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Pourquoi les copules pour mesurer la dépendance?

Le + répandu pour mesurer la corrélation: coefficient Pearson

ρX ,Y =
E [(X − µX )(Y − µY )]

σXσY
,

où µX = E [X ] et σX est l’écart-type de X .
Ce coefficient mesure la corrélation LINEAIRE. Oui car...

Exemple : considérons la v.a. X telle que X ∼ N (0, 1). Ainsi
µX = 0, et µX 3 = 0. Notons Y = X 2, on a

ρX ,Y =
E [(X − µX )(X 2 − µX 2)]

σXσX 2

=
µX 3 − µXµX 2

σXσX 2
= 0.

Corrélation nulle alors que X et X 2 parfaitement corrélées!
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Un peu d’Histoire...

→ Outil récent né dans les années 1950, avec un fort
développement depuis les années 1980;

→ Modélisation de la dépendance entre les risques : définit
une structure de dépendance entre des marginales (FdR de
lois univariées);

→ Principaux chercheurs sur le sujet : C. Genest (Université
Laval, Québec, Canada) & al., Sklaar;

→ Auteurs pour les applications...
en Assurance : Frees et Valdez (1998),
en Finance : Bouyé et al. (2000), Cherubini et al.
(2004) et McNeil (2005).
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Domaines d’application

Les copules sont généralement majoritairement utilisées dans
les deux domaines que sont...

la Finance:
risque de crédit pour la modélisation de la dépendance
du risque de défaut,
ou pour les rendements de titres financiers;

l’Assurance:
Vie : contrat décès sur 2 têtes,
Non-vie (IARD) :
→ assurance catastrophe naturelle;
→ réassurance.



Les copules:
introduction et

estimation

M2MO Paris 7,
le 18/12/2012

Xavier Milhaud

Introduction
Généralités
Principe
Définition
Conséquences
immédiates
Exemples
Allure des copules
Construction

Estimation
Inférence
Non-paramétrique
Copule empirique
Semi-
paramétrique
CML
Paramétrique
ML
IFM
Corrélation de
rang
Méthode des
moments

Outils de
simulation
Généralités
Inversion FdR

Idée de base

On peut définir la fonction de répartition conjointe de X et Y
de la manière suivante:

H(X ,Y )(x , y) = CH(FX (x),GY (y)),

où C est défini comme étant une copule.

→ Ceci permet d’introduire une dépendance entre X et Y,
pas forcément au sens linéaire du terme...

→ Il y a distinction entre la définition de la relation de
dépendance et celle des marginales.
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Plaçons nous en dimension 2 pour simplifier

→ Soit 2 variables aléatoires X et Y de FdR F et G.
Une copule est une FdR de la loi jointe bivariée qui lie les
marginales de X et Y (cf théorème de Sklaar).

→ Théorème fondamental de représentation de Sklaar:
Si H la FdR du couple (X,Y) et F et G les marginales des lois
univariées X et Y (respectivement), alors il existe une copule
CH (unique si X, Y continues) telle que :

∀(x , y) ∈ R2,H(X ,Y )(x , y) = CH(F (x),G (y)).

→ En pratique, une copule CH peut être vue comme une
application de [0, 1]2 dans [0, 1] à partir de lois uniformes:

CH(u, v) = P(F (x) ≤ u,G (y) ≤ v)
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Démonstration

En effet, en posant u = F (x) et v = G (y) on a bien

(u, v) ∈ [0, 1]× [0, 1];

Et ∀(x , y) ∈ R2;

C (F (x),G (y)) = H(X ,Y )(x , y)

C (u, v) = P(X ≤ x ,Y ≤ y)

= P(X ≤ F−1(u),Y ≤ G−1(v))

= P(F (X ) ≤ u,G (Y ) ≤ v)

Attention à la confusion:

P(F (x) ≤ u,G (y) ≤ v) 6= P(X ≤ u,Y ≤ v)!
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Définition et propriétés

Définition: une copule C est la fonction de répartition d’un
vecteur de variables aléatoires U = (U1,U2) dont toutes les
composantes Ui obéissent à la loi uniforme U(0, 1).

Remarque: en effet, si X ∼ FX alors FX (X ) = U ∼ U(0, 1)
(car FX (X ) = FX (F−1

X (U)) = U).

Propriétés: on a donc C : [0, 1]2 → [0, 1], telle que:
1 C (U1,U2) non decroissante sur [0, 1]2,

2 C (U1,U2) continue a droite sur [0, 1]2,

3 lim
ui→0

C (U1,U2) = 0,

4 lim
ui→1

C (U1,U2) = uj ,

5 ∆a1,b1∆a2,b2C (U1,U2) = C (b1, b2)− C (b1, a2)−
C (a1, b2) + C (a1, a2) ≥ 0, ∀a1 ≤ b1, a2 ≤ b2.
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Utilisation pratique des copules

définir la structure de dépendance entre lois de proba.,
mesurer la dépendance entre des v.a. données,
construire des familles de lois bivariées.

Avantages:
permet d’étendre les modèles à chocs communs,
tous les résultats sont généralisables en dimension d .

Intérêts:
décomposition lors de la définition des lois multivariées:

les marginales sont définies indépendamment les unes
des autres, pas nécessairement de même type,
la structure de dépendance introduite via la copule ne
dépend pas du choix de ces marges...

invariance par transformation monotone.
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Exemples de copules bivariées
Copule d’indépendance:

C I (u1, u2) = u1u2,

Copule de Farlie-Gumbel-Morgenstern (α ∈ [−1, 1]):

Cα(u1, u2) = u1u2 + αu1u2(1− u1)(1− u2),

Copule de la borne supérieure de Fréchet:

C+(u1, u2) = min(u1, u2),

Copule de la borne inférieure de Fréchet:

C−(u1, u2) = max(u1 + u2 − 1, 0),

Copule de Fréchet (α et β ∈ [0, 1]):

Cα,β(u1, u2) = αC−(u1, u2) + βC+(u1, u2) + (1− α− β)C I (u1, u2).
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Exemple de familles de copules

Il existe aussi des familles de copules! Elles regroupent
(comme on peut s’en douter) différentes copules...

Copule de Franck (α 6= 0):

CF
α (u1, u2) = − 1

α
ln(1 +

(e−αu1−1)(e−αu2−1)

e−α−1 ),

Copule de Gumbel (α ≥ 1):

CG
α (u1, u2) = exp(−[(− ln u1)α + (− ln u2)α](1/α)),

Copule de Clayton (α > 0):

CC
α (u1, u2) = (u−α1 + u−α2 − 1)−

1
α .
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Copule normale (α = 0.5,−0.5, 0.9,−0.9)
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Copules de Student (2 prem.) et Franck
(α = 2.5, 8)
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Copules de Gumbel (α = 1, 6) et Clayton
(α = 2, 10)
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Construction de copule
Pour construire une copule, il suffit de se servir du corollaire:
“Soit H une FdR bivariée avec des marginales continues F ,
G , et la copule C. Alors, ”

∀(u, v) ∈ [0, 1]2, CH(u, v) = H(X ,Y )(F−1(u),G−1(v)).

Si on connait la distribution conjointe de (X,Y) ainsi que leur
marginale, le tour est joué!

Exemple: copule de Galambos: ∀θ ≥ 1, on a

H(x , y) = exp(−[(x + y)− (x−θ + y−θ)−1/θ])

admet pour marges F (x) = G (x) = exp(−x), ∀x ∈ [0,+∞[.

Soit donc ∀u ∈ [0, 1],F−1(u) = G−1(u) = − ln(u), d’où:

Cθ(u, v) = uv exp(−[(− ln u)−θ + (− ln v)−θ]−1/θ)
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Des données aux copules, l’inférence statistique

Estimation des marges:

Concrètement on a les observations

(x1, y1), (x2, y2), , (xn, yn)

équivalent à H(X ,Y )(x , y) = CH(F (x),G (y)).

Question : comment choisir CH(u, v) (distribution de (U,V))
sachant que (U,V) = (F(x),G(y)) ?

(F et G ne sont pas évidemment pas connues dans la réalité)
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Solution

Pour obtenir les observations

(u1, v1), (u2, v2), ..., (un, vn),

on estime les marges par la fonction de répartition empirique
des lois X et Y, i.e. :

Fn(x) =
1
n

n∑
i=1

11Xi≤x

Gn(y) =
1
n

n∑
i=1

11Yi≤y

Puis on pose

(Ui = Fn(Xi ),Vi = Gn(Yi ))

.
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Point technique important

→ En fait cela revient à poser Ui =
Ri

n
et Vi =

Si

n
,

avec Ri et Si qui sont les rangs des observations de X et Y.

→ Propriétés:
i) Si X est v.a.c. de FdR F alors la variable Y = F (X ) est de
loi uniforme U(0, 1),
ii) Si F est une FdR continue d’inverse généralisée F−1 et X
une v.a.c. telle que X ∼ U(0, 1), alors F−1(X ) ∼ F !

→ Csq: chacune des paires est bien de loi C par construction!
Si (X ,Y ) ∼ H de marge F , G alors H(F (X ),G (Y )) ∼ C (i);

→ Réciproque:
Si (U,V ) ∼ C alors H(F−1(U),G−1(V )) ∼ H (ii).
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Définition

→ La copule empirique (Deheuvels, 1979) est définie de la
même manière qu’une fonction de répartition empirique par:

Cn(u, v) =
1
n

n∑
i=1

11(F (Xi ),G(Yi ))≤(u,v).

→ Résultats asymptotiques:
√

n(Cn − C )→ N (0, σ2).

→ Support de la copule: graphe des paires
(Ri

n
,
Si

n

)
;

→ n ne doit être...
ni trop petit: perte de la forme précise de la FdR,
ni trop grand : temps de calcul trop important.

→ Rq: bon outil graphique, insuffisant pour choisir la famille
de copules adaptée à la structure de dépendance des données.
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Canonical Maximum Likelihood (CML)

→ Cette méthode semi-paramétrique a été proposée par
Oakes (1994), approfondie par Genest et al. (1995);

→ Extension au traitement de données censurées par Shih et
Louis (1995);

→ Idée sous-jacente de la méthode: estimation non
paramétrique des marges par la FdR empirique, puis
estimation paramétrique du paramètre de copule.

→ La CML est semblable à l’IFM (cf supra) mais pas besoin
de spécifier les lois des marginales;

→ Inconvénient majeur: perte d’information due à
l’estimation non paramétrique des marges!
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Mise en oeuvre
→ Marginales remplacées par FdR empirique, puis le param.
de la copule estimé par MV. En pratique,

Fn(x) =
1
n

n∑
i=1

11Xi≤x ,

et θ est donc estimé en maximisant la log-vraisemblance:

θ̂ = argmax
θ∈Θ

n∑
i=1

ln(cθ(Fn(xi ),Gn(yi ))).

où cθ(u, v) est la densité de C.

→ Facilité d’implémentation, invariance par transformation
croissante des marges:

Ûi = Fn(Xi ) et V̂i = Gn(Yi )
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Données de l’approche

→ On dispose de l’échantillon aléatoire
(x1, y1), (x2, y2), ..., (xn, yn) de loi

H(X ,Y )(x , y) = C (F (x),G (y)), ∀(x , y) ∈ R2.

→ On suppose des modèles paramétriques pour F , G et Cθ,
où Cθ est une famille paramétrique de copules.

→ Q.: comment estimer le paramètre de dépendance θ?

Exemple: considérons F ∼ N(µ, σ2), G ∼ Gamma(ν, β).
Et prenons C appartient à la famille FGM (α ∈ [−1, 1]):

Cα(u1, u2) = u1u2 + αu1u2(1− u1)(1− u2),



Les copules:
introduction et

estimation

M2MO Paris 7,
le 18/12/2012

Xavier Milhaud

Introduction
Généralités
Principe
Définition
Conséquences
immédiates
Exemples
Allure des copules
Construction

Estimation
Inférence
Non-paramétrique
Copule empirique
Semi-
paramétrique
CML
Paramétrique
ML
IFM
Corrélation de
rang
Méthode des
moments

Outils de
simulation
Généralités
Inversion FdR

a) Maximum Likelihood

L’estimation par maximum de vraisemblance nécessite
d’introduire les quantités fλ, gν , cθ où

cθ(u, v) =
∂2C (u, v)

∂u∂v
,

qui sont les densités associées à F, G et C.

→ D’autre part, H(x , y) = C (F (x),G (y)) donc

h(x , y) = cθ(Fλ(x),Gν(y))fλ(x)gν(y),

d’où la log-vraisemblance à maximiser

l(λ, ν, θ) =
n∑

i=1

ln(fλ(xi )) +
n∑

i=1

ln(gν(yi )) +
n∑

i=1

ln(cθ(Fλ(xi ),Gν(yi )))
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Propriétés du MLE

→ Les propriétés asymptotiques de l’estimateur du maximum
de vraisemblance sont bien connues:

il est sans biais
convergent
asymptotiquement normal

→ Le temps de calcul est important si le nombre de
paramètre est grand...

→ Grande sensibilité au choix des marginales F et G
(attention à ne pas se tromper!)

→ Rq: on estime tous les paramètres en même temps !
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b) Inference Functions for Margins

→ Cette méthode utilise la propriété fondamentale des
copules : séparation marginales / structure de dépendance;

→ Il s’agit d’une estimation par maximum de vraisemblance,
mais en deux étapes:

1 estimation des paramètres des marginales;
2 estimation du paramètre de la copule en injectant les

paramètres estimés des marginales dans l’expression de
la vraisemblance de la copule;

→ Avantage: estimateur en deux temps asymptotiquement
normal (Joe, 2005) sous certaines conditions;

→ Inconvénient: mauvais choix de marginales se propage
dans l’estimation du paramètre de la copule...
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Algorithme

1 Estimer les marges par (ML)

λ̂ = argmax
λ∈Λ

n∑
i=1

ln(fλ(xi )) ν̂ = argmax
ν

n∑
i=1

ln(gν(yi ))

2 Pour i = 1, ..., n, posons

Ûi = Fλ̂(Xi ) et V̂i = Gν̂(Yi ), où λ̂, ν̂ sont les MLE.

3 Maximiser
∑n

i=1 ln(cθ(Ûi , V̂i )).

Même inconvénient:
Propagation d’un mauvais choix de marginales dans
l’estimation du paramètre de dépendance;
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Mesures de dépendance non-linéaire

→ Définitions: soient (X
′
1,X

′
2) indépendant de (X1,X2) et

ayant les mêmes marginales que (X1,X2), on définit

le rho de Spearman (ρ ∈ [−1, 1]):

ρ(X1,X2) = 3P((X1−X
′
1)(X2−X

′
2) > 0)−3P((X1−X

′
1)(X2−X

′
2) < 0),

le tau de Kendall (τ ∈ [−1, 1]):

τ(X1,X2) = P((X1−X
′
1)(X2−X

′
2) > 0)−P((X1−X

′
1)(X2−X

′
2) < 0).

→ Intuition: les variables aléatoires évoluent-elles dans le
même sens à chaque rang?

→ Ou quelle est la proportion de paires (xi , yi ) et (xk , yk)
concordantes (i.e. (xi − xk)(yi − yk) > 0) et discordantes ?
Sachant qu’il y a en tout Cn

2 = n(n−1)
2 paires distinctes...
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Relations entre Tau de Kendall et copule

La formule théorique liant ces deux grandeurs est :

τ(X1,X2) = 4
∫ 1

0

∫ 1

0
C (u1, u2)dC (u1, u2)− 1

= 4E[C (U1,U2)]− 1.

Ce qui donne:
Copule de Clayton: τ(X1,X2) = α

α+2 ,

Copule Normale: τ(X1,X2) = 2
π arcsin(α),

Copule de Gumbel: τ(X1,X2) = α−1
α ,

Copule de Fréchet: τ(X1,X2) = (α−β)(α+β+2)
3 ,

Copule FGM: τ(X1,X2) = α
9 ,

Copule Marshall-Olkin: τ(X1,X2) = αβ
α−αβ+β .
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Relations entre Rho de Spearman et copule

La formule théorique liant ces deux grandeurs est :

ρ(X1,X2) = 12
∫ 1

0

∫ 1

0
C (u1, u2)du1du2 − 3

= 12
∫ 1

0

∫ 1

0
u1 u2 dC (u1, u2)− 3.

Ce qui donne:
Copule Normale: ρ(X1,X2) = 6

π arcsin(1
2α),

Copule de Gumbel: ρ(X1,X2) = α−1
α ,

Copule de Fréchet: ρ(X1,X2) = α− β,
Copule FGM: ρ(X1,X2) = α

3 ,

Copule Marshall-Olkin: ρ(X1,X2) = 3αβ
2α−αβ+2β .
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Notion de dépendance positive par quadrant

→ Interprétation de la PQD:
la probabilité que les variables prennent simultanément des
valeurs élevées est plus grande si elles sont PQD que en cas
d’indépendance.

→ Lien évident avec les mesures du tau de Kendall et du Rho
de Spearman. Basée sur l’inversion de mesures de
dépendance (tau de Kendall, rho de Spearman).

→ X1 et X2 positivement dépendant par quadrant (PQD)
s’écrit:

(X1,X2) est PQD si P(X1 > x1,X2 > x2) ≥ P(X1 > x1)P(X2 > x2)︸ ︷︷ ︸
cas d’independance

.
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Propriétés et mise en oeuvre de la méthode

→ Propriété: si la famille Cθ est ordonnée par PQD, i.e.

θ1 < θ2 ⇒ Cθ1 < Cθ2

Alors τ = φ(θ) et ρ = γ(θ) sont des fonctions croissantes de
θ (où τ et ρ sont les mesures de Kendall et Spearman).

→ Puisque φ et γ sont croissantes en le paramètre de la
copule, et τn et ρn sont des mesures de dépendance
non-paramétriques:

θn = φ−1(τn) ou θn = γ−1(ρn).

→ En pratique, on utilise très souvent le tau de Kendall car
des expressions simples existent pour la plupart des copules.

→ Remarque: la plupart des familles de copules satisfont la
propriété (PQD)!
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Intervalle de confiance: cas du tau de Kendall
→ Expression analytique de τn (différence entre proportion
de couples concordants et proportion de couples discordants):

τn =
2

n(n − 1)

∑
i

∑
j , j 6=i

signe [(xi − xj)(yi − yj)] ,

signe [(xi − xj)(yi − yj)] = 1 si paires concordantes, -1 sinon.

Ou bien τn = 4
n(n−1)

∑
i<j

11((Xi−Xj )(Yi−Yj )>0) − 1.

→ L’intervalle de confiance de l’estimation du paramètre de
la copule est donné par le comportement asymptotique de τn;

→ τn vérifie asymptotiquement
√

n τn−τ
4S ∼ N (0, 1) où

S2 =
1
n

n∑
i=1

(Wi + W̃i − 2W̄i )
2, avec...
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Intervalle de confiance (2)

Wi =
1
n

#{J ∈ {1, ..., n} : Xi ≥ XJ ,Yi ≥ YJ}

W̃i =
1
n

#{J ∈ {1, ..., n} : Xi ≤ XJ ,Yi ≤ YJ}

W̄i =
1
n

n∑
i=1

Wi

→ Finalement le paramètre de copule peut être estimé grâce
au théorème de Slutsky (plus couramment méthode delta);
→ Théorème de Slutsky: en notant φ

′
la dérivée de φ,

θ̃n ' N(θ,
1
n
{4Sφ−1′(τn)}2),

où θ̃ est l’estimateur de θ par la méthode des moments.
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Intervalle de confiance (3)

→ Par conséquent, l’intervalle de confiance asymptotique de
θ au seuil 100.(1− α)% est:[
θ̃n − z1−α/2

1√
n
4S |φ′−1(τn)| ; θ̃n + z1−α/2

1√
n
4S |φ′−1(τn)|

]
avec z quantile de la gaussienne centrée réduite N (0, 1).

→ Remarque: la loi asymptotique du rho de Spearman reste
gaussienne, mais la variance de la loi diffère de celle du tau
de Kendall.
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De nombreux outils en ligne...

Il existe un large panel d’outil permettant de se familiariser
avec l’utilisation de copules. Pour la simulation, il y a
notamment:

→ les méninges: il vous suffit d’utiliser la technique
d’inversion de la fonction de répartition empirique...

→ le logiciel libre R, et sa librairie copula:
R website: http://www.r-project.org ;
Package mirror: http://cran.r-project.org ;

Aide ou liens utiles:
http://www.statmethods.net
http://forums.cirad.fr/logiciel-R/index.php

→ Mais aussi d’autres logiciels mathématiques et
statistiques: Scilab, Matlab...
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Méthode d’inversion de la FdR

Prenons un exemple: simulation de la copule Normale en
dimension 2. La copule Normale s’écrit

CN
α (u1, u2) = Hα(Φ−1(u1),Φ−1(u2)), α ∈ [−1, 1],

pour ui ∈ [0, 1], i=1,2. Φ−1 est la FdR inverse d’une N (0, 1),
et Hα est la FdR de la normale bivariée avec corrélation α.

Algorithme:
1 simulation d’un couple de variables aléatoires normale

standard (Z1,Z2) avec un coefficient de corrélation α,
2 calcul de Ui = φ(Zi ), i = 1, 2 où φ est la FdR d’une

loi normale standard,
3 déduction des Xi par Xi = F−1

Xi
(Ui ), i = 1, 2.
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Justification de l’algo

→ A partir du thérème de Sklaar, on a le corollaire suivant:
Soit H une FdR bivariée avec des marginales continues F , G ,
et la copule C. Alors,

∀(u, v) ∈ [0, 1]2, CH(u, v) = H(X ,Y )(F−1(u),G−1(v)).

→ Ici H = Hα, F = G = φ, Z1 = F−1(u) et Z2 = G−1(v).

1 on simule la structure de dépendance H pour obtenir
H(Z1,Z2),

2 on calcule U = F (Z1) et V = G (Z2),
3 on revient à la déf. X1 = F−1(U), X2 = G−1(V ).
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