 Ry
IN (1, N) p=(=20)"> ud R+
[
B(k) 1= 1o (1 — p) {0,1}
P(p) —log(a!) p=e’ 1 N
OP (¢, 1) du p(1 + op) N
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Inférence

En annulant la dérivée de la log-vraisemblance L (6, ¢; (Xi})itj<n),
on retombe sur le systéme (S) des équations de Wedderburn (ou ¢
ne figure pas):

(Vi = 1i) Aui (k)
S n ' —Db = k=1,..
( ) {i i=1 Wi \/(/li) é)]]il), ()7 > af)7

avec b,.(k) est la dérivée partielle de n; par rapport au k€™ élément

.....

On résoud ce systeme par I'algorithme de Newton-Raphson, ce
qui nous donne 'E.M.V. & = (0,51, .... Bp) de & = (Bo, B - Bp)-
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La matrice d’information de Fisher est obtenu via I'expression

I(&) = %I\/IT WM,

ou M sont les régresseurs, et W diagonale d’éléments w; =

Donc le paramétre de dispersion ne joue aucun réle ds I'estimation
de &, mais a une influence sur la dispersion de ¢!

— Faire un exemple concret (ex: le modeéle logistique).
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f(x)

N
f(xe)
f(xo) ' slope (first derivative)
: > X
Xo Xy T~
X=X
3 >
Taylor-Lagrange avec
’ f(x)
= = = = Xk — =
f=1L et f(Xk+1) 0 Xk+1 k=7 %)
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e Les Modeéles Linéaires Généralisés (GLM)

@ Validation
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Résidus et déviance

En régression linéaire, on dispose du R? comme indicateur de la
qualité de la modélisation.

Avec les GLM, les mesures de la qualité d’ajustement
proviennent de la déviance, et du Chi-deux de Pearson.

Da au fait que les observations ne sont pas supposées suivre une
loi normale. Cependant, I'analyse des résidus reste indispensable:

@ résidus de Pearson: pouri+j<n,

AP) Yi—gi  Yi—f

L \/vér(y,) V(@)
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(yi ﬂ/)
V(i)
x> = x?/¢ est le x?* de Pearson standardisé de Var(Y;) = ¢V ().

On déduit la statistique de Pearson: y? = 3, -~

@ la déviance: elle compare deux vraisemblances:

o le modéle saturé E[Y;] = Y; (autant de paramétres que
d’observations, donc erreur nulle);
e et le modele calibré E[Y;] = ji; avec fi; = g~ ' (i):

L.gry) 2 (B =) — [b(5) — b(d:
-2 In m - a Z{Y:(G: 91) [b(@,) b(@,)]}

La déviance est alors définie par

D=2 Z {yi(@i - &) - [b(@) - b(&))]}.
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Par analogie, la déviance standardisée : D* = D/¢.
Les résidus de déviance sont définis par

r®) = signe(Y; - ;) Vdb.
ou d; = 2{y;(f; - 6;) - [b(&;) - b(B)]}-

On remarque ainsi que

P Z": td

i=1 i=1

Modeéle bien ajusté < y? et D prennent de faibles valeurs.

Ces résidus ne doivent faire apparaitre aucune structure
non-aléatoire: on effectuera un Q-Q Plot de normalité.
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e Les Modeéles Linéaires Généralisés (GLM)

@ Implémentation
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Nous travaillons sur le jeu de données esoph de la librairie

Mise en oeuvre en R

datasets:

> library(datasets) ; data(esoph)

>

dim(esoph)

[1] 88 5

>

B W N =

head(esoph, n=4)
agegp alecgp
25-34 0-39g/day 0-9g/day
25-34 0-39g/day 10-19
25-34 0-39g/day 20-29
25-34 0-39g/day 30+

0

0
0
0

tobgp ncases ncontrols

40
10
6
5
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On ale nb de personnes ayant un cancer de I'oesophage pour une
tranche d’age donnée, consommation d’alcool et de tabac, ainsi
que I'exposition.

Pour les variables explicatives catégorielles, chaque modalité est
codée en R comme une indicatrice pour le calcul des coef. de
régression. La matrice des régresseurs est appelée matrice de
schéma (ou design).

Q: prédire le taux d’atteinte en fonction des facteurs de risque —
lien logit
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Que donne la régression linéaire classique?

> esoph.lm <- glm(ncases/ncontrols ~ agegp + tobgp * alcgp, family=gaussian, da

> summary(esoph.1lm)
Call:
glm(formula = ncases/ncontrols ~ agegp + tobgp * alcgp, family = gaussian,

data = esoph)

Deviance Residuals:

Min 1Q Median 3Q Max
-0.46676 -0.11238 -0.02766 0.13151 0.61950
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3683021 0.0253322 14.539 < 2e-16 ***
agegp.L 0.4982970 0.0643470 7.744 6.97e-11 ***
agegp.Q -0.0667736 0.0636627 -1.049 0.2980
agegp.C -0.0273635 0.0619999 -0.441 0.6604
agegp 4 0.0961215 0.0602277 1.596 0.1152
agegp”5 -0.0291224 0.0586807 -0.496 0.6213
tobgp.L 0.1026511 0.0504525 2.035 0.0459 *

tobgp.C:alcgp.C 0.0001316 0.1006860 0.001 0.9990
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Residuals

Un oeil sur les résidus

plot(esoph.1lm)

Residuals vs Fitted

0.4

0.2
I

0.6

T T
0.2 0.0 0.2 04 0.6 0.8

Predicted values
gim(ncases/ncontrols ~ agegp + tobgp * alcgp)

Std. deviance resid.

Normal Q-Q

T T T T T
2 Bl 0 1 2

Theoretical Quantiles
gim(ncases/ncontrols ~ agegp + tobgp * alcgp)
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Comparaison des prévisions

On peut comparer les prévisions associées aux deux modéles:
@ modéle linéaire avec effets additifs des facteurs de risque;
@ GLM et effets multiplicatifs des variables sur les OR de Y:

> ## comparaison entre prevision par modele lineaire et glm
esoph.logit <- glm(cbind(ncases,ncontrols) ~ agegp + tobgp * alcgp, family=bi
> cbind(obs=esoph$ncases/esoph$ncontrols, LM=fitted(esoph.lm), GLM=fitted(esoph

\%

obs LM GLM
32 0.0000000 0.1539088 0.09441146
33 0.0000000 0.1767439 0.09993717
34 0.0000000 0.1827688 0.16478482
35 0.1578947 0.2299179 0.15056445
36 0.1904762 0.2227619 0.17211332
37 0.3333333 0.2153707 0.18260428
38 0.7142857 0.4899419 0.30463314
39 0.1875000 0.3742752 0.20184238
40 0.4285714 0.3986418 0.23163685
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e Les Modeéles Linéaires Généralisés (GLM)

@ Lecture des résultats de la calibration

49/97



La qualité d’ajustement et le sens de I'impact des facteurs de

Coefficients de régression

risque est donnée par la fonction summary().

> summary(esoph.logit) (...)

Coefficients:

(Intercept)
agegp.L

agegp.Q

agegp.C

agegp”5

tobgp.L
tobgp.Q:alcgp.C
tobgp.C:alcgp.C

Signif. codes:

Estimate Std.

-1.75985
2.99646
-1.35008
0.13436

-0.21347
0.63846

0
0
0
0

(=]

0 0**+0 0.001

Error z value Pr(>|z]|)

.19822
.65386
.59197
.45056

.19627
.19710

.36211
.35754

0%%0 0.

-8
4
-2
0

01

.878 < 2e-16 **¥

.583 4.59e-06 ***

.281  0.0226 *
.298  0.7655
.088 0.2768

.239  0.0012 **

.134  0.8936
.389  0.6973
00 0.05 0.0 0.

100

1

50/97



Résidus de la modélisation

Résidus (Pearson/déviance) ne doivent pas dégager de tendance.

Ces résidus ne sont pas forcément gaussiens...(cf Q-Q plot de
normalité slide suivante).

> plot(esoph.logit, which = 1:2)
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Residuals

Residuals vs Fitted
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Déviance

Elle mesure la qualité d’adéquation du modele (en comparant la

vraisemblance du modeéle courant a celle du modéle saturé, du

modele nul, d’'un modéle emboité).

Les résidus de déviance doivent étre aussi petits que possible.
Null deviance: 227.241 on 87 degrees of freedom

Residual deviance: 47.484 on 67 degrees of freedom

AIC: 236.96

Number of Fisher Scoring iterations: 6

## p-valeur du test de significativite:
> 1-pchisq(residual.deviance,df)

Rq: la déviance suit ~ le Khi-deux (McCullagh and Nelder (1989)).
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e Les Modeéles Linéaires Généralisés (GLM)

@ Sélection de modéle et de variables
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Sélection de modele par analyse de variance

@ Comparaison du modele courant au modéle nul:

> anova(esoph.logit) # comparaison modele courant au modele nul
Analysis of Deviance Table
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 87 227.241
agegp 5 88.128 82 139.112
tobgp 3 19.085 79 120.028
alcgp 3 66.054 76 53.973
tobgp:alcgp 9 6.489 67 47.484

@ Comparaison entre deux modéles GLM:
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> esoph.logit2 <- glm(cbind(ncases,ncontrols) ~ agegp + tobgp + alcgp, fan
> anova(esoph.logit2, esoph.logitl, test="Chisq")
Analysis of Deviance Table

Model 1: cbind(ncases, ncontrols) ~ agegp + tobgp + alcgp

Model 2: cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 76 53.973

2 67 47.484 9  6.4895 0.6901
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Sélection de variable

— Tests d’hypothéses pour connaitre la pertinence des variables

(test de Wald basé sur les prop. du MLE).
— Ici approche descendante (modéle saturé et suppression):
fonction stepAIC() du package MASS (AIC a minimiser).

> esoph.backward <- stepAIC(esoph.logit, direction="backward")
Start: AIC=236.96 % AIC du modele calibre et stocke dans 1’objet
cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp

Df Deviance AIC
- tobgp:alcgp 9 53.973 225.45
<none> 47.484 236.96 % supprime rien, garde le modele actuel
- agegp 5 123.950 303.43

Step: AIC=225.45
cbind(ncases, ncontrols) ~ agegp + tobgp + alcgp
Df Deviance AIC

<none> 53.973 225.45 % fin de la procedure puisque AIC est minimise ici

- tobgp 3  64.572 230.05
- alcgp 3 120.028 285.51
- agegp 5 131.484 292.96
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Choix de la fonction de lien

Suivant la distribution choisie pour la variable réponse, on peut
considérer différentes fonctions de lien. Citons les:
@ distribution normale:
e liens identité, log et inverse;
@ distribution gamma:
e liens inverse, log, identité;
@ distribution inverse gaussienne:
e liens inverse carré, inverse, log, identité;
@ distribution binomiale:
e liens logit, probit, cauchit, cloglog;
@ distribution poisson:
e liens log, identité, racine carré, inverse.

Remarque: les premiers liens cités sont les liens canoniques.

58/97



Choix de la fonction de lien (suite)

@ La détection d’une tendance systématique des résidus
indique probablement un mauvais choix de lien,

@ Suivant la distribution de I'erreur, il y a un choix limité de
fonctions de lien possibles.

Ex: pour une erreur de loi de Poisson, nous pouvons considérer
comme liens: identite, sqrt, inverse et log.

esoph.logit <- glm(cbind(ncases,ncontrols) ~ agegp + tobgp * alcgp,
family=binomial (link="logit"), data=esoph)
esoph.logit <- glm(cbind(ncases,ncontrols) ~ agegp + tobgp * alcgp,
family=binomial (1ink="probit"), data=esoph)
esoph.logit <- glm(cbind(ncases,ncontrols) ~ agegp + tobgp * alcgp,
family=binomial (1ink="cauchit"), data=esoph)
esoph.logit <- glm(cbind(ncases,ncontrols) ~ agegp + tobgp * alcgp,
family=binomial (1ink="cloglog"), data=esoph)
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e Usage pratique des GLM: les écueils récurrents

@ Quelques notions opérationnelles importantes sur les GLM
Surdispersion et masse en 0
Segmentation et modélisation: limites a garder en téte
Tenir compte de I'exposition: I'offset

°
o
°
@ Réponse catégorielle: sur-représentation d’'une modalité
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@ Usage pratique des GLM: les écueils récurrents
@ Quelques notions opérationnelles importantes sur les GLM
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Choix de la loi de I’erreur et fonctions de lien en actuariat

Adapter le lien en fonction du domaine de définition de Y.

Loi Lien naturel Moyenne Utilisation
N(u,0?) Id:n=upu u=Xg Rég. lin.
B(u)  logit: n=In(£)  p=; j;”xﬁjf% Taux

P(u) log: 7 = In(y) u=exp(XB) Fréquence
G(a,B) inverse:n = u=(Xg)™" Sévérité
IN(u,2) inverse?: n = —# u=(Xp)=2 Sévérité
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La gaussienne

Lutilisation d’'une loi Normale est encore trés répandue... Mais cela
implique des erreurs fondamentales de raisonnement, notamment

@ la densité de la loi est symétrique,
@ sa queue de distribution est fine,
@ support non adapté a des charges sinistres = P(Y < 0).

y
Al=A4
A2=A3

Al+A2=102

Al

ay U a
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Valeur des coefficients calibrés: impact sur la réponse

En général, on interpréte les résultats de la maniére suivante:
@ j3; > 0: / du facteur de risque X; provoque " de g(E[Y]);
@ f; < 0: / du facteur de risque X; provoque \ de g(E[Y])
@ ;= 0: effet nul de la variation dudit X;.

Evidemment, cela dépend aussi du type de modélisation!
@ Pour des modéles a effets additifs, la valeur de réf. sera 0;

@ Pour des modeles multiplicatifs, la valeur de référence sera 1
(a une transformation pres parfois, cf modele log-Poisson).

Pour connaitre le type d’effet, on réécrit le modéle sous la forme

E[YIX] = g "(X7B).
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Comparateur en ligne et odd-ratio (OR)

En souscrivant en ligne, vous pouvez par ex. avoir une idée de la

calibration de certains assureurs pour certains facteurs de risque:

comparer le tarif en faisant évoluer 1 seule caractéristique (ex:
age, ancienneté du permis, couleur de la voiture, ...)

Cela correspond a 'odd-ratio, un rapport sur la quantité d’intérét:

E[Y|X = x; + 1]
g

avec h une fonction a déterminer.

Exemple log-poisson: Y ~ P(1), donc A = eX'B = h(B;) = ¥
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Validation d’'un modele GLM

Il faut garder en téte que la validation d’'une modélisation de type
GLM passe par plusieurs étapes:

@ construction de 2 échantillons 1L par tirage aléatoire: un
d’apprentissage (construction) et un de validation;

@ validation de la significat. globale du modéle (déviance, LRT);
© validation de la significativité des coef. de régression un a un;
© allure des résidus (doit étre aléatoire);

@ confrontation “modélisé / empirique” sur I'échantillon de
validation par prévisions données par le modele.
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Transformations au sein du prédicteur
Il peut étre utile d’introduire une transfo. dans le prédicteur sur
certaines covariables en fonction du type d’impact sur Y.

Cette transformation sera choisie en fonction de I'effet du facteur
de risque sur Y lors de la visualisation des statistiques desc.

Prenons un ex. concret: supposons que I'age x a un impact
exponentiel sur le taux de mortalité gx, mais que la CSP joue de
maniére linéaire. Ainsi on posera un modéle de la forme

In(gx) =a+ bx+In(cCSP) & qgx = A xexp(bx)xcCSP
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Tweedie or not Tweedie?
Boucher and Danail (2011)

La densité est donnée par

19:006) = a(y.0) exp 3] 000) - (o)

El:g i 1 EE:E S' 2
o) =17 2P7 o) =22 2 P7
log u sip=1 log u sip=2

Dans cette formalisation, E[Y] =u et Var(Y) = yuP = yE[Y]P,
avec ¥ un parametre de dispersion > 0.
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Lordre p € R™ (parameétre d’indice), choisi (en fonction de
I'application) avant d’estimer u et ¢, définit le type de distribution:

— p < 0: réalisations dans R; p = 0: loi gaussienne,
— 0 < p < 1: pas de distribution (pas de modele Tweedie),
p =1 avec ¢ = 1: loi de Poisson,

H
— 1 < p < 2:loi composée Poisson-Gamma (réalisations > 0),
— 2 < p < 3oup > 3: positive stable distributions (x > 0),

ﬁ

p = 2 : loi Gamma, p = 3 : loi inverse gaussienne.
En pratique, 1 < p < 2 pour modéliser fréq. et colt en mm tps!

Inconvénient: mémes var. explicatives prises en compte dans les
lois de fréq. et de codt, or les praticiens savent qu’elles sont #.
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@ Usage pratique des GLM: les écueils récurrents

@ Surdispersion et masse en 0
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Pratique courante

Dans les compagnies d’assurance, on penche souvent pour la loi
de Poisson dans la modélisation de la fréquence des sinistres
lorsqu’on adopte une modélisation de type fréquence-codt.

En pratique,
@ cela simplifie le calcul global de sinistralité a I'’échelle du
portefeuille: loi Poisson composée stable par addition;

@ souvent on observe que la variance empirique du nombre
de sinistres est bien supérieure a sa moyenne empirique:
cela va a I'encontre de la propriété fondamentale de cette loi.

On réalise donc que cette modélisation n’est pas adaptée!
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Cas classique de surdispersion: la Binomiale Négative

Elle peut étre construite comme un mélange de lois de Poisson:
(NIN=2) ~P(1) et A ~ Ga(a, o).
La densité jointe de N et A vaut

Pl 50/1(1—1 -04
iua(n.2) = fyjaza(n) iW(2) = e~ Ta()e (A, @,6>0,n€eN),

A est continue et N discrete: la distribution marginale de N est

—/1/1_” 6a/la—1 e—6/1

P(N=n) = jo‘oof,\,,/\(n,/l)d/l:jo‘we H!Td/l

_ ol foo /ln—|—a—1 e—((5+1 )4 di— (WF(a + n)
0

n'T(a) n T(a) (64 1)*+n
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Posons ensuite  p = ;%5,et g=1-p= 5. Alors
Ma+n)
P(N=n) = @qn
(N=n =25

Lav.a. N ~ NB(a; p) prend ses valeurs dans {0, 1,2, ...}.

Remarques:

@ La queue de distribution est plus épaisse que celle d’'une loi
de Poisson.

@ Sa variance est plus grande qu’une loi de Poisson: loi utilisée
en cas de surdispersion des observations.
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Les modeles de comptage Zero-Inflated (ZI)
Frees (2009)

Utilisé lorsque la survenance des sinistres est rare...
Les “0” observés viennent de loi de comptage + masse en 0 (rp):

@ une composante regroupe les deux “sources” de 0,
@ l'autre regroupe les obs. # 0 provenant de la loi de comptage.

P(N=k) = moLk=0 + (1-m0)count(k)-

7T0—|—(1—7l’0)e_/1 sik =0,
k

Ex: N~ ZIP(1): P(N=k) =
(1) B ) {(1—7@6”% sik > 0.
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Les modeles de type “hurdle-at-zero”
Frees (2009)

Idem que précédemment pour I'utilisation, sauf que I'on maitrise
mieux la proportion de 0 ici (— d’aléa sur cette quantité):

@ masse en 0 (ne proviennent plus du tout de la loi comptage),
@ alaquelle on ajoute une loi de comptage tronquée.

o sik =0,
P(N=k) = (1= o) feount (k) sik >0,
1 - feount(0)
o sik =0,
Zero-trunc. P: P(N = k) = (1 — o) e~k Sk >0
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@ Usage pratique des GLM: les écueils récurrents

@ Segmentation et modélisation: limites a garder en téte
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Création de poches d’assurés

La segmentation amene a créer des poches d’assurés ayant les
mémes caractéristiques. Il y a un arbitrage naturel entre

@ une segmentation “grossiére”: peu de poches différentes,
donc peu de tarifs #;

@ une segmentation précise: beaucoup de profils de risque
considérés #, des tarifs trés personnalisés (cf pb Big Data).

Une question essentielle liée a cette problématique de
segmentation est I'exposition... moindre dans certaines poches!
— Remise en cause du principe de mutualisation (LFGN)...

— Attention pour les GLM (MLE asymptotique), voire méme pour
le calcul de la sinistralité globale en espérance par agrégation...
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Difficultés de calibration des coefficients

Il arrive souvent en pratique que des coefficients de régression
calibrés ne soient pas significatifs. Cela correspond au test:

Ho: Bj=0 VS Hi: jBj#0.

But: rejeter Hy a un certain niveau de confiance «, en se basant
sur la statistique de Wald (3j/ Var(5)))?  (~ x?).

Lorsque I'exposition est faible dans une poche, la calibration des
coefficients de régression affectés a cette poche devient ardue...

Cela est di au fait que le MLE est asymptotiquement gaussien:

BME ~ N 1/1(B)))-
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= La variance de I'estimateur peut devenir grande si I'information
de Fisher est faible (quantité d’'info contenue dans les données,
petite dans le cas de trop peu d’individus).

La technique consiste alors a regrouper certaines modalités de
covariables qualitatives (ou catégorielles). La démarche

statistique “propre” s’y rapportant:
@ calibration du modeéle saturé (ou modele complet),

pour le test de chaque coef. associé aux covariables, repérer
la pire “p-valeur” au-dessus du seuil «,

Q

© agréger la modalité correspondante avec une autre
“intelligemment”;

o

recalibrer le modeéle, et revenir a I'étape 2 tant que le modéle
n’est pas satisfaisant.
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Dimension du modeéle a “minimiser”

On a tjs 2 effets inverses en modélisation (cf théorie de Vapnik):
@ adéquation du modele: plus la dimension du modéle est
grande, plus 'adéquation aux données est bonne;
@ qualité prédictive: plus la dimension du modéle est grande,

plus la capacité prédictive du modéle est mauvaise (on capte
les bruits au lieu de capter le signal principal).

Lidée est donc de rechercher un arbitrage dans la dimension qui
permette d’obtenir un bon compromis dans ces 2 objectifs.

[C’est ce qu’on appelle un modéle parcimonieux.]

Critéeres de sélection de modeles emboités: AIC, BIC, ...
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Distribution de sinistralité par poche

Au final, une question importante est d’identifier les poches pour
lesquelles la modélisation marche bien ou non: il vaut mieux se
tromper sur certains profils que sur d’autres...

Pour cela, on confronte la densité théo. construite par GLM a la
densité empirique du profil (poche): dans l'idéal ¢ca coincide
presque!
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@ Usage pratique des GLM: les écueils récurrents

@ Tenir compte de I'exposition: I'offset

82/97



Qu’est-ce que I'offset?

Loffset représente une sorte d’exposition.

C’est une constante qui va venir modifier le risque de base, donc
le risque qui n’est pas lié au profil de I'assuré en particulier.

Exemples d'offset:
@ assurance auto indiv.: nb d’années d’assurance du véhicule;
@ assurance collective auto: taille de la flotte assurée;

@ assurance collective incapacité-invalidité: effectif de salariés,
masse salariale;

@ réassurance: taille du portefeuille, ...
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Comment intégrer un offset dans un modele GLM?

Tout simplement! C’est un terme commun a tous les individus,
mais dont la valeur va changer en fonction des individus.

En terme explicite, I'équation devient
g(E[Y |X = x]) = offset + x'B.

@ on contraint le coefficient de I'offset a valoir 1 (c’est
pourquoi il N’apparait pas dans I'équation!);

@ pour la calibration, on régresse g(E[Y | X = X]) — offset = x"3.
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Exemple d’offset dans le modéle log-Poisson

Lidée globale de I'offset est que la réponse y est proportionnelle.

Donc l'offset s’exprime sur la méme échelle que la réponse. Dans
le cas du modele log-Poisson de parameétre A, on aurait donc

In(E[Y | X = x]) = In(exposition) + x"B.

E[Y|X = Xx]
exposition

Soit le modeéle suivant & calibrer: In( ) =x'B.
On remplace donc la fréquence (au sens nb de sinistres) par une

fréquence standardisée!
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@ Usage pratique des GLM: les écueils récurrents

@ Réponse catégorielle: sur-représentation d’'une modalité
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Etude d’un taux de réponse faible

On cherche parfois a modéliser un événement binaire “rare” en
utilisant des modeles GLM.

[Quel(s) probléme(s) cela pose?]

Difficultés énoncées précédemment sur la calibration notamment
— +sieurs poches ou on observe (trés) peu ou pas I'événement...

Exemples concrets (souvent en risque comportemental):

@ taux de résiliation en assurance vie et non-vie (surtout en vie
ou les taux de résiliation annuels sont + faibles);

@ taux de conversion en assurance directe par exemple.
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Formalisation du contexte

Plagons nous dans le cadre de risque comportemental pour
présenter le concept (ex: taux de conversion). Cela nous améne a
considérer un modéle GLM de type logistique, a savoir

In(1 P ):x,.Tﬁ.

pi

Rappelons que
o X =(1,Xi1,... Xuy) et BT = (Bo.B1:....);
eict,..l: Yie{0,1} = Y, ~B(p);
o pi=P(Yi=1).

En pratique, p = 17 2.i1,—1 est de I'ordre de quelques % au +.
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Les deux problemes théoriques associés
Albert and Anderson (1984)

@ La séparabilité: en fait, I'existence d’'un estimateur du
maximum de vraisemblance est conditionné par le probléme
de séparation. Il n"A de MLE en cas de séparation compléte.
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Figure 2 Possible configuration of sample points in the case of two variables, x; and x,, and two
groups, E;, shown by circles, and E,, shown by crosses. Regions R; and R, define corresponding

allocation rule. (a) Complete separation. (b) Quasi-complete separation. (c) Overlap.
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@ La dimensionnalité (“curse of dimensionality”).
On dispose souvent de bc de covariables: la dim. de I'espace
/" vite et les données peuvent rapidement devenir “sparse”.

Pour toute procédure statistique, la sparsité est un probleme
important. On entend parfois parler de

“Small N large P”

Pour avoir un résultat fiable dans la plupart des modéles
statistiques, |a taille des données dont nous avons besoin croit

souvent exponentiellement en fonction de la dimension du modeéle.

Remarque: dans le cadre de données “sparse”, on utilise plutét la
régression ridge, lasso, elastic net...
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Solutions “théoriques” existantes

Pour éviter le probléme de sparsité ou de non-existence du MLE
pour des données qui seraient séparées (ou quasi-séparées), il
existe deux principales méthodes:

@ la vraisemblance pénalisée (penalized likelihood method);

@ la régression logistique conditionnelle exacte (exact
conditional logistic regression).

Ra: la 3¢ alternative est le response-based sampling, artifice
pour retomber sur un probleme plus facile a traiter mais qui n’est
pas applicable directement sur le probleme d’origine (cf + loin).
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© Application sur une base de données réelle
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Exercice d’application en R

Importer la base de données Excel des sinistres auto.
Puis répondez aux questions suivantes:

@ extraire des statistiques descriptives de ce jeu de données
(taux de sinistralité, nb de modalités par facteur de risque,
corrélation, ...)

@ regrouper les modalités gqu’il vous semble bon de regrouper;

© construire aléatoirement un échantillon d’apprentissage et un
échantillon de validation (de tailles respectives 2/3 et 1/3);

© calibrer un modele de régression linéaire multiple pour
expliquer la charge sinistre (sans faire de distinction
fréquence-colt):
e par procédure de sélection de modele backward,
e calculer les prévisions de charges sinistres.
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© calibrer un modeéle de régression log-Poisson pour expliquer
la charge sinistre (sans faire de distinction fréquence-co(t):
o calculer les prévisions de charges sinistres,
e comparer les statistiques descriptives des prévisions de la
réponse par rapport a I'expérience et a la modélisation linéaire.

@ Construire un modéle de tarification fréquence-co(t:

e calibrer la loi de fréquence, et établir des prévisions;

o calibrer la loi de sévérité, et établir des prévisions;
e agréger les résultats pour obtenir un tarif;
o

comparer les résultats avec les modeles précédemment
construits.

@ Refaire la question précédente en gérant le probléme de
surdispersion des données.
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CONCLUSION



Il existe de nombreux écueils pratiques a la mise en place
opérationnelle des modéles GLM en assurance.

Principalement:

la segmentation et ce qu’elle induit (attention a ne pas trop
segmenter!);

@ le choix des lois et du lien;

@ la calibration des modeles (convergence du MLE, bornitude

de la vraisemblance, initialisation de I'algorithme de
Newton-Raphson, etc...);

@ l|a validation d’'un modeéle;

@ la gestion de la surdispersion des données;

@ la potentielle (tres) faible sinistralité...
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