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Pourquoi les copules pour mesurer la dépendance?

Le + répandu pour mesurer la corrélation: coefficient Pearson

E[(X = ux)(Y — py)]
oxXOTYy ’

X,y =

ol pux = E[X] et ox est 'écart-type de X.
Ce coefficient mesure la corrélation LINEAIRE. Oui car...

Exemple : considérons la v.a. X telle que X ~ A/(0,1). Ainsi
px =0, et ixs = 0. Notons Y = X2, on a

E[(X — mx)(X? — px2)]
OX0 x2

_ Bxs T pxpx2 0
OXO x2

XYy =

Corrélation nulle alors que X et X? parfaitement corrélées!
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Un peu d'Histoire...

— Outil récent né dans les années 1950, avec un fort
développement depuis les années 1980;

— Modélisation de la dépendance entre les risques : définit
une structure de dépendance entre des marginales (FdR de
lois univariées);

— Principaux chercheurs sur le sujet : C. Genest (Université
Laval, Québec, Canada) & al., Sklaar;

— Auteurs pour les applications...
@ en Assurance : Frees et Valdez (1998),

@ en Finance : Bouyé et al. (2000), Cherubini et al.
(2004) et McNeil (2005).
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Domaines d'application

Les copules sont généralement majoritairement utilisées dans
les deux domaines que sont...

@ la Finance:
e risque de crédit pour la modélisation de la dépendance

du risque de défaut,
e ou pour les rendements de titres financiers;

o |'Assurance:

o Vie : contrat décés sur 2 tétes,
o Non-vie (IARD) :
— assurance catastrophe naturelle;

— réassurance.
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|dée de base

On peut définir la fonction de répartition conjointe de X et Y
de la maniére suivante:

Hix,vy(x,y) = Cu(Fx(x), Gy (y)),

ot C est défini comme étant une copule.

— Ceci permet d'introduire une dépendance entre X et Y,
pas forcément au sens linéaire du terme...

— Il y a distinction entre la définition de la relation de
dépendance et celle des marginales.
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Placons nous en dimension 2 pour simplifier

— Soit 2 variables aléatoires X et Y de FdR F et G.
Une copule est une FdR de la loi jointe bivariée qui lie les
marginales de X et Y (cf théoréme de Sklaar).

— Théoréme fondamental de représentation de Sklaar:

Si H la FdR du couple (XY) et F et G les marginales des lois
univariées X et Y (respectivement), alors il existe une copule
Cr (unique si X, Y continues) telle que :

V(Xay) € Rz? H(X,Y)(X7y) = CH(F(X)7 G(y))

— En pratique, une copule Cyy peut &tre vue comme une
application de [0, 1]? dans [0, 1] & partir de lois uniformes:

Ch(u,v) = P(F(x) < u,G(y) < v)
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Démonstration

En effet, en posant u = F(x) et v = G(y) on a bien
(u,v) €[0,1] x [0, 1];
Et V(x,y) € R

C(F(x).G(y)) = Huxy)(xy)
C(u,v) = PX<x,Y<y)
= P(X<FH(u),Y <G H(v))

= P(F(X)<u,G(Y)<v)

Attention a la confusion:

P(F(x) <u,G(y) <v)# P(X <u, Y <v)!
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Définition et propriétés i
estimation

Définition: une copule C est la fonction de répartition d'un '}22{\2?1;7;51;‘

vecteur de variables aléatoires U = (Ui, Uz) dont toutes les Xavier Milhaud

composantes U; obéissent a la loi uniforme 2/(0,1).

Remarque: en effet, si X ~ Fx alors Fx(X) = U ~U(0,1)
(car Fx(X) = Fx(Fx*(U)) = V).

Définition

Propriétés: on a donc C : [0,1]?> — [0, 1], telle que:
@ C(Ui, Uo) non decroissante sur [0, 1]2,

C(Ui, Us) continue a droite sur [0, 1]2,

Jim C(Uy, U2) =0,

u/;ILnlC(Ul’ o) = uj,

A by Doy by C(Ur, Un) = C(b1, bo) — C(by,a2) —
C(a1, bp) + C(a1,a2) >0, Va; < by, a < by.

© © 00



Les copules:

Utilisation pratique des copules introduction et
estimation

.. . M2MO Paris 7,

o définir la structure de dépendance entre lois de proba., le 18/12/2012

@ mesurer la dépendance entre des v.a. données, Xavier Milhaud

@ construire des familles de lois bivariées.
Avantages: immeciates
@ permet d'étendre les modéles a chocs communs,

@ tous les résultats sont généralisables en dimension d.

Intéréts:
o décomposition lors de la définition des lois multivariées:
o les marginales sont définies indépendamment les unes
des autres, pas nécessairement de méme type,
o la structure de dépendance introduite via la copule ne
dépend pas du choix de ces marges...

@ invariance par transformation monotone.



Exemples de copules bivariées

@ Copule d'indépendance:
C'(u1, 1) = wun,
e Copule de Farlie-Gumbel-Morgenstern (a € [—1, 1]):
Co(ur, ) = vqup + auyup(l — u)(1 — wa),

@ Copule de la borne supérieure de Fréchet:

Ct(u1, up) = min(uy, up),
@ Copule de la borne inférieure de Fréchet:

C (v, u2) = max(uy + u2 — 1,0),

e Copule de Fréchet (a et 8 € [0,1]):

Co,p(u1, u2) = aC™ (u1, u2) +BCT (u, )+ (1 —a— ,B)C’(ul, uz).
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Exemple de familles de copules

Il existe aussi des familles de copules! Elles regroupent
(comme on peut s'en douter) différentes copules...

e Copule de Franck (a # 0):

1 e—Cu1— 1 e—auz—l
CO’:(Ul,Ug):—am(l—i-( ) 1 )),

eOé

e Copule de Gumbel (o > 1):

CO (1, u) = exp(—[(— In t)® + (— In up)*] /),

e Copule de Clayton (a > 0):

CSun, ) = (U™ + uy® — 1)
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Copule normale (o = 0.5,—0.5,0.9, —0.9) intraducsion et

estimation

M2MO Paris 7,

2 2] le 18/12/2012
ER R Xavier Milhaud
1l : : : : : ° 1 : : : : . Allure des copules
00 02 04 08 08 10 00 02 04 06 08 10
1 11
T T T T T T L T T T T T
00 02 04 08 08 10 00 02 04 06 08 10

1] 0.1



Copules de Student (2 prem.) et Franck
(v =125,8)

x(2)

2]

10

X2

1]

011

1B
| £ty

o oy

X2

1

A1)
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Copules de Gumbel (v =1,6) et Clayton introccsion et
(o = 2.10) amimation

M2MO Paris 7,
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Construction de copule

Pour construire une copule, il suffit de se servir du corollaire:
“Soit H une FdR bivariée avec des marginales continues F,
G, et la copule C. Alors, "

Y(u,v) € 0,112, Culu,v) = Hix,vy(F (1), G 1(v)).

Si on connait la distribution conjointe de (X,Y) ainsi que leur
marginale, le tour est joué!

: copule de Galambos: V8 > 1, on a
H(x,y) = exp(—[(x +y) — (x "+ y=0) 7))

admet pour marges F(x) = G(x) = exp(—x), Vx € [0, +o0].
Soit donc Vu € [0,1], F~Y(u) = G~ }(u) = —In(u), d'ou:

Co(u, v) = uvexp(—[(=Inu)™? + (= Inv)~?]71/%)
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Des données aux copules, |'inférence statistique

Concrétement on a les observations

(le)/I)a (X27y2)7 ) (men)

équivalent a Hix y)(x,y) = Cu(F(x), G(y)).

: comment choisir Cy(u, v) (distribution de (U,V))
sachant que (U,V) = (F(x),G(y)) 7

(F et G ne sont pas évidemment pas connues dans la réalité)
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Solution

Pour obtenir les observations

on estime les marges par la fonction de répartition empirique

(u1,v1), (U2, v2), ..., (Un, ),

des lois X et VY, i.e. :

Puis on pose

1 n
Fa(x) = n Z Ix;<x
i=1

1 n
Goly) = =D Ly,
i=1

(Ui = Fa(Xi), Vi = Gn(Y1))
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Point technique important

. . Ri S;
— En fait cela revient a poser U; = — et V; = =,
n n

avec R; et S; qui sont les rangs des observations de X et Y.

— Propriétés:

i) Si X est v.a.c. de FdR F alors la variable Y = F(X) est de
loi uniforme 24(0, 1),

i) Si F est une FdR continue d'inverse généralisée F~1 et X
une v.a.c. telle que X ~ (0, 1), alors F~1(X) ~ F!

— Csq: chacune des paires est bien de loi C par construction!
Si (X,Y) ~ H de marge F, G alors H(F(X),G(Y)) ~ C (i);

— Reéciproque:
Si (U, V)~ C alors H(F~Y(U),G (V) ~ H (if).
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Définition

— La copule empirique (Deheuvels, 1979) est définie de la

méme maniére qu'une fonction de répartition empirique par:

1 n
Co(u,v) = =D L(r (). 6V <)
i=1

— Résultats asymptotiques: /n(C, — C) = N(0, ?).

. R; S;
— Support de la copule: graphe des paires <—', —’);
n’n
— n ne doit étre...
@ ni trop petit: perte de la forme précise de la FdR,

@ ni trop grand: temps de calcul trop important.

— Rq: bon outil graphique, insuffisant pour choisir la famille
de copules adaptée a la structure de dépendance des données.
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Canonical Maximum Likelihood (CML)

— Cette méthode semi-paramétrique a été proposée par
Oakes (1994), approfondie par Genest et al. (1995);

— Extension au traitement de données censurées par Shih et
Louis (1995);

— |dée sous-jacente de la méthode: estimation non
paramétrique des marges par la FdR empirique, puis
estimation paramétrique du paramétre de copule.

— La CML est semblable a I'lFM (cf supra) mais pas besoin
de spécifier les lois des marginales;

— Inconvénient majeur: perte d'information due a
I'estimation non paramétrique des marges!
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Mise en oeuvre

— Marginales remplacées par FdR empirique, puis le param.

de la copule estimé par MV. En pratique,
o) =131
x) =~ :
n(x) n ; Xi<x>
et 0 est donc estimé en maximisant la log-vraisemblance:

6= argmaxz In(CH(Fn(Xi)a G,,(y,-))).
S ——

ol cy(u, v) est la densité de C.

— Facilité d'implémentation, invariance par transformation
croissante des marges:

Ui = Fo(Xi) et Vi = Go(Y))
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Données de |'approche

— On dispose de I'échantillon aléatoire
(Xlay1)7 (X27y2)7 [RXX) (men) de loi
H(X,Y)(Xv)/) = C(F(x),G(y)). V(x,y) € R?.
— On suppose des modéles paramétriques pour F, G et Cy,
ot Cy est une famille paramétrique de copules.

— Q.: comment estimer le paramétre de dépendance 67

: considérons F ~ N(u,0?), G ~ Gamma(v, ).
Et prenons C appartient a la famille FGM (a € [-1,1]):

Co(ur, u2) = tqup + aujup(l — ur)(1 — wp),
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a) Maximum Likelihood

L'estimation par maximum de vraisemblance nécessite
d'introduire les quantités fy, g, ¢y ol

9?C(u, v
ol v) = TSW)

qui sont les densités associées a F, G et C.
— D'autre part, H(x, y) = C(F(x), G(y)) donc

h(x,y) = co(FA(x), G, (y))A(x)&u(¥);

d'ou la log-vraisemblance & maximiser

(3 v,0) = Z/n(fx(xl))JrZ/"(gu Yi) +Z/H(Ce(Fx(X,) Gu (1))

i=1 i=1 i=1
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Propriétés du MLE

— Les propriétés asymptotiques de |'estimateur du maximum
de vraisemblance sont bien connues:

@ il est sans biais
@ convergent

@ asymptotiquement normal

— Le temps de calcul est important si le nombre de
paramétre est grand...

— Grande sensibilité au choix des marginales F et G
(attention a ne pas se tromper!)

— Rq: on estime tous les paramétres en méme temps !
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b) Inference Functions for Margins

— Cette méthode utilise la propriété fondamentale des
copules : séparation marginales / structure de dépendance;

— Il s’agit d'une estimation par maximum de vraisemblance,
mais en deux étapes:
© estimation des paramétres des marginales;
@ estimation du paramétre de la copule en injectant les
paramétres estimés des marginales dans |'expression de
la vraisemblance de la copule;

— Avantage: estimateur en deux temps asymptotiquement
normal (Joe, 2005) sous certaines conditions;

— Inconvénient: mauvais choix de marginales se propage
dans I'estimation du paramétre de la copule...
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Algorithme

© Estimer les marges par (ML)

A=arg maxz In(£y(x;)) D =arg maxz In(g.(vi))
AN i A

© Pouri=1,...,n, posons

U; = Fi(Xi) et Vi = Gp(Y;), ot \, D sont les MLE.
@ Maximiser 37 In(co(Us, V).
Mé&me inconvénient:

@ Propagation d'un mauvais choix de marginales dans
I'estimation du paramétre de dépendance;
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Mesures de dépendance non-linéaire

— Définitions: soient (X;, X,) indépendant de (X1, X,) et
ayant les mémes marginales que (X1, X2), on définit

@ le rho de Spearman (p € [-1,1]):
P(X1. X2) = 3P((X1—X1)(X2 = X;) > 0) =3P((X1 —X1)(Xa —X3) < 0),
o le tau de Kendall (7 € [-1, 1]):

(X1, X2) = P((X1 — X1 )(Xa — X3) > 0) — P((X1 — X1 )(X2 — X3) < 0).

— : les variables aléatoires évoluent-elles dans le
méme sens A chaque rang?

— Ou quelle est la proportion de paires (x;, yi) et (xk, yx)
concordantes (i.e. (xi — xx)(¥i — yx) > 0) et discordantes 7

Sachant qu'il y a en tout & = w paires distinctes...
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Relations entre Tau de Kendall et copule

La formule théorique liant ces deux grandeurs est :

T(Xl,XQ) = / / C U1,U2 C/C U1,U2)—1
= 4E[C(Uy, Up)] - 1.

Ce qui donne:

Copule de Clayton: 7(X1, X2) =
Copule Normale: 7(X1, X2) =
Copule de Gumbel: 7(X1, X3)
Copule de Fréchet: 7(Xy, X2) = %W
Copule FGM: 7(X1, X2) = §,

Copule Marshall-Olkin: (X, Xz) = 7=25—.

a+2

arcsin(a),
a—1 1

(]

2
™
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Les copules:

Relations entre Rho de Spearman et copule introduction et

estimation

M2MO Paris 7,
P . . le 18/12/2012

La formule théorique liant ces deux grandeurs est : <82/
Xavier Milhaud

1 1
p(Xl,XQ) = 12/ / C(Ul,UQ)duldUQ—?)
0 0

1 1
= 12/ / uy up dC(uy, up) —
0o Jo

Copule Normale: p(X1, X2) =
Copule de Gumbel: p(X1, X2)

Copule de Fréchet: p(Xl,Xz) - B,
Copule FGM: p(X1, X2) = § dbitn

Copule Marshall-Olkin: p(X]_,X2) %

Ce qui donne:

e 6 o6 o
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Notion de dépendance positive par quadrant intraducsion et

estimation

M2MO Paris 7,
le 18/12/2012

— :

la probabilité que les variables prennent simultanément des
valeurs élevées est plus grande si elles sont PQD que en cas
d'indépendance.

Xavier Milhaud

— Lien évident avec les mesures du tau de Kendall et du Rho
de Spearman. Basée sur l'inversion de mesures de
dépendance (tau de Kendall, rho de Spearman).

— X1 et X2 (PQD)
s'écrit:

(Xl,Xz) est PQD si P(X1 > x1,X2 > X2) > P(Xl > Xl)P(Xz > X2) .

cas d'independance Méthode des

moments



Propriétés et mise en oeuvre de la méthode i
estimation
— Propriété: si la famille Cy est ordonnée par PQD, i.e. M2MO Paris 7,

le 18/12/2012
91 < 92 = CO]_ < C92 Xavier Milhaud
Alors 7 = ¢(0) et p = () sont des fonctions croissantes de
0 (ot 7 et p sont les mesures de Kendall et Spearman).

— Puisque ¢ et ~y sont croissantes en le paramétre de la
copule, et 7, et p, sont des mesures de dépendance
non-paramétriques:

O = ¢_1(Tn) ou 6= 'Y—l(/)n)'

— En pratique, on utilise trés souvent le tau de Kendall car
des expressions simples existent pour la plupart des copules.
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— Remarque: la plupart des familles de copules satisfont la
propriété (PQD)!



Intervalle de confiance: cas du tau de Kendall

— Expression analytique de 7, (différence entre proportion
de couples concordants et proportion de couples discordants):

2 .
Ta=—— > > signe[(xi — x)(yi — y)],
n(n—1) &~ £~
i J#
signe [(x; — xj)(yi — yj)] = 1 si paires concordantes, -1 sinon.

Ou bien 7, = ﬁ%l((xﬁxj)(\’;—\’jbo) - L

— L'intervalle de confiance de |'estimation du paramétre de
la copule est donné par le comportement asymptotique de 7;

— Tp vérifie asymptotiquement /n =" ~ N/(0,1) ou
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W, = —#{Je{l,...n} : Xi > X}, Yi > Yy}
n
~ 1
W = — #{Je{l,...n} : X;i <X, Vi <Y}
- 1 <
W = =3 W,

— Finalement le paramétre de copule peut étre estimé grace
au théoréme de Slutsky (plus couramment méthode delta);

— Théoreme de Slutsky: en notant ¢’ la dérivée de ¢,

1 Y
On =~ N(H, ;{45¢ ! (Tn)}z)v Méthode des

ot  est I'estimateur de @ par la méthode des moments.



Intervalle de confiance (3)

— Par conséquent, l'intervalle de confiance asymptotique de
6 au seuil 100.(1 — «)% est:
~ 1

4SI6 ) 5 B+ 2o

1
On — 21-a)2 NG —=

ﬁ45|¢>/‘1(7n)|

avec z quantile de la gaussienne centrée réduite A/(0,1).

— Remarque: la loi asymptotique du rho de Spearman reste
gaussienne, mais la variance de la loi différe de celle du tau
de Kendall.
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De nombreux outils en ligne...

Il existe un large panel d'outil permettant de se familiariser
avec |'utilisation de copules. Pour la simulation, il y a
notamment:

— les méninges: il vous suffit d'utiliser la technique
d'inversion de la fonction de répartition empirique...

— le logiciel libre R, et sa librairie copula:
@ R website: http://www.r-project.org ;
e Package mirror: http://cran.r-project.org ;

o Aide ou liens utiles:
o http://www.statmethods.net
o http://forums.cirad.fr/logiciel-R /index.php

— Mais aussi d'autres logiciels mathématiques et
statistiques: Scilab, Matlab...
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Méthode d'inversion de la FdR

Prenons un exemple: simulation de la copule Normale en
dimension 2. La copule Normale s'écrit

Cév(ul, up) = Ha(CD_l(ul), ¢'_1(u2)), a € [-1,1],

pour u; € [0,1], i=1,2. ®~1 est la FdR inverse d'une N(0, 1),
et H, est la FdR de la normale bivariée avec corrélation .

Algorithme:
@ simulation d'un couple de variables aléatoires normale
standard (Z1, Z») avec un coefficient de corrélation «,
@ calcul de U; = ¢(Z;), i=1,200 ¢ est la FdR d'une
loi normale standard,

© déduction des X; par X; = F)Z_l(U,-), i=1,2.
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Justification de I'algo

— A partir du théréme de Sklaar, on a le corollaire suivant:
Soit H une FdR bivariée avec des marginales continues F, G,
et la copule C. Alors,

Y(u,v) €[0,1]%, Cu(u,v) = H(X7y)(F71(U), G1(v)).

—IdH=Hy F=G=¢, Z1 = F Yu) et Z, = G 1(v).

@ on simule la structure de dépendance H pour obtenir
H(Z1, 22),

@ on calcule U = F(Z;1) et V = G(2),

© on revient a la déf. Xy = F1(U), Xo = G L(V).
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